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Abstract

Deep neural networks have been shown to exhibit an in-

triguing vulnerability to adversarial input images corrupted

with imperceptible perturbations. However, the majority

of adversarial attacks assume global, fine-grained control

over the image pixel space. In this paper, we consider a

different setting: what happens if the adversary could only

alter specific attributes of the input image? These would

generate inputs that might be perceptibly different, but still

natural-looking and enough to fool a classifier. We pro-

pose a novel approach to generate such “semantic” adver-

sarial examples by optimizing a particular adversarial loss

over the range-space of a parametric conditional genera-

tive model. We demonstrate implementations of our attacks

on binary classifiers trained on face images, and show that

such natural-looking semantic adversarial examples exist.

We evaluate the effectiveness of our attack on synthetic and

real data, and present detailed comparisons with existing

attack methods. We supplement our empirical results with

theoretical bounds that demonstrate the existence of such

parametric adversarial examples.

1. Introduction

The existence of adversarial inputs for deep neural

network-based classifiers has been well established by sev-

eral recent works [5, 10, 16, 17, 58, 41]. The adversary

typically confounds the classifier by adding an impercepti-

ble perturbation to a given input image, where the range of

the perturbation is defined in terms of bounded pixel-space

ℓp-norm balls. Such adversarial “attacks” appear to catas-

trophically affect the performance of state-of-the-art classi-

fiers [1, 22, 23, 54].

Pixel-space norm-constrained attacks reveal interesting
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Figure 1. Examples of semantic adversarial attacks with a single

modifiable attribute. The first and third columns are original im-

ages. Semantic adversarial examples (Columns 2 and 4) are gen-

erated by optimizing over the manifold of parametric (attribute)

generative models to fool deep classifiers; specifically for adver-

sarial facial attributes for Col. 2 and illumination for Col. 4.

insights about generalization properties of deep neural net-

works. However, imperceptible attacks are certainly not the

only means available to an adversary. Consider an input ex-

ample that comprises salient, invariant features along with

modifiable attributes. An example would be an image of

a face, which consists of invariant features relevant to the

identity of the person, and variable attributes such as hair

color and presence/absence of eyeglasses. Such adversarial

examples, though perceptually distinct from the original in-

put, appear natural and acceptable to an oracle or a human

observer but would still be able to subvert the classifier. Un-

fortunately, the large majority of adversarial attack methods

do not port over to such natural settings.

A systematic study of such attacks is paramount in

safety-critical applications that deploy neural classifiers,

such as face-recognition systems or vision modules of au-

tonomous vehicles. These systems are required to be im-

mune to a limited amount of variability in input data, par-

ticularly when these variations are achieved through natu-

ral means. Therefore, a method to generate adversarial ex-

amples using natural perturbations, such as facial attributes

in the case of face images, or different weather conditions

for autonomous navigation systems, would shed further in-
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sights into the real-world robustness of such systems. We

refer to such perceptible attacks as “semantic” attacks.

This setting fundamentally differs from existing attack

approaches and has been (largely) unexplored thus far. Se-

mantic attacks utilize nonlinear generative transformations

of an input image instead of linear, additive techniques

(such as image blending). Such complicated generative

transformations display higher degrees of nonlinearity in

corresponding attacks, the effects of which warrant further

investigation. In addition, the role of the number of modifi-

able attributes (parameters in the generative models) in the

given input is also an important point of consideration.

Contributions: We propose and rigorously analyze a

framework for generating adversarial examples for a deep

neural classifier by modifying semantic attributes.

We leverage generative models such as Fader Net-

works [30] that have semantically meaningful, tunable

attributes corresponding to parameters into a continuous

bounded space that implicitly define the space of “natural”

input data. Our approach exploits this property by treating

the range space of these attribute models as a manifold of

semantic transformations of an image.

We pose the search for adversarial examples on this se-

mantic manifold as an optimization problem over the pa-

rameters conditioning the generative model. Using face im-

age classification as a running test case, we train a variety

of parametric models (including Fader Networks and At-

tribute GANs), and demonstrate the ability to generate se-

mantically meaningful adversarial examples using each of

these models. In addition to our empirical evaluations, we

also provide a theoretical analysis of a simplified semantic

attack model to understand the capacity of parametric at-

tacks that typically exploit a significantly lower dimensional

attack space compared to the classical pixel-space attacks.

Our specific contributions are as follows:

1. We propose a novel optimization based framework to

generate semantically valid adversarial examples using

parametric generative transformations.

2. We explore realizations of our approach using vari-

ants of multi-attribute transformation models: Fader Net-

works [30] and Attribute GANs [20] to generate adversarial

face images for a binary classifier trained on the CelebA

dataset [37]. Some of our modified multi-attribute models

are non-trivial and may be of independent interest.

3. We present an empirical analysis of our approach and

show that increasing the dimensionality of the attack space

results in more effective attacks. In addition, we investigate

a sequence of increasingly nonlinear attacks, and demon-

strate that a higher degree of nonlinearity (surprisingly)

leads to weaker attacks.

4. Finally, we provide a preliminary theoretical analysis by

providing upper bounds for the classification error for a

simplified surrogate model under adversarial condition [52].

This analysis supports our empirical observations regarding

the dimensionality of the attack space.

We demonstrate the effectiveness of our attacks on sim-

ple deep classifiers trained over complex image datasets;

hence, our empirical comparisons are significantly more

realistic than popular attack methods such as FGSM [16]

and PGD [29, 39] that primarily have focused on simpler

datasets such as MNIST [32] and CIFAR. Our approach

also presents an interesting use-case for multi-attribute gen-

erative models which have been used solely as visualization

tools thus far.

Outline: We begin with a review of relevant literature in

Section 2. We describe our proposed framework, Seman-

tic Adversarial Generation, in section 3. In Section 4 we

describe two variants of our framework to show different

methods of ensuring the semantic constraint. We provide

empirical analysis of our work in Section 5. We further

present empirical analysis and theoretical qualification on

the dimensionality of the parametric attack space in Sec-

tion 6, and conclude with possible extensions in Section 7.

2. Related Work

Due to space constraints coupled with the large amount

of recent progress in the area of adversarial machine learn-

ing, our discussion of related work is necessarily incom-

plete. We defer a more detailed discussion to the appendix.

Our focus is on white box, test-time attacks on deep clas-

sification systems; other families of attacks (such as back-

door attacks, data poisoning schemes, and black-box at-

tacks) are not directly relevant to our setting, and we do

not discuss those methods here.

Adversarial Attacks: Evidence that deep classifiers are

susceptible to imperceptible adversarial examples can be at-

tributed to Szegedy et al. [58]. Goodfellow et al. [16] and

Kurakin et al. [29] extend this line of work using the Fast

Gradient Sign Method (FGSM) and its iterative variants.

Carlini and Wagner [5] devise state-of-the-art attacks under

various pixel-space lp norm-ball constraints by proposing

multiple adversarial loss functions. Athalye et al. [1] fur-

ther analyze several defense approaches against pixel-space

adversarial attacks, and demonstrate that most existing de-

fenses can be surpassed by approximating gradients over

defensively trained models.

Such attacks perturb the pixel-space under an impercep-

tibility constraint. On the contrary, we approach the prob-

lem of generating adversarial examples that have percepti-

ble yet semantically valid modifications. Our method con-

siders a smaller ‘parametric’ space of modifiable attributes

that have physical significance.

Parametric Adversarial Attacks: Parametric attacks are

a recently introduced class of attacks in which the attack

space is defined by a set of parameters rather than the pixel
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Figure 2. An single-attribute Adversarial Fader Network. The semantic adversarial attack framework optimizes an adversarial loss to

generate an adversarial direction. Backpropagating the adversarial direction through the Fader Network with respect to the attribute vector,

a, ensures that the adversarial example is only generated for that specific attribute. Here, the adversarial algorithm generates eyeglasses on

a face of a Female by optimizing a, thus forcing the gender classifier to misclassify the image as Male.

space. Such approaches result in more “natural” adversarial

examples as they target the image formation process instead

of the pixel space. Recent works by Athalye et al. [2] and

Liu et al. [35] use optimization over geometric surfaces in

3D space to create adversarial examples. Zhang et al. [71]

demonstrate the existence of adversarially designed textures

that can camouflage vehicles. Zhao et al. [72] generate

adversarial examples by using the parametric input latent

space of GANs[18]. Xiao et al. [65] employ spatial trans-

forms to perturb image geometry for creating adversarial

examples. Sharif et al. [55] propose a generative model to

alter images of faces with eyeglasses in order to confound

a face recognition classifier. Contrary to these methods, we

consider the inverse approach of using a pre-trained multi-

attribute generative model to transform inputs over multiple

attributes for generating adversarial examples.

Song et al. [57] optimize over the latent space of a con-

ditional GAN to generate unrestricted adversarial examples

for a gender classifier. While our approach is thematically

similar, we fundamentally differ in the context of being

able to generate adversarial counterparts for given test sam-

ples while providing a finer degree of control using multi-

attribute generative models. We discuss relevant literature

regarding such multi-attribute generative models below.

Attribute-Based Conditional Generative Models: Gen-

erative Adversarial Networks (GAN) [18] are a popular ap-

proach for the generation of samples from a real-world data

distribution. Recent advancements [49, 36, 64, 6] in GANs

allow for creation of high quality realistic images. Chen et

al. [6] introduce the concept of a attribute learning gener-

ative model where visual features are parametrized by an

input vector.

Perarnaue et al. [48] use a Conditional Generative Ad-

versarial Network [40] and an encoder to learn the attribute

invariant latent representation for attribute editing. Fader

Networks [30] improve upon this using an auto-encoder

with a latent discriminator. He et al. [20] argue that such

an attribute invariant constraint is too constrictive and re-

place it an attribute classification constraint and a recon-

struction loss instead to alter only the desired attributes pre-

serving attribute-excluding features. These models are pri-

marily used for generation of a large variety of facial im-

ages. We provide a secondary (and perhaps practical) use

case for such attribute models in the context of understand-

ing generalization properties of neural networks.

3. Semantic Attacks

Conceptually, producing an adversarial semantic (“nat-

ural”) perturbation of a given input depends on two algo-

rithmic components: (i) the ability to navigate the manifold

of parametric transformations of an input image, and (ii) the

ability to perform optimization over this manifold that max-

imizes the classification loss with respect to a given target

model. We describe each component in detail below.

Notation: We assume a white-box threat model, where

the adversary has access to a target model f(x) : R
d →

{0, 1}c and the gradients associated with it. The model clas-

sifies an input image, x into one of c classes, represented by

a one-hot output label, y. In this paper, we focus on bi-

nary classification models (c = 2) while noting that our

framework transparently extends to multi-class models. Let

G(x,a) : Rd × R
k → R

d denote parametric transforma-

tions, conditioned on a parameter vector, a. Here, each el-

ement of a (say, ai) is a real number that corresponds to

a specific semantic attribute. For example, a0 may corre-

spond to facial hair, with a value of zero (or negative) denot-

ing absence and a positive value denoting presence of hair

on a given face example. We define a semantic adversar-
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Algorithm 1 Adversarial Parameter Optimization

Require: x0:Input image, a0:Initial attribute vector, E(.): At-

tribute encoder, G(., .):Pre-trained parametric transformation

model, f(.): Target classifier, y : Original label

1: h0 ← f(x), ladv ←∞, i← 0
2: success = 0

3: while do ladv 6= 0 and i ≤ MaxIter

4: ā← E(a)
5: hi ← f(G(xi, āi))
6: ladv ← Ladv(y, hi)
7: ai+1 ← BackProp {ai,∇ladv (f(G(xi, E(ai))))}
8: x̃← G(x, E(ai+1))
9: if f(x) 6= f(x̃) then

10: return success, x̃

11: end if

12: i← i+ 1
13: end while

ial attack as the deliberate process of transforming an input

image, x via a parametric model to produce a new example

x̃ = G(x,a) such that f(x̃) 6= f(x).

3.1. Parametric Transformation Models

First, let us consider the problem of generating seman-

tic transformations of a given input example. In order to

create semantically transformed examples, the defined para-

metric generative model G(.) should satisfy two properties:

G(.) should reconstruct the invariant data in an image, and

G(.) should be able to independently perturb the semantic

attributes while minimally changing the invariant data.

The parametric transformation model therefore, is

trained to reconstruct the original example while disentan-

gling the semantic attributes. This involves conditioning the

generative model on a set of parameters corresponding to

the modifiable attributes. The semantic parameter vector

consists of these parameters and is input to the parametric

model to control the expression of semantic attributes.

We argue that the range-space of such a model approxi-

mates the manifold of the semantic transformations of input

images. Therefore, the transformation model can be used a

projection operator to ensure that a solution to an optimiza-

tion problem will lie in the set of semantic transformations

of an input image. We also observe that the semantic pa-

rameter vectors will be much lower in dimension than the

original image.

In this paper, we consider two variants of such con-

ditional generative models: Fader Networks [30] and At-

tributeGANs (AttGAN) [20].

3.2. Adversarial Parameter Optimization

The problem of generating a semantic adversarial exam-

ple essentially can be thought of as finding the right set of

attributes that a classifier is adversarially susceptible to. In

our approach, we model this as an optimization problem

over the semantic parameters.

The generation of adversarial examples is generally

modelled as an optimization problem that can be broken

down into two sub problems: (1) Optimization of an ad-

versarial loss over the target network to find the direction of

an adversarial perturbation. (2) Projection of the adversarial

vector on the viable solution-space.

In the first step, we optimize over an adversarial loss,

Ladv. We model the second step as a projection of the ad-

versarial vector onto the range space of a parametric trans-

formation model. This is achieved by cascading the out-

put of the transformation function to the input of our target

network. The optimization problem can then be solved by

back-propagating over both the network and the transform.

We also modify the Carlini-Wagner untargeted adversarial

loss [5] as shown in equation 1 to include our semantic con-

straint:

max

(

0,max
t 6=i

(f(x̃)t)− f(x̃)i

)

(1)

s.t. x̃ = G(x,a)

where i is the original label index and t are the class label

indices for any of the other classes.

In comparison to the grid search method presented in

Zhao et al. [72] and Engstrom et al. [12], our optimiza-

tion algorithm scales better. In addition, we create seman-

tic adversarial transformations with multiple attributes for

a specific input allowing for a fine-grained analysis of the

generalization capacities of the target model.

4. Semantic Transformations

While our semantic attack framework is applicable to

any parametric transformation model that enables gradient

computations, we instantiate it by constructing adversarial

variants of two recently proposed generative models: Fader

networks [30] and AttributeGANs (AttGAN) [20].

4.1. Adversarial Fader Network

A Fader Network [30] is an encoder-decoder architecture

trained to modify images with continuously parameterized

attributes. They achieve this by learning an invariance over

the encoded latent representation while disentangling the

semantic information of the images and attributes. The in-

variance of the attributes is learnt by an adversarial training

step in the latent space with the help of a latent discriminator

which is trained to identify correct attributes corresponding

to each training sample.

Using our framework, we can adapt any pre-trained

Fader Network to model the manifold of semantic perturba-

tions of a given input. We note that minor adjustments are

needed in our setting, since the parameter vector required

by the approach of [30] requires each scalar attribute, ai,
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to be represented by a tuple, (1 − ai, ai). Since there is

a one-to-one mapping between the two representations, we

can project any real-valued parameter vector a into this tu-

ple form via an additional, fixed affine transformation layer.

Given this extra “attribute encoding” step, all gradient com-

putations proceed as before. We quantitatively study the

effect of allowing the attacker access to single or multi-

ple semantic attributes. In particular, we construct three

approaches for generating semantic adversarial examples:

(i) A single attribute Fader Network; (ii) A multi-attribute

Fader Network; and (iii) A cascaded sequence of single at-

tribute Fader Networks.

Single Attribute Attack: For the single attribute attack, we

use the range-space of a pre-trained, single attribute Fader

Network to constrain our adversarial attack. The single at-

tribute attack constrains an attacker to only modify a spec-

ified attribute for all the images. In the case of face im-

ages, such attributes might include presence/absence of eye-

glasses, hair color, and nose shape.

In our experiments, we present examples of attacks on a

gender classifier using three separate single attributes: eye-

glasses, age, and skin complexion. Fig. 2 describes the

mechanism of a single-attribute adversarial Fader Network

that generates an adversarial example by adding eyeglasses.

Multi-Attribute Attack: Similar to the single-attribute

case, we may also use pre-trained multi-attribute Fader Net-

works to model cases where the adversary has access to

multiple modifiable traits.

A limitation of multi-attribute Fader Networks lies in the

difficulty of their training. This is because a Fader Network

is required to learn disentangled representations of the at-

tributes while in practice, semantic attributes cannot be per-

fectly decoupled. We resolve this using a novel conditional

generative model described as follows.

Cascaded Attribute Attack: We propose a novel method

to simulate multi-attribute attacks by stage-wise concatena-

tion pre-trained single attribute Fader networks. The benefit

is that the computational burden of learning disentangled

representations is now removed.

Each single-attribute model exposes a attribute latent

vector. During execution of Alg. 1 we jointly optimize over

all the attribute vectors. The optimal adversarial vector is

then segmented into corresponding attributes for each Fader

Network to generate an adversarial example.

4.2. Adversarial AttGAN

A second encoder-decoder architecture [20], known as

AttGAN, achieves a similar goal as Fader Networks of edit-

ing attributes by manipulating the encoded latent repre-

sentation; however, AttGAN disentangles the semantic at-

tributes from the underlying invariances of the data by con-

sidering both the original and the flipped labels while train-

ing. This is achieved by training a latent discriminator and

Attack Type Attributes Accuracy of

target model

(%)

Random Sam-

pling (%)

Single Attribute

Attack

A1 52.0 89.00

A2 35.0 96.00

A3 14.0 90.00

Multi Attribute

Attack

A1,A5,A6 3.00 89.00

A2,A5,A6 1.00 81.00

A1,A2,A7 3.00 87.00

Cascaded Multi

Attribute Attack

A1-A2-A3 18.00 55.6

A2-A3-A4 20.00 93.00

Multi Attribute

AttGAN Attack

A1,A2,A6,A8,A10 70.40 32.80

A1,A2,A6,A8,A9,A10 39.40 40.40

Table 1. Performance of the Semantic Adversarial Example under

multiple implementations. Legend for attributes: A1-Eyeglasses,

A2-Age, A3-Nose shape, A4-Eye shape, A5-Chubbiness, A6-Pale

Skin, A7-Smiling, A8-Mustache, A9-Eyebrows, A10-Hair color.

As the number of attributes increase, semantic attacks are more

effective. Our optimization-based attack fares better as compared

to worst-of-10 random sampling [12], showing the former’s effi-

cacy at finding semantic adversarial examples.

classifier pair to classify both the original and the trans-

formed image to ensure invariance.

In order to generate semantic adversarial examples using

AttGAN, we use a pretrained generator conditioned on 13
attributes. The attribute vector in this case, is encoded to be

a perturbation of the original sequence of attributes for the

image. We consider the two sets of attributes listed in Ta-

ble 1 to generate adversarial examples. In our experience,

the AttGAN architecture provides a more stable reconstruc-

tion, thus allowing for more modifiable parameters.

5. Experimental Results

We showcase our semantic adversarial attack framework

using a binary (gender) classifier as the target model trained

on the CelebA dataset [37]. While we restrict ourselves

to results on binary classifers on faces in this paper, ad-

ditional results with multi-class classifiers on the Berkeley

Deep Drive dataset [69] can be found in the appendix (re-

fer Fig. 8). All experiments were performed on a single

workstation equipped with an NVidia Titan Xp GPU in Py-

Torch [47] v1.0.0.1 We train the classifier using the ADAM

optimizer [26] over the categorical cross-entropy loss.The

training data is augmented with random horizontal flipping

to ensure that the classifier does not overfit. The target

model achieves a (standard) accuracy of 99.7% on the test

set (10% of the dataset).

Our goal is to break this classifier model using semantic

attacks. To do so, we use a subset of 500 randomly selected

images from the test set. Each image is transformed by our

algorithm using the various parametric transformation fam-

ilies described in Section 4. Our metric of comparison for

all adversarial attacks is the target model accuracy on the

1Code and models: https://github.com/ameya005/

Semantic_Adversarial_Attacks
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(a) (b) (c) (d) (e) (f) (g) (h) (i)
Figure 3. Semantic adversarial examples generated with multiple attribute semantic models as in table 1. Columns (a), (e) and (g) are

original images. Columns (b){Attribute category: A1,A5,A6} (c){Attribute category: A1,A2,A7} and (d){Attribute category: A2,A5,A6}
show examples generated using multi-attribute Fader Networks as semantic transforms. Examples in (f){Attribute category: A1-A2-A3}
were generated using cascaded single attribute Fader Network. Columns (h){Attribute category: A1,A2,A6,A8,A10} and (i){Attribute

category: A1,A2,A6,A8,A9,A10} are images transformed using an AttGAN with 5 and 6 attributes respectively. Additional results of

semantic attacks on multi-class classifiers for traffic scenes are provided in the appendix.

generated adversarial test set.

Adversarial Fader Networks: We consider the three ap-

proaches documented in section 4.1. For every image in

our original test set, we generate adversarial examples by

optimizing the adversarial loss in equation 1 with respect to

the corresponding attribute parameters.

In the cases of single-attribute and cascaded sequential

attacks, we use the pre-trained single-attribute models pro-

vided by Lample et al. [30] to represent the manifold of

semantic transformations. For the multi-attribute attack, we

train 3 multi-attribute Fader Networks with the attributes

presented in Table 1. We create an adversarial test set for

each our approaches as described in Section 4.1 using our

algorithm as defined in Algorithm 1.

Our experiments show that Adversarial Fader Networks

successfully generate examples that confound the binary

classifier in all cases; see Table 1. Visual adversarial exam-

ples are displayed in Fig. 1 and Fig. 3. We also observe that

multi-attribute attacks outperform single-attribute attacks,

which conforms with intuition; a more systematic analysis

of the effect of the number of semantic attributes on attack

performance is provided below in Section 6.

Adversarial AttGAN: We perform a similar set of experi-

ments using the multi-attribute AttGAN implementation of

He et al. [20]. We record the performance over two ex-

periments: one using 5 attributes, and the second using 6

attributes, as seen in Table 1. We observe a significant im-

provement in performance as the number of semantic at-

tributes increases (in particular, adding the eyebrows at-

tribute results in nearly a 30% drop in model accuracy).

Comparison with parameter-space sampling: We com-

pare our method with a previously-proposed approach that

investigates parametric attacks et al. [12]. They propose

picking s random samples from the parameter space and

choose the adversarial example generated by the sample

giving the worst cross entropy loss (we use s = 10).

We showcase the results in Table 1, and observe that in

all cases (but one), our semantic adversarial attack algo-

rithm outperforms random sampling. In addition, the ta-

ble also reveals that random examples in the range of Fader

Networks or AttGANs are mostly classified correctly. This

suggests that the target model is generally invariant to the

low reconstruction error incurred by the parametric trans-

formation models2.

Comparison with pixel-space attacks: In addition to our

analyses described above, we also compare our attacks with

the state-of-the-art Carlini-Wagner(CW) l∞-attack [5] as

well as several other attack techniques [16, 29, 12] in Ta-

ble 2. To ensure fair comparison, we consider the maximum

l∞ distance over our multi-attribute attacks as the bound pa-

rameter ǫ for all pixel-norm based attacks. From the table,

we observe that the CW attack is extremely effective; on

2We do not compare our work with other approaches such as the Differ-

entiable Renderer [35] and 3D adversarial attacks [70], since these papers

expect oracle access to a 3D rendering environment. We also do not com-

pare with Song et al. [57] since they generate adversarial examples from

scratch, whereas our attack targets specific inputs.
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Attack (ǫ = 1.74) Accuracy(%)

Single Att. Semantic Attack 14.01

Multi Att. Semantic Attack 1.00

FGSM [16] 91.6

PGD [39, 29] 26.2

CW-l∞ [5] 0.00

Spatial [12] 41.00

Table 2. Comparison of adversarial attacks with other attack strate-

gies. A lower target accuracy corresponds to a better attack. The

pixel space attacks are allowed to generate adversarial examples

under the l∞ distance corresponding to our best performing multi-

attribute attack model. Observe that semantic attacks are compa-

rable to the state of the art pixel-space attack.

the other hand, our semantic attacks are able to outperform

other methods such as FGSM [17] and PGD [39].

We also compare our approach to Spatial Attacks of [12],

which uses a grid search over affine transformations of an

input to generate adversarial examples; ℓ∞ constraints do

not apply here, and instead we use default parameters pro-

vided in [12]. Our proposed attack methods are consider-

ably more successful. We provide additional detailed ex-

periments on binary and multi-class classifiers for other at-

tributes as well as other datasets in the appendix.

6. Analysis: Impact of Dimensionality

From our experiments, we observe that limiting the ad-

versary to a low-dimensional, semantic parametric transfor-

mation of the input leads to less-effective attacks than pixel-

space attacks (at least when the same loss is optimized).

Moreover, single-attribute semantic attacks are more pow-

erful than multi-attribute attacks. This observation makes

intuitive sense: the dimension of the manifold of perturbed

inputs effectively represents the capacity of the adversary,

and hence a greater number of degrees of freedom in the

perturbation should result in more effective attacks. In

pixel-space attacks, the adversary is free to search over a

high-dimensional ℓp-ball centered around the input exam-

ple, which is perhaps why ℓp-norm attacks are so hard to

defend against [1].

In this section, we provide experimental and theoretical

analysis that precisely exposes the impact of the dimension-

ality of the attribute parameters. While our analysis is styl-

ized and not directly applicable to deep neural classifiers, it

constitutes a systematic first attempt towards upper bounds

on what a semantically constrained adversary can possibly

hope to achieve.

6.1. Synthetic Experiments

We propose and analyze the following synthetic setup

which enables explicit control over the dimension of the se-

mantic perturbations.

Data: We construct a dataset of n = 500 samples from a

mixture of Gaussians (MoG) with 10 components (denoted

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

Dimensionality of parameter space (k)

A
cc

u
ra

cy
o

f
ta

rg
et

m
o

d
el

Lin. Subs. Att. Lin. Neural Att.

Non-lin. Subs. Att. Non-lin. Neural Att.

Figure 4. Effect of dimensionality of the parametric attack space.

Considering subspace and rank constrained transforms to gener-

ate adversarial examples, note that the target model accuracy de-

creases as the dimensionality of the attack space increases. The

additive attack (surrogate to PGD) is more effective than multi-

plicative attack(similar to our approach) over all values of k.

by Pd) defined over (x, y) ∈ R
d ×{±1}. Each data sample

is obtained by uniformly sampling one of the mixture com-

ponent means, and then adding random Gaussian noise with

standard deviation σ ≤
√
d. The component means are cho-

sen as 10 randomly selected images (1 for each digit) from

the MNIST dataset [32] rescaled to 10×10 (i.e., the ambient

dimension is d = 100).

Target Model: We artificially define two classes: the

first class containing images generated from digits 0-4 and

the second class containing images from samples 5-9. We

train a simple two-layer fully connected network, f(x) :
R

d → {±1} as the target model. The classifier is trained by

optimizing cross-entropy using ADAM [26] for 50 epochs,

resulting in training accuracy of 100%, validation accuracy

of 99.8%, and test accuracy of 99.6%.

Parametric Transformations: We consider a stylized

transformation function, G(x, δ) : R
d × R

k → R
d. We

study the effect of varying k for two specific parametric

transformation models.

Subspace attacks: We first consider an additive (linear) at-

tack model. Here, the manifold of semantic perturbations is

constrained to lie a k-dimensional subspace spanned by an

arbitrary matrix U ∈ R
d×k, whose columns are assumed to

be orthonormal, and δ ∈ R
k

G(x, δ) := x̃ = x+UU
T
δ (2)

Neural attacks: Next, we consider a multiplicative attack

model. Here the manifold of perturbations corresponds to a

rank-k transformation of the input.

G(x, δ) := x̃ = U.diag(δ).UT
x (3)

Here, U and δ follow the definition presented earlier. This

transformation can be interpreted as the action of a shal-

low (two-layer) auto-encoder network with k hidden neu-

rons with scalar activations parameterized by δ.
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Figure 5. Semantically transformed single-attribute examples

which are classified correctly by the target model but show severe

artifacts. This shows that neural networks are immune to signifi-

cant changes in the semantic domain unlike the pixel domain.

Nonlinear ReLU variants: We also consider each of the

above two attacks in the rectified setting where the trans-

formation is passed through a rectified linear unit: x̃ =
ReLU (G(x, δ)) .

Results: We analyse the effect of the dimensionality of

the attack space(k) by considering the performance of the

subspace and neural attacks on the target binary classifier.

Fig. 4 shows the comparison of the constrained attacks for

the linear and non-linear cases.

We infer the following: (i) as expected, increasing di-

mensionality of the semantic attack space leads to less accu-

rate target models; (ii) adding a non-linearity to the transfor-

mation function reduces the viability of both subspace- and

rank-constrained attacks; (iii) subspace-constrained attacks

are more powerful than neural attacks. In general, the de-

gree of “nonlinearity” in the transformation model appears

to be inversely proportional to the power of the correspond-

ing semantic attack. We believe this phenomenon is some-

what surprising, and defer further analysis to future work.

6.2. Theory

In the case of subspace attacks, we explicitly derive up-

per bounds on the generalization behavior of target mod-

els. Our derivation follows the recent approach of Schmidt

et al. [52], who consider a simplified version of the data

model defined in Section 6.1 and bound the performance of

a linear classifier in terms of its robust classification error.

Def. 6.1 (Robust Classification Error). Let Pd : R
d ×

{±1} → R be a distribution and let S be any set

containing x. Then the S-robust classification error of

any classifier f : R
d → {±1} is defined as β =

P(x,y)∼Pd
[∃x̃ ∈ S : f(x̃) 6= y].

Using this definition, we analyze the efficacy of subspace

attacks on a simplified linear classifier trained using a mix-

ture of two spherical Gaussians. Consider a dataset with

samples (x, y) ∈ R
d×{±1} sampled from a mixture of two

Gaussians with component means ±θ⋆ and standard devia-

tion σ ≤
√
d. We assume a linear classifier fŵ, defined by

the unit vector ŵ, as fŵ(x) = sign(〈ŵ,x)〉.
Let Sǫ = {x̃ | x̃ = x + UUT δ, ||x − x̃||∞ ≤ ǫ}.

Assuming that the target classifier is well-trained (i.e., ŵ is

sufficiently well-correlated with the true component mean

θ⋆), we can upper bound the probability of error incurred

by the classifier when subjected to any subspace attack.

Theorem 1 (Robust classification error for sub-

space attacks). Let ŵ be such that 〈ŵ, θ⋆〉 ≥
k||U||∞,1||ŵTU||∞ǫ. Then, the linear classifier fŵ
has a Sǫ-robust classification error upper bounded as:

β ≤ exp

(

−

(

〈ŵ, θ⋆〉 − k||U||∞,1||ŵ
TU||∞ǫ

)2

2σ2

)

(4)

The proof is deferred to the appendix, but we provide

some intuition. Lemma 20 of [52] recovers a similar re-

sult, albeit with the
√
k term in the exponent being replaced

by
√
d. This is because they only consider bounded ℓ∞-

perturbations in pixel-space, and hence their bound on the

robust classification error scales exponentially according to

the ambient dimension d, while our bound is expressed in

terms of the number of semantic attributes k ≪ d. A natu-

ral next step would be to derive sample complexity bounds

analogous to [52] but we do not pursue that direction here.

7. Discussion and Conclusions

We conclude with possible obstacles facing our approach

and directions for future work. We have provided evidence

that there exist adversarial examples for a deep neural clas-

sifier that may be perceptible, yet are semantically mean-

ingful and hence difficult to detect. A key obstacle is that

parameters associated with semantic attributes are often dif-

ficult to decouple. This poses a practical challenge, as it

is difficult to train a conditional generative model with in-

dependent latent semantic dimensions. However, the suc-

cess of recent efforts in this direction, including Fader Net-

works [30], AttGans [20], and StarGANs [8] demonstrate

promise of our approach: any newly developed conditional

generative models can be used to mount a semantic attack

using our framework.

Despite the existence of semantic adversarial examples,

we have found that enforcing semantic validity confounds

the adversary’s task, and that target models are generally

able to classify a significant subset of the examples gener-

ated under our semantic constraint. Fig. 5 are examples of

images generated with severe artifacts, yet that are success-

fully classified. This presents the question: is “naturalness”

a strong defense?

This intuition is the premise of a recent defense strat-

egy called DefenseGAN [51]. Indeed, our approach can be

viewed as converse of this strategy: DefenseGAN uses the

range-space of a generative model (specifically, a GAN) to

defend against pixel-space attacks, while conversely, we use

the same principle to attack trained target models. A closer

look into the interplay between the two approaches is wor-

thy of future study.
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