
Maximum-Margin Hamming Hashing

Rong Kang, Yue Cao, Mingsheng Long (B), Jianmin Wang, and Philip S. Yu

School of Software, BNRist, Tsinghua University

Research Center for Big Data, Tsinghua University

National Engineering Laboratory for Big Data Software

kangr15@mails.tsinghua.edu.cn, {mingsheng,jimwang}@tsinghua.edu.cn

Abstract

Deep hashing enables computation and memory efficient

image search through end-to-end learning of feature repre-

sentations and binary codes. While linear scan over binary

hash codes is more efficient than over the high-dimensional

representations, its linear-time complexity is still unaccept-

able for very large databases. Hamming space retrieval en-

ables constant-time search through hash lookups, where for

each query, there is a Hamming ball centered at the query

and the data points within the ball are returned as relevant.

Since inside the Hamming ball implies retrievable while

outside irretrievable, it is crucial to explicitly characterize

the Hamming ball. The main idea of this work is to directly

embody the Hamming radius into the loss functions, leading

to Maximum-Margin Hamming Hashing (MMHH), a new

model specifically optimized for Hamming space retrieval.

We introduce a max-margin t-distribution loss, where the

t-distribution concentrates more similar data points to be

within the Hamming ball, and the margin characterizes the

Hamming radius such that less penalization is applied to

similar data points within the Hamming ball. The loss func-

tion also introduces robustness to data noise, where the sim-

ilarity supervision may be inaccurate in practical problems.

The model is trained end-to-end using a new semi-batch op-

timization algorithm tailored to extremely imbalanced data.

Our method yields state-of-the-art results on four datasets

and shows superior performance on noisy data.

1. Introduction

Recent years we have witnessed the significant growth in

computer vision applications that generate large-scale and

high-dimensional visual data online. Thus, developing mul-

timedia retrieval method of high efficiency and accuracy is

a popular topic in both academic and industrial communi-

ties. Approximate Nearest Neighbor (ANN) search, which

can well compromise the retrieval accuracy and computa-

tional efficiency, has attracted increasing attention. There

are two solutions to ANN search: indexing [22] and hashing

[46]. Hashing methods aim to convert high-dimensional vi-

sual data into compact binary codes while preserving their

similarity relationship in the Hamming space. This work

focuses on learning to hash [46], a data-dependent hashing

scheme for efficient image retrieval that has shown better

performance than data-independent methods. Seminal work

of learning to hash includes Local Sensitive Hash (LSH)

[11] and Spectral Hashing (SH) [47], to name a few.

A rich line of learning to hash methods have been pro-

posed for efficient ANN search, which enables Hamming

ranking over compact binary hash codes of database points

and user queries. These methods mainly fall into unsuper-

vised methods [20, 13, 37, 33, 51, 34] and supervised meth-

ods [30, 32, 52]. Recently, deep learning to hash methods

[49, 21, 41, 10, 7, 4, 29, 43, 16, 17, 27] have employed deep

networks for end-to-end learning of feature representations

and binary codes, through which non-linear hash functions

are readily supported. These methods have achieved state-

of-the-art retrieval performance, validating the importance

of jointly learning similarity-preserving representations and

controlling quantization error of converting the continuous

representations into binary codes [53, 25, 28, 4].

Most previous deep hashing methods focus on maxi-

mizing the retrieval performance for a linear scan over the

whole database of N data points. The time complexity of

linear scan over K-bit hash codes is O(NK/8), much more

efficient than O(ND), the time complexity of linear scan

over D-dimensional continuous representations (D ≫ K).
However, the linear complexity is still unacceptable for very

large databases. In this paper, we focus on Hamming space

retrieval [37, 2] that enables constant-time search through

hash lookups, where for each query, it returns data points

within a Hamming ball of radius H . As is widely known,

a remarkable advantage of hashing is that any bucket in the

hash table can be queried in O(1) by table lookups. For bi-

nary codes of K bits, the number of distinct hash buckets

to be examined increases exponentially w.r.t. H [37]. And

empirically, we can find all H-neighbors of a given query in

8252

constant time only when H ≤ 2. Hence, we concentrate on

optimizing the search efficiency and accuracy of Hamming

space retrieval based on Hamming radius 2.

The key observation of Hamming space retrieval is that,

for each query, only points inside the Hamming ball will be

returned as relevant, while those outside are pruned directly.

Thus, it requires explicit discrimination between inside and

outside of the Hamming ball, by explicitly characterizing

the Hamming ball in loss functions. Take the state-of-the-

art Deep Cauchy Hashing (DCH) [2] as an example, without

characterizing the Hamming ball, the loss of similar pairs

within the Hamming ball takes a large fraction of the total

loss but is not beneficial to candidate pruning, resulting in a

biased model for Hamming space retrieval.

The robustness to noise in data labels is also important

for supervised hashing. In real applications, the similarity

information is collected from the semantic labels or implicit

feedback from click-through data. Due to human subjectiv-

ity or the lack of expertise, the similarity supervision may be

inaccurate. In this setting, similar images might be wrongly

labeled as dissimilar, or vice versa. Unreliable training data

may result in very deficient hashing models. Previous meth-

ods [53, 4, 2] typically assign large loss on image pairs with

“dissimilar” labels but with similar hash codes, regardless

that the large loss may stem from label noise. Consequently,

these models are vulnerable to noisy data.

Towards the above problems, this paper proposes a max-

margin t-distribution loss, where the t-distribution concen-

trates more similar points to be within the Hamming ball,

and the margin characterizes the Hamming radius such that

less penalization is imposed to similar points falling inside

the Hamming ball. With the margin idea, the loss function

also introduces robustness to data noise in that the image

pairs with wrong labels will not be overly penalized to dete-

riorate the model. We further propose a new semi-batch op-

timization algorithm tailored to extremely imbalanced data,

a common scenario in practice that similarity information

is much sparser than dissimilarity information. Compre-

hensive experiments demonstrate that MMHH can generate

compact and noise-robust hash codes and yield state-of-the-

art image retrieval performance on four benchmark datasets.

2. Related Work

Existing hashing methods can be roughly put into two

categories: unsupervised hashing and supervised hashing.

A comprehensive survey is provided in [46].

Unsupervised hashing methods encode data to binary

codes by learning hash functions from unlabeled data based

on reconstruction error minimization [40, 13] and graph

learning [47, 20, 31, 54]. Supervised hashing methods in-

corporate supervised information (e.g., pairwise similarity)

to mitigate the semantic gap and improve hashing quality.

KSH [30] and SDH [41] generate nonlinear or discrete hash

codes by minimizing the Hamming distances over similar

pairs while maximizing the distances over dissimilar ones.

Deep hashing has attracted extensive attention recently

due to the superior performance. CNNH [49] follows a two-

stage strategy in which the first stage learns hash codes and

the second stage learns a deep-network hash function to fit

the codes. DNNH [21] improves CNNH with a simultane-

ous feature learning and hash coding framework such that

deep representations and hash codes are optimized jointly.

DSRH [28] learns deep hash functions from semantic rank-

ing supervision. DHN [53] and DSDH [24] simultaneously

preserve pairwise similarity and control quantization error.

HashNet [4] improves DHN by balancing training pairs and

achieving nearly zero quantization error using continuation.

ADSH [17] treats queries and database points in an asym-

metric way for more efficient training. DSEH [23] learns

a deep joint semantic-embedding for hashing. BGDH [50]

captures the underlying structure of data by constructing a

bipartite graph. WDH [6] leverages social tag semantics to

enhance hash codes quality. In addition, adversary training

mechanism has been introduced to fully capture semantic

information from unlabeled data [35, 42, 45, 8].

Unlike previous hashing methods [4, 24, 17] designed

for linear scan performance, we focus on Hamming space

retrieval that prunes all buckets outside the Hamming ball

for each query. Thus it is crucial to concentrate more similar

points to be within the Hamming ball. The only work in

this line is Deep Cauchy Hashing (DCH) [2]. However, it

treats all data pairs uniformly, no matter they are inside or

outside the Hamming ball, contradicting the mechanism of

candidate pruning using the Hamming ball as an absolute

boundary. Different from these previous works, our work

explicitly characterizes the Hamming ball by a new max-

margin t-distribution loss, which is also robust to noisy data.

3. Maximum-Margin Hamming Hashing

3.1. Hamming Space Retrieval

In supervised image retrieval, we are given an image

database XD = {xi}
N
i=1 and a subset XT = {xi}

n
i=1 of

XD as the training set. Image pairs xi and xj (xi,xj ∈ XT)

are provided with the pairwise similarity label sij , where xi

and xj are similar if sij = 1, and dissimilar if sij = 0. In

deep supervised hashing, we build a model by learning a

nonlinear hash function f : x 7→ h ∈ {−1, 1}
K

via deep

networks such that the similarity relationship in S = {sij}
can be preserved in the binary hash codes.

This paper focuses on Hamming space retrieval, which is

a constant-time retrieval scenario for practical applications.

Definition 1. Hamming Space Retrieval [2], also known

as hash lookup search, refers to the retrieval scenario that

directly returns data points within Hamming radius H to

each query by hash lookups instead of linear scan.

8253

Image pairs with

clean/noise labels

…
…

…
…

Mini

batch

Augmented

memory

Semi-batch optimization Network and Loss

Similarity

relationship

hash

layer
CNN quantization loss-11 -1 -11 1

01

similarity

label

binary code

 max-margin t-distribution loss

2H

Similar

points

Dissimilar

points

Hamming ball

inside

outside

query

Improve robustness to noise

Improve retrieval performance
margin

margin

Pull similar points

inside Hamming ball

Push dissimilar points

outside Hamming ball

ra
di

us

Figure 1. The architecture of MMHH consists of four components: (1) a convolutional network for learning image representations; (2) a

fully-connected hash layer for converting image representations into K-bit hash codes; (3) a max-margin t-distribution loss that explicitly

characterizes the Hamming ball by the margin for preserving similarity relationship in the Hamming space, and for introducing robustness

to data noise; (4) a quantization loss for controlling the binarization error. The model is trained by a semi-batch optimization method for

imbalanced data. The max-margin t-distribution loss differs significantly for similar and dissimilar pairs inside and outside Hamming ball.

For binary codes of K bits, the number of distinct hash

buckets to be retrieved is N(K,H) =
∑H

k=0

(

K

k

)

, where

H is the Hamming radius. When the Hamming radius is

small enough, typically H ≤ 2, we can build a hash lookup

table to find out all H-neighbors in constant time. However,

N(K,H) increases exponentially with H and it is unafford-

able to retrieve N(K,H) buckets when H > 2 [2]. For

Hamming space retrieval, the critical challenge is to learn

hash codes enabling effective and efficient pruning through

Hamming ball of radius H ≤ 2. We present Maximum-

Margin Hamming Hashing (MMHH) towards this goal.

3.2. Network Architecture

The architecture of Maximum-Margin Hamming Hash-

ing (MMHH) is illustrated in Figure 1. Similar to previous

work [2], we replace the classifier layer in convolutional

neural network (CNN) [19, 14] with a fully-connected hash

layer together with a hyperbolic tangent (tanh) function to

transform the feature representation of each image xi into

K-dimensional continuous code zi ∈ R
K . Finally, we ob-

tain binary hash codes by hi = sgn(zi) where sgn(z) is

the sign function. A novel max-margin t-distribution loss is

designed for learning compact and noise-robust hash codes.

3.3. Stochastic Neighbor Embedding

Preserving the similarity relationship over image pairs is

a typical criterion for deep learning to hash. In this respect,

Stochastic Neighbor Embedding (SNE) [15] is well fit to

hashing since it also converts the high-dimensional data into

low-dimensional representations while preserving the sim-

ilarity relationship of the high-dimensional data into low-

dimensional codes.

Similar to SNE [15, 36], we first convert the distance be-

tween each image pair into a probability that quantifies the

similarity relationship. Given a pair of images together with

their pairwise similarity label as (xi,xj , sij), we use prob-

ability pij and qij to denote the similarity between (xi,xj)
and between their hash codes (hi,hj) respectively. To min-

imize the mismatch between pij and qij , a natural measure

is the Kullback-Leibler (KL) divergence:

L = KL(P‖Q) =
∑

i

∑

j

pij log
pij
qij

, (1)

where P and Q are the joint probability distributions in the

high-dimensional and low-dimensional spaces respectively.

Since P quantifies the similarity information of image pairs,

we can naturally set pij = sij in supervised hashing.

3.4. MaxMargin tDistribution Loss

A disadvantage of Equation (1) is that it ignores dissimi-

lar image pairs. When pij is extremely small, indicating xi

and xj are dissimilar, the divergence is very small and pair

xi and xj has negligible influence on the loss function. As

a result, Equation (1) fails to completely retain the dissim-

ilarity relationship of the high-dimensional data. To fully

capture both similarity and dissimilarity relationships, we

propose a weighted KL divergence as

L =
∑

i

∑

j

wij ·

pij log
pij
qij

, sij = 1

(1− pij) log
1− pij
1− qij

, sij = 0

(2)

where wij is the weight for each training pair (xi,xj , sij)

to mitigate the data imbalance problem. In each batch, we

enhance the weights of similar pairs (sij = 1) by setting

wij as the ratio of dissimilar pairs over similar pairs [4]. We

drop the constant terms and rewrite Equation (2) as follows:

L =
∑

sij∈S

wij

(

sij log
1

qij
+ (1− sij) log

1

1− qij

)

.

(3)

8254

10 20 30 40

Hamming Distance D
H

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
ro

b
a
b
ili

ty

Sigmoid

Cauchy

Sim-margin

Dissim-margin

(a) Probability

10 20 30 40

Hamming Distance D
H

1

2

3

4

L
o

s
s

Sigmoid

Cauchy

Sim-margin

(b) Sim-Loss

10 20 30 40

Hamming Distance D
H

1

2

3

4

L
o

s
s

Sigmoid

Cauchy

Dissim-margin

(c) Dissim-Loss

Figure 2. (a) Probability function, (b) loss for similar pairs, and (c)

loss for dissimilar pairs. The X-axis denotes Hamming Distance.

Based on Equation (3), any valid probability function

qij can be used to instantiate a specific hashing model.

Figure 2(a) shows several valid probability functions w.r.t.

Hamming distance DH between hash codes of data pairs.

HashNet [4] chooses Sigmoid function: q = 1
1+exp(−Dip)

(black line), where Dip is the inner product between data

pairs calculated by their Hamming distance: Dip = K −
2DH . DCH [2] adopts Cauchy distribution: q = 1

1+DH

(blue line). Figure 2(b) shows the loss for similar pairs tak-

ing as log 1
qij

, and Figure 2(c) shows the loss for dissimilar

pairs taking as log 1
1−qij

.

However, all above probability functions fail to explicitly

characterize the Hamming ball which is an absolute bound-

ary between relevant and irrelevant. To address this disad-

vantage, we propose a novel probability function based on

max-margin t-distribution, which can both concentrate sim-

ilar pairs outside the Hamming ball (Figure 1, the right plot)

and improve the model’s robustness to noisy data:

qij =

1

1 + max(0, DH(i, j)−H)
, sij = 1

1

1 +max(H,DH(i, j))
, sij = 0

(4)

where H is the Hamming ball radius pre-specified in Ham-

ming space retrieval, e.g. H = 2 for most scenarios. Next,

we elaborate the two cases of Equation (4) respectively.

Loss for Similar Pairs. As shown in Figure 2(a), the

probability generated by the Sigmoid function stays nearly

1 when the Hamming distance between hash codes is much

larger than 2. It starts to decrease very fast only when the

Hamming distance gets close to K/2, and keeps nearly 0
when the Hamming distance is larger than K/2. It means

that the Sigmoid function is only sensitive to Hamming dis-

tance near K/2, but not discriminative enough in the rest.

The Cauchy distribution decreases sharply from 1 to 0.33
when the Hamming distance increases from 0 to 2, which

over-emphasizes the pairs within the Hamming ball and has

a limited benefit on the pruning effectiveness.

In Hamming space retrieval, data points inside the Ham-

ming ball are retrievable while those outside are irretriev-

able. For similar pairs, the loss function should focus more

on the similar pairs outside the Hamming ball of radius H ,

since the ones inside the ball are guaranteed to be returned.

Our max-margin t-distribution loss (Figure 2(b), red line)

vanishes for similar pairs within Hamming radius H but in-

creases fast when the Hamming distance is larger than H ,

which can effectively focus the model on the similar pairs

outside the Hamming ball to reduce false negatives.

Loss for Dissimilar Pairs. For dissimilar pairs with

small Hamming distance, previous methods [53, 4, 2] make

them far apart by improperly large penalization regardless

of the potential noise. For clean data, dissimilar images tend

to have codes with large distance. For noisy data, however,

there are many “dissimilar” pairs with very small Hamming

distance, possibly due to erroneous similarity labels com-

monly seen in real applications. In this scenario, assigning

overly large loss to those feature-close but label-dissimilar

pairs will make the model vulnerable to noisy data.

As shown in Figure 2(c), the Sigmoid loss increases

quickly for dissimilar pairs when the distance is less than

K/2, and the Cauchy loss approaches infinity for dissimilar

pairs with distance less than 2. Hence, both of them are not

robust to noisy data. Our max-margin t-distribution loss for

dissimilar pairs (Figure 2(c), green line) truncates the loss to

a constant when the Hamming distance DH ≤ H , yielding

a smooth loss curve which is more robust to noisy data.

3.5. Objective Function

Combining the probability proposed in Equation (4) into

Equation (3), we obtain the max-margin t-distribution loss:

L =
∑

sij∈S

wij(sij) log (1 + max(0, DH(i, j)−H))

+
∑

sij∈S

wij(1− sij) log

(

1 +
1

max(H,DH(i, j))

)

.

(5)

Equation (5) is difficult to optimize with binary constraints

hi ∈ {−1, 1}
K . Many previous works [53, 24, 2] use con-

tinuous relaxation to replace the discrete Hamming distance

between a pair of codes (zi, zj), employing the relationship

between the Hamming distance and their cosine distance:

DH(i, j) =
K

2
(1− cos(zi, zj)) . (6)

Equation (6) is more convenient to be applied in the deep

network than the Hamming distance. To control the quanti-

zation error of converting the continuous representations to

binary codes, we adopt the standard quantization loss:

Q =

n
∑

i=1

‖ sgn(zi)− zi‖
2
2. (7)

By integrating the novel max-margin t-distribution loss

in Equation (5) and the quantization loss in Equation (7), we

obtain the overall objective function for the MMHH model:

min
Θ

L+ λQ, (8)

8255

where Θ denotes the network parameters, and λ is a hyper-

parameter to trade-off L and Q selected by cross-validation.

After convergence, we obtain K-bit binary codes by h ←
sgn(z). Since the quantization error is explicitly controlled,

the final binarization step is sufficiently accurate.

3.6. SemiBatch Optimization

A critical challenge for learning to hash from similarity

data is that the similarity information is often very sparse in

real retrieval systems, namely, similar pairs are often much

fewer than dissimilar pairs [4]. Most methods alleviate data

imbalance by up-weighting the similar pairs. This may fail

on extremely imbalanced data as there are nearly none simi-

lar pairs in each mini-batch, and up-weighting cannot cover

sufficient similarity information for mini-batch training.

Mini-batch Semi-batch

Similar pairs

Dissimilar pairs

Mini

batch

Mini

batch

… … … …Augmented

memory

Mini

batch

Too few similar pairs sufficiently diverse similar pairs

Figure 3. Semi-batch optimization for training on imbalance data.

Motivated by augmented memory [44, 48], we propose

semi-batch optimization to address this problem. We store

the codes of the training set as the augmented memory. For

the (t+1)-th epoch, the network parameters are Θ(t) and the

augmented memory is {z
(t)
1 , · · · , z

(t)
n }. Given an input xi,

we compute the new code by z
(t+1)
i = f(xi; Θ

(t)) and up-

date the corresponding memory. The pairwise loss is calcu-

lated by z
(t+1)
i with all its similar and dissimilar pairs in the

augmented memory. Finally, we back-propagate the loss to

update the network parameters. As a result, the semi-batch

optimization guarantees that the network is always trained

with sufficiently diverse similar pairs, as shown in Figure 3.

4. Experiments

We evaluate the performance of our proposed approach

with the state-of-art methods on four benchmark datasets:

NUS-WIDE, CIFAR-10, MS-COCO, and ImageNet.

4.1. Evaluation Setup

CIFAR-10 [18] is a dataset consisting of 10 object cate-

gories each with 6000 images. We sample 100 images per

class as query set and take the rest as database. We sample

500 images per class in the database as the training set.

MS-COCO [26] contains 82,783 training images and

40,504 validation images, each annotated by some of the 80

categories. We first prune images without category informa-

tion and obtain 122,218 images by combining the training

and validation images. We sample 5,000 images as query

set and take the rest as the database. We sample 10,000

images from the database as the training set.

NUS-WIDE [5] contains 269,648 images within 81 con-

cepts. We sample 5,000 images as query set and take the rest

as database. We sample 10,000 images from the database as

the training set.

ImageNet [38] contains over 1.2M images in the train-

ing set and 50K images in the validation set, where each

image is labeled by one of 1,000 categories. We use the im-

ages in the training and validation sets as the database and

query set respectively, and randomly select 100 images per

category from the database as the training set.

Following the evaluation protocol of previous work [21,

53, 4, 2], the similarity information for hash function learn-

ing and ground truth evaluation is constructed from image

labels. If two images xi and xj share at least one label,

they are similar (sij = 1); otherwise, they are dissimilar

(sij = 0). Although we construct similarity information by

image labels, our approach can learn hash codes in the case

where only similarity information is available.

We evaluate the retrieval performance of MMHH with

eight state-of-the-art methods, including three supervised

shallow methods ITQ [13], KSH [30], and SDH [41], along

with five supervised deep methods CNNH [49], DNNH

[21], DHN [53], HashNet [4] and DCH [2]. For shallow

hashing methods, we use as input the 4096-dimensional De-

CAF7 features [9]. For deep hashing methods, we use raw

images as the input.

The evaluation protocol for Hamming spatial retrieval

[37, 2] constitutes two phases: (1) pruning, which searches

the hash lookup table and returns points within Hamming

radius H to each query; (2) re-ranking, which re-ranks the

continuous codes of the returned points in ascending order

of their distances to the query. For the best efficiency, the

search based on pruning and re-ranking is widely-deployed

in large-scale retrieval systems, and the continuous features

before binarization are adopted for the re-ranking step.

To measure the retrieval quality, we use three standard

evaluation metrics for Hamming space retrieval with Ham-

ming radius H = 2 [2, 3]: Mean Average Precision within

Hamming radius 2 (MAP@H≤ 2), Precision within Ham-

ming radius 2 (P@H≤2), and Recall within Hamming ra-

dius 2 (R@H≤2). More specifically, we first calculate the

Average Precision (AP) [2] for all queries, then we com-

pute MAP@H≤2 as the mean of Average Precision of all

queries. The larger the MAP@H≤2, the better the quality

of retrieved data within Hamming radius 2.

The implementations are based on TensorFlow [1]. We

adopt AlexNet [19] as the main backbone for all deep hash-

ing methods. We further validate the efficacy of semi-batch

optimization on ImageNet by comparing MMHH, DCH and

HashNet with ResNet50 [14] as the backbone. We fine-

tune the ImageNet-pretrained backbones and train the hash

8256

Table 1. MAP Results of Re-ranking within Hamming Radius 2 for Different Bits on Three Benchmark Datasets

Method
NUS-WIDE MS-COCO CIFAR-10

16 bits 32 bits 48 bits 64 bits 16 bits 32 bits 48 bits 64 bits 16 bits 32 bits 48 bits 64 bits

MMHH 0.7719 0.7992 0.7888 0.7547 0.7358 0.7832 0.7896 0.8074 0.7923 0.8178 0.8246 0.8189

DCH 0.7401 0.7720 0.7685 0.7124 0.7010 0.7576 0.7251 0.7013 0.7901 0.7979 0.8071 0.7936

HashNet 0.6944 0.7147 0.6736 0.6190 0.6851 0.6900 0.5589 0.5344 0.7476 0.7776 0.6399 0.6259

DHN 0.6901 0.7021 0.6685 0.5664 0.6749 0.6680 0.5151 0.4186 0.6929 0.6445 0.5835 0.5883

DNNH 0.6191 0.6216 0.5902 0.5626 0.5771 0.6023 0.5235 0.5013 0.5703 0.5985 0.6421 0.6118

CNNH 0.5843 0.5989 0.5734 0.5729 0.5602 0.5685 0.5376 0.5058 0.5512 0.5468 0.5454 0.5364

SDH 0.6681 0.6824 0.5979 0.4679 0.6449 0.6766 0.5226 0.5108 0.5620 0.6428 0.6069 0.5012

KSH 0.5185 0.5659 0.4102 0.0608 0.5797 0.5532 0.2338 0.0216 0.4368 0.4585 0.4012 0.3819

ITQ 0.5706 0.4397 0.0825 0.0051 0.5949 0.5612 0.0585 0.0105 0.4258 0.4652 0.4774 0.4932

20 25 30 35 40 45 50 55 60

Number of Bits

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

P
re

c
is

io
n

(a) NUS-WIDE

20 25 30 35 40 45 50 55 60

Number of Bits

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
P

re
c
is

io
n

(b) MS-COCO

20 25 30 35 40 45 50 55 60

Number of Bits

0.2

0.3

0.4

0.5

0.6

0.7

0.8

P
re

c
is

io
n

MMHH

DCH

HashNet

DHN

DNNH

CNNH

SDH

KSH

ITQ

(c) CIFAR-10

Figure 4. The Precision curves within Hamming radius 2 of MMHH and comparison methods on the three benchmark datasets.

20 25 30 35 40 45 50 55 60

Number of Bits

0

0.1

0.2

0.3

0.4

0.5

R
e
c
a
ll

(a) NUS-WIDE

20 25 30 35 40 45 50 55 60

Number of Bits

0

0.1

0.2

0.3

0.4

0.5

R
e
c
a
ll

(b) MS-COCO

20 25 30 35 40 45 50 55 60

Number of Bits

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

R
e
c
a
ll

MMHH

DCH

HashNet

DHN

DNNH

CNNH

SDH

KSH

ITQ

(c) CIFAR-10

Figure 5. The Recall curves within Hamming radius 2 of MMHH and comparison methods on the three benchmark datasets.

layer by back-propagation. As the hash layer is trained from

scratch, its learning rate is 10 times of the other layers’.

We use SGD with 0.9 momentum and a weight decay of

5×10−4. The default batch size of images is 48. All hyper-

parameters of all methods are selected by cross-validation.

4.2. Retrieval Performance

MAP@H≤2. These results are shown in Table 1.

MMHH substantially outperforms all comparison methods,

indicating that MMHH performs higher-quality pruning in

the first retrieval phase and more effective re-ranking in the

second phase. Compared with SDH, the best shallow hash-

ing method with deep features as input, MMHH achieves

substantial boosts of 17.5%, 19.0% and 23.5% in average

MAP@H≤2 on NUS-WIDE, MS-COCO and CIFAR-10

respectively. MMHH outperforms HashNet, the method

designed for linear scan with best MAP@H≤2. HashNet

does not impose strong constraints on similar data pairs and

cannot concentrate similar points into the Hamming ball.

MMHH further outperforms DCH, the state-of-the-art hash-

ing method for Hamming space retrieval. The max-margin

t-distribution loss enables MMHH to reduce the penaliza-

tion to similar pairs within the Hamming ball and penalize

the other pairs more significantly.

P@H≤2. Figure 4 shows the precision curves within

Hamming radius 2. MMHH substantially outperforms the

comparison methods on all three datasets. When using

longer hash codes, the Hamming space becomes sparser and

fewer data points fall in the Hamming ball of radius 2 [37].

The precision of the other methods on MS-COCO decreases

sharply using longer codes, while MMHH performs stably

across different code lengths. This validates the efficacy of

the max-margin t-distribution loss, which enables MMHH

to squeeze more similar data points into the Hamming ball.

R@H≤2. Figure 5 illustrates the recall curves within

Hamming radius 2 (R@H≤2). MMHH achieves the high-

8257

est R@H≤2 on MS-COCO. It outperforms DCH on NUS-

WIDE and CIFAR-10 when the hash bit is longer than 32.

Such impressive precision and competitive recall perfor-

mance prove that MMHH can handle different retrieval sce-

narios varying from precision-first to recall-first settings.

0 5 10 15

search time(ms)

0.5

0.6

0.7

M
A

P
@

T
o

p
5

0
0

0

MMHH-S

MMHH-U

DCH-S

DCH-U

CLSH-S

CLSH-U

(a) MAP@Top5000

0.5 0.6 0.7 0.8 0.9 1

search time(ms)

0.6

0.7

0.8

M
A

P
@

H
2

MMHH-S

MMHH-U

DCH-S

DCH-U

CLSH-S

CLSH-U

(b) MAP@H≤ 2

Figure 6. MAP vs. search time on MS-COCO under protocol [39].

Unseen Classes Retrieval Protocol [39]. The evalua-

tion protocols and datasets used in the above results are con-

sistent with most previous hashing methods [49, 24, 2, 39].

In this setting, the datasets are labeled according to cate-

gories and all test classes are known in the training phase.

Hence, the hashing methods only need to discriminate be-

tween known classes, which is easier than the scenario of

image retrieval in the wild.

We further test our method following a more difficult un-

seen classes retrieval protocol [39]: On MS-COCO, we

randomly select 20 classes as query/database, and the rest

60 classes as training set. We compare MMHH with DCH

and Classifier + LSH (CLSH) [39] under the seen (S) (used

as above) and unseen (U) protocols.

Figure 6 shows MAP@Top5000 (for linear scan) and

MAP@H≤2 (for lookup search) w.r.t the search time.

CLSH is top-performant in efficiency, closely followed by

MMHH and DCH. Despite the performance degradations

in the unseen protocol, MMHH is competitive with CLSH

on linear scan and outperforms DCH and CLSH on lookup

search, validating its effectiveness on a variety of scenarios.

Table 2. Retrieved Entries of MMHH and HashNet, COCO, 48bits

Method All Sim H ≤ 2
Sim@

H ≤ 2
Return

None

MMHH 198.4M 208.0M 144.2M 13%

HashNet 198.4M 23.5M 22.7M 44%

Linear Scan Retrieval Protocol [4]. To highlight the

difference between lookup search and linear scan, we com-

pare MMHH and HashNet on MS-COCO. In terms of ef-

ficiency, the search time of hash lookup (0.9 ms/query) is

much shorter than that of linear scan (10.2 ms/query). In

terms of effectiveness, as shown in Table 2, there are a to-

tal of 198.4M ground truth similar pairs for 5,000 queries.

MMHH retrieves 208.0M images within Hamming Dis-

tance 2, of which 144.2M are correct, while HashNet only

retrieves 23.5M entities. Note that in hash lookup search,

it is possible to retrieve zero images for many queries. For

HashNet, though 22.7M of 23.5M retrieved images are cor-

rect, 44% queries return no images, dramatically lowering

P@H≤2 and R@H≤2. In contrast, MMHH achieves much

higher recalls, where only 13% queries return no images.

4.3. Results on Noisy Data

We evaluate the robustness of state-of-the-art deep hash-

ing methods on training data with noisy labels by comparing

MMHH, DCH and HashNet. We generate noisy data from

clean data by stochastically changing some labels as [12].

For each image in the training set we change its label to an-

other one with probability p (denote the label noise rate).

The database and test set remain unchanged.

Figure 7 shows the MAP@H≤2 results of three methods

on NUS-WIDE with label noise rate from 0% (clean data) to

50%. MMHH is the robustest method in which MAP drops

only 0.02 when the label noise rate increases to 50%, while

under the same noise rate, the MAPs of DCH and HashNet

decrease by 0.06 and 0.17 respectively.

Table 3. Loss Fraction of Noisy Labels on NUS-WIDE (p = 50%)

Methods MAP drop Error Sim Error Dissim

MMHH 0.02 0.7% 11.3%

DCH 0.06 0.7% 14.3%

HashNet 0.17 0.8% 30.7%

We further analyze the impact of noisy labels on the loss

in Table 3. For the noisy version of NUS-WIDE (p = 50%),

the losses of erroneous similar pairs (which are actually dis-

similar) are relatively small for three methods (0.7∼0.8%).

However, the loss of erroneous dissimilar pairs (which are

actually similar) of HashNet is 30.7%, significantly larger

than MMHH and DCH. The HashNet loss gets overly large

when the distance of dissimilar pairs is small, validating that

HashNet is vulnerable to noisy labels. DCH mitigates the

impact of erroneous dissimilar pairs, and the max-margin

t-distribution loss of MMHH further addresses the issue of

loss explosion of the Cauchy loss in DCH (see Figure 2(c)).

As a result, MMHH shows the best robustness to noisy data.

0% 10% 20% 30% 40% 50%

label noise rate p

0.5

0.55

0.6

0.65

0.7

0.75

0.8

M
A

P
@

H
2

MMHH

DCH

HashNet

Figure 7. Noisy Training Data

100 class 200 class 500 class 1000 class

number of classes from ImageNet

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

M
A

P
@

H
2

MMHH w/ SB

DCH w/ SB

HashNet w/ SB

MMHH w/o SB

DCH w/o SB

HashNet w/o SB

Figure 8. Semi-Batch Results

8258

Table 4. MAP Results of Re-ranking within Hamming Radius 2 for MMHH and Its Variants on Three Benchmarks

Method
NUS-WIDE MS-COCO CIFAR-10

16 bits 32 bits 48 bits 64 bits 16 bits 32 bits 48 bits 64 bits 16 bits 32 bits 48 bits 64 bits

MMHH 0.7719 0.7992 0.7888 0.7547 0.7358 0.7832 0.7896 0.8074 0.7923 0.8178 0.8246 0.8189

MMHH-Q 0.7352 0.7891 0.7235 0.7066 0.7022 0.7292 0.7613 0.7979 0.7601 0.7741 0.7634 0.7898

MMHH-E 0.5966 0.6365 0.6868 0.5478 0.6478 0.6294 0.6625 0.6901 0.5550 0.6208 0.5874 0.5770

4.4. Effectiveness Analyses

Semi-Batch Optimization. We justify semi-batch opti-

mization by comparing MAP@H≤2 of MMHH, DCH and

HashNet with/without semi-batch training on the ImageNet

subsets of 100, 200, 500, 1,000 classes in Figure 8.

First, semi-batch is generally helpful for MMHH, DCH

and HashNet to achieve better accuracies. Second, no mat-

ter with/without semi-batch, MMHH outperforms the oth-

ers by large margins. Third and more interestingly, semi-

batch brings larger improvement on the subsets with more

classes (e.g., ImageNet-1000 vs. ImageNet-100), confirm-

ing our motivation of using semi-batch optimization to deal

with similarity sparsity in extremely imbalanced data.

Table 5. Ratio of Similar Pairs in a Batch on ImageNet-1K

sim-pairs =0 ≤ 1 ≤ 2 ≤ 3 ≤ 4 ≥ 5 > 100
w/o SB (%) 10.1 32.9 59.5 80.9 93.8 6.2 0

We delve into semi-batch optimization by comparing the

numbers of similar pairs appearing in each batch (batch-size

= 48) for ImageNet-1K. Without semi-batch training, there

are (48 × 48) pairs in each batch. With semi-batch train-

ing, there are (48 × 105) pairs in each batch. Further, as

shown in Table 5, without semi-batch training, only 6.2%

batches have more than 5 similar pairs, and 10.1% batches

have no similar pair. For batches with too few similar pairs,

up-weighting does not solve the similarity sparsity. In con-

trast, with semi-batch training, every batch has 4,800 sim-

ilar pairs. It explains why semi-batch optimization brings

large performance boost on ImageNet-1K.

0 100 500 1k 5k

Iterations of mini-batches

0

25%

50%

R
a

ti
o

 o
v
e

r
a

ll
p

a
ir
s

pair num(sim & H 2)

loss sum(sim & H 2)

(a) 48 bits

0 100 500 1k 5k

Iterations of mini-batches

0

25%

50%

R
a

ti
o

 o
v
e

r
a

ll
p

a
ir
s

pair num(sim & H 2)

loss sum(sim & H 2)

(b) 512 bits

Figure 9. Loss and number of similar pairs over all pairs (COCO)

Max-Margin t-Distribution Loss. Section 4.3 has

shown the robustness of our max-margin t-distribution loss

to noisy data. Considering similar pairs, though the Cauchy

loss in DCH and our loss appear similar (Figure 2(b)), their

difference is vital to Hamming space retrieval. Figure 9

shows the ratio of the number of similar pairs (and their

loss) inside the Hamming ball (H ≤ 2) over the number of

all pairs (and their loss), using Cauchy loss on MS-COCO.

Both ratios increase through the training process. Although

similar pairs with small Hamming distance should have low

losses, their actual loss ratio increases more. One reason is

up-weighting similar pairs by wij in Equation (2). For 48

bits in Figure 9(a), it is unreasonable that these retrievable

(H ≤ 2) similar pairs occupy ∼40% of the overall loss.

Thus, DCH is a biased model. MMHH with max-margin t-
distribution loss reduces the bias by focusing on more diffi-

cult pairs outside the Hamming ball. Further, our loss keeps

different from Cauchy loss for longer codes. As shown in

Figure 9(b), for 512 bits, there are 28% similar pairs inside

the Hamming ball occupying 35% of overall loss.

Ablation Study. We investigate two variants of MMHH:

MMHH-Q is an MMHH variant without the quantization

loss (λ = 0); MMHH-E is an MMHH variant replacing

our cosine distance (Equation (6)) with the widely-used Eu-

clidean distance as DH (i, j) = ‖zi − zj‖
2
2 in our loss. The

MAP@H≤2 results on all three datasets are summarized

in Table 4. Without the quantization loss, MMHH-Q in-

curs average MAP decreases of 4.0%, 3.1% and 4.2% on

three datasets respectively, testifying the necessity of con-

trolling the quantization error. MMHH-E performs worse

than MMHH by 16.2%, 12.2% and 22.8%, proving that the

cosine distance is a better proxy to the Hamming distance

when the quantization error is controlled simultaneously.

5. Conclusion

We propose Max-Margin Hamming Hashing (MMHH)

to enable constant-time Hamming space retrieval. The ap-

proach explicitly characterizes the Hamming ball by a max-

margin t-distribution loss. Further, the loss enhances ro-

bustness to noisy data by preventing the model from trapped

by wrongly-labeled image pairs. We also introduce a semi-

batch optimization algorithm for training hashing models

on extremely imbalanced data. Our approach yields state-

of-the-art empirical results on both clean and noisy datasets.

6. Acknowledgments

This work is supported by National Key R&D Program

of China (2017YFC1502003) and National Natural Science

Foundation of China (61772299, 71690231, 61672313).

8259

References

[1] Martı́n Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen,

Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghe-

mawat, Geoffrey Irving, Michael Isard, et al. Tensorflow:

A system for large-scale machine learning. In OSDI, pages

265–283, 2016.

[2] Yue Cao, Mingsheng Long, Bin Liu, and Jianmin Wang.

Deep Cauchy Hashing for Hamming Space Retrieval. In

CVPR, pages 1229–1237, 2018.

[3] Zhangjie Cao, Mingsheng Long, Chao Huang, and Jianmin

Wang. Transfer adversarial hashing for hamming space re-

trieval. In AAAI, pages 6698–6705, 2018.

[4] Zhangjie Cao, Mingsheng Long, Jianmin Wang, and Philip S

Yu. Hashnet: Deep learning to hash by continuation. In

ICCV, pages 5609–5618, 2017.

[5] Tat-Seng Chua, Jinhui Tang, Richang Hong, Haojie Li, Zhip-

ing Luo, and Yan-Tao Zheng. Nus-wide: A real-world web

image database from national university of singapore. In

ICMR. ACM, 2009.

[6] Hui Cui, Lei Zhu, Chaoran Cui, Xiushan Nie, and Huaxi-

ang Zhang. Efficient weakly-supervised discrete hashing for

large-scale social image retrieval. Pattern Recognition Let-

ters, 2018.

[7] Qi Dai, Jianguo Li, Jingdong Wang, and Yu-Gang Jiang. Bi-

nary optimized hashing. In MM, ACM, pages 1247–1256.

ACM, 2016.

[8] Cheng Deng, Erkun Yang, Tongliang Liu, Jie Li, Wei Liu,

and Dacheng Tao. Unsupervised semantic-preserving adver-

sarial hashing for image search. IEEE Transactions Image

Processing, 28(8):4032–4044, 2019.

[9] Jeff Donahue, Yangqing Jia, Oriol Vinyals, Judy Hoffman,

Ning Zhang, Eric Tzeng, and Trevor Darrell. Decaf: A deep

convolutional activation feature for generic visual recogni-

tion. In ICML, pages 647–655, 2014.

[10] Venice Erin Liong, Jiwen Lu, Gang Wang, Pierre Moulin,

and Jie Zhou. Deep hashing for compact binary codes learn-

ing. In CVPR, pages 2475–2483. IEEE, 2015.

[11] Aristides Gionis, Piotr Indyk, Rajeev Motwani, et al. Simi-

larity search in high dimensions via hashing. In VLDB, vol-

ume 99, pages 518–529. ACM, 1999.

[12] Jacob Goldberger and Ehud Ben-Reuven. Training deep

neural-networks using a noise adaptation layer. In ICLR,

2017.

[13] Yunchao Gong and Svetlana Lazebnik. Iterative quantiza-

tion: A procrustean approach to learning binary codes. In

CVPR, pages 817–824, 2011.

[14] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.

Deep residual learning for image recognition. CVPR, pages

770–778, 2016.

[15] Geoffrey E. Hinton and Sam T. Roweis. Stochastic neighbor

embedding. In NeurIPS, pages 833–840, 2002.

[16] Qing-Yuan Jiang, Xue Cui, and Wu-Jun Li. Deep discrete

supervised hashing. IEEE Transactions Image Processing,

27(12):5996–6009, 2018.

[17] Qing-Yuan Jiang and Wu-Jun Li. Asymmetric deep super-

vised hashing. In AAAI, pages 3342–3349, 2018.

[18] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple

layers of features from tiny images. Technical report, Cite-

seer, 2009.

[19] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton.

Imagenet classification with deep convolutional neural net-

works. In NeurIPS, pages 1097–1105, 2012.

[20] Brian Kulis and Trevor Darrell. Learning to hash with binary

reconstructive embeddings. In NeurIPS, pages 1042–1050,

2009.

[21] Hanjiang Lai, Yan Pan, Ye Liu, and Shuicheng Yan. Simul-

taneous feature learning and hash coding with deep neural

networks. In CVPR, pages 3270–3278. IEEE, 2015.

[22] Michael S. Lew, Nicu Sebe, Chabane Djeraba, and Ramesh

Jain. Content-based multimedia information retrieval: State

of the art and challenges. TOMM, 2(1):1–19, Feb. 2006.

[23] Ning Li, Chao Li, Cheng Deng, Xianglong Liu, and Xinbo

Gao. Deep joint semantic-embedding hashing. In IJCAI,

pages 2397–2403, 2018.

[24] Qi Li, Zhenan Sun, Ran He, and Tieniu Tan. Deep supervised

discrete hashing. In NeurIPS, pages 2482–2491, 2017.

[25] Wu-Jun Li, Sheng Wang, and Wang-Cheng Kang. Feature

learning based deep supervised hashing with pairwise labels.

In IJCAI, pages 1711–1717, 2016.

[26] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays,

Pietro Perona, Deva Ramanan, Piotr Dollár, and C Lawrence

Zitnick. Microsoft coco: Common objects in context. In

ECCV, pages 740–755. Springer, 2014.

[27] Venice Erin Liong, Jiwen Lu, Ling-Yu Duan, and Yappeng

Tan. Deep variational and structural hashing. TPAMI, 2018.

[28] Haomiao Liu, Ruiping Wang, Shiguang Shan, and Xilin

Chen. Deep supervised hashing for fast image retrieval. In

CVPR, pages 2064–2072, 2016.

[29] Haomiao Liu, Ruiping Wang, Shiguang Shan, and Xilin

Chen. Learning multifunctional binary codes for both cat-

egory and attribute oriented retrieval tasks. In CVPR, pages

6259–6268, 2017.

[30] Wei Liu, Jun Wang, Rongrong Ji, Yu-Gang Jiang, and Shih-

Fu Chang. Supervised hashing with kernels. In CVPR, pages

2074–2081. IEEE, 2012.

[31] Wei Liu, Jun Wang, Sanjiv Kumar, and Shih-Fu Chang.

Hashing with graphs. In ICML, pages 1–8. ACM, 2011.

[32] Xianglong Liu, Junfeng He, Cheng Deng, and Bo Lang. Col-

laborative hashing. In CVPR, pages 2139–2146, 2014.

[33] Xianglong Liu, Junfeng He, Bo Lang, and Shih-Fu Chang.

Hash bit selection: a unified solution for selection problems

in hashing. In CVPR, pages 1570–1577. IEEE, 2013.

[34] Xiaoqiang Lu, Xiangtao Zheng, and Xuelong Li. Latent se-

mantic minimal hashing for image retrieval. IEEE Transac-

tions on Image Processing, 26(1):355–368, 2016.

[35] Yuqing Ma, Yue He, Fan Ding, Sheng Hu, Jun Li, and Xiang-

long Liu. Progressive generative hashing for image retrieval.

In IJCAI, pages 871–877, 2018.

[36] Laurens Van Der Maaten and Geoffrey Hinton. Visualizing

data using t-sne. JMLR, 9(2605):2579–2605, 2008.

[37] Mohammad Norouzi, Ali Punjani, and David J Fleet. Fast

search in hamming space with multi-index hashing. In

CVPR, pages 3108–3115. IEEE, 2012.

8260

[38] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, San-

jeev Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy,

Aditya Khosla, Michael Bernstein, Alexander C. Berg, and

Li Fei-Fei. ImageNet Large Scale Visual Recognition Chal-

lenge. IJCV, 115(3):211–252, 2015.

[39] Alexandre Sablayrolles, Matthijs Douze, Nicolas Usunier,

and Herve Jegou. How should we evaluate supervised hash-

ing? In ICASSP, pages 1732–1736, 2017.

[40] Ruslan Salakhutdinov and Geoffrey E Hinton. Learning

a nonlinear embedding by preserving class neighbourhood

structure. In AISTATS, pages 412–419, 2007.

[41] Fumin Shen, Chunhua Shen, Wei Liu, and Heng Tao Shen.

Supervised discrete hashing. In CVPR, pages 37–45. IEEE,

June 2015.

[42] Jingkuan Song, Tao He, Lianli Gao, Xing Xu, Alan Hanjalic,

and Heng Tao Shen. Binary generative adversarial networks

for image retrieval. In AAAI, pages 394–401, 2018.

[43] Shupeng Su, Chao Zhang, Kai Han, and Yonghong Tian.

Greedy hash: Towards fast optimization for accurate hash

coding in CNN. In NeurIPS, pages 806–815, 2018.

[44] Oriol Vinyals, Charles Blundell, Tim Lillicrap, Koray

Kavukcuoglu, and Daan Wierstra. Matching networks for

one shot learning. In NeurIPS, pages 3630–3638, 2016.

[45] Guan’an Wang, Qinghao Hu, Jian Cheng, and Zengguang

Hou. Semi-supervised generative adversarial hashing for im-

age retrieval. In ECCV, pages 491–507, 2018.

[46] Jingdong Wang, Ting Zhang, Jingkuan Song, Nicu Sebe, and

Heng Tao Shen. A survey on learning to hash. TPAMI,

40(4):769–790, 2018.

[47] Yair Weiss, Antonio Torralba, and Rob Fergus. Spectral

hashing. In NeurIPS, pages 1753–1760, 2009.

[48] Zhirong Wu, Alexei A. Efros, and Stella X. Yu. Improving

generalization via scalable neighborhood component analy-

sis. In ECCV, pages 712–728, 2018.

[49] Rongkai Xia, Yan Pan, Hanjiang Lai, Cong Liu, and

Shuicheng Yan. Supervised hashing for image retrieval via

image representation learning. In AAAI, pages 2156–2162.

AAAI, 2014.

[50] Xinyu Yan, Lijun Zhang, and Wu-Jun Li. Semi-supervised

deep hashing with a bipartite graph. In IJCAI, pages 3238–

3244, 2017.

[51] Felix X Yu, Sanjiv Kumar, Yunchao Gong, and Shih-Fu

Chang. Circulant binary embedding. In ICML, pages 353–

360. ACM, 2014.

[52] Peichao Zhang, Wei Zhang, Wu-Jun Li, and Minyi Guo. Su-

pervised hashing with latent factor models. In SIGIR, pages

173–182. ACM, 2014.

[53] Han Zhu, Mingsheng Long, Jianmin Wang, and Yue Cao.

Deep hashing network for efficient similarity retrieval. In

AAAI, pages 2415–2421. AAAI, 2016.

[54] Xiaofeng Zhu, Xuelong Li, Shichao Zhang, Zongben Xu,

Litao Yu, and Can Wang. Graph pca hashing for similar-

ity search. IEEE Transactions on Multimedia, 19(9):2033–

2044, 2017.

8261

