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Abstract

Training models to high-end performance requires avail-

ability of large labeled datasets, which are expensive to get.

The goal of our work is to automatically synthesize labeled

datasets that are relevant for a downstream task. We pro-

pose Meta-Sim, which learns a generative model of syn-

thetic scenes, and obtain images as well as its correspond-

ing ground-truth via a graphics engine. We parametrize

our dataset generator with a neural network, which learns

to modify attributes of scene graphs obtained from proba-

bilistic scene grammars, so as to minimize the distribution

gap between its rendered outputs and target data. If the

real dataset comes with a small labeled validation set, we

additionally aim to optimize a meta-objective, i.e. down-

stream task performance. Experiments show that the pro-

posed method can greatly improve content generation qual-

ity over a human-engineered probabilistic scene grammar,

both qualitatively and quantitatively as measured by perfor-

mance on a downstream task.

1. Introduction

Data collection and labeling is a laborious, costly and

time consuming venture, and represents a major bottleneck

in most current machine learning pipelines. To this end,

synthetic content generation [6, 36, 11, 34] has emerged as

a promising solution since all ground-truth comes for free

– via the graphics engine. It further enables us to train and

test our models in virtual environments [38, 8, 48, 22, 41]

before deploying to the real world, which is crucial for both

scalability and safety. Unfortunately, an important perfor-

mance issue arises due to the domain gap existing between

the synthetic and real-world domains.

Addressing the domain gap issue has led to a plethora

of work on synthetic-to-real domain adaptation [17, 27, 54,

10, 43, 34, 45]. These techniques aim to learn domain-

invariant features and thus more transferrable models. One

of the mainstream approaches is to learn to stylize syn-
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Figure 1. Meta-Sim is a method to generate synthetic datasets that

bridge the distribution gap between real and synthetic data and are

optimized for downstream task performance

thetic images to look more like those captured in the real-

world [17, 27, 51, 30, 18]. As such, these models address

the appearance gap between the synthetic and real-world

domains. They share the assumption that the domain gap is

due to the differences that are fairly low level.

Here, we argue that domain gap is also due to a content

gap, arising from the fact that the synthetic content (e.g.

layout and types of objects) mimics a limited set of scenes,

not necessarily reflecting the diversity and distribution of

objects of those captured in the real world. For example,

the Virtual KITTI [11] dataset was created by a group of

engineers and artists, to match object locations and poses

in KITTI [13] which was recorded in Karlsruhe, Germany.

But what if the target city changes to Tokyo, Japan, which

has much heavier traffic and many more high-rise build-

ings? Moreover, what if the downstream task that we want

to solve changes from object detection to lane estimation or

rain drop removal? Creating synthetic worlds that ensure

realism and diversity for any desired task requires signifi-

cant effort by highly-qualified experts and does not scale to

the fast demand of various commercial applications.

In this paper, we aim to learn a generative model of syn-

thetic scenes that, by exploiting a graphics engine, produces

labeled datasets with a content distribution matching that of

imagery captured in the desired real-world datasets. Our

Meta-Sim builds on top of probabilistic scene grammars

which are commonly used in gaming and graphics to cre-

ate diverse and valid virtual environments. In particular, we

assume that the structure of the scenes sampled from the
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grammar are correct (e.g. a driving scene has a road and

cars), and learn to modify their attributes. By modifying

locations, poses and other attributes of objects, Meta-Sim

gains a powerful flexibility of adapting scene generation to

better match real-world scene distributions. Meta-Sim also

optimizes a meta objective of adapting the simulator to im-

prove downstream real-world performance of a Task Net-

work trained on the datasets synthesized by our model. Our

learning framework optimizes several objectives using ap-

proximated gradients through a non-differentiable renderer.

We validate our approach on two toy simulators in con-

trolled settings, where Meta-Sim is shown to excel at bridg-

ing the distribution gaps. We further showcase Meta-Sim

on adapting a probabilistic grammar akin to SDR [34] to

better match a real self-driving dataset, leading to improved

content generation quality, as measured by sim-to-real per-

formance. To the best of our knowledge, Meta-Sim is the

first approach to enable dataset and task specific synthetic

content generation, and we hope that our work opens the

door to more adaptable simulation in the future.

2. Related Work

Synthetic Content Generation and Simulation. The

community has been investing significant effort in creat-

ing high-quality synthetic content, ranging from driving

scenes [38, 11, 36, 8, 34, 47, 2], indoor scenes [48, 50, 33],

household robotics [35, 22], robotic control [44], game

playing [5], optical flow estimation [6, 23], and quadcopter

control and navigation [41]. While such environments are

typically very realistic, they require qualified experts to

spend a huge amount of time to create them. Domain Ran-

domization (DR) is a cheaper alternative to such photo-

realistic simulation environments [40, 43, 34]. The DR

technique generates a large amount of diverse scenes by in-

serting objects in random locations and poses. As a result,

the distribution of the synthetic scenes is very different to

that of the real world scenes. We, on the other hand, aim

to align the synthetic and real distributions through a direct

optimization on the attributes and through a meta objective

of optimizing for performance on a down-stream task.

Procedural modeling and probabilisic scene gram-

mars are an alternative approach to content generation,

which are able to produce worlds at the scale of full cities1,

and mimic diverse 3D scenes for self-driving2. However,

the parameters for generating the distributions that con-

trol how a scene is generated need to be manually speci-

fied. This is not only tedious but also error-prone. There

is no guarantee that the specified parameters can generate

distributions that faithfully reflect real world distributions.

[24, 32] use such probabilistic programs to invert the gener-

ative process and infer a program given an image, while we

1
https://www.esri.com/en-us/arcgis/products/esri-cityengine/overview

2
https://www.paralleldomain.com/

aim to learn the generative process itself from real data.

Domain Adaptation aims at addressing the gap between

the distribution of data used to train and test or deploy the

model. From synthetic to real, two kinds of domain gaps

arise: the appearance (style) gap and the content (layout)

gap. Most existing work [17, 27, 54, 10, 51, 30, 18] tackle

the former by using image-to-image translation to transform

the appearance distribution of the synthetic images to look

more like that of the real images. Others [17, 27] add ad-

ditional task based constraints to ensure that the layout of

the stylized images remain the same. Other techniques use

pseudo-label based learning [54] and student-teacher net-

works [10] for domain adaptation. Our work is an early

attempt to tackle the latter i.e. the content gap. We note that

the appearance gap is orthogonal to the content gap, and

prior art could be directly plugged into our method.

Optimizing Simulators. [31] also attempt to optimize

non-differentiable simulators using a variational upper-

bound of a GAN-like objective to produce samples repre-

sentative of a target distribution. We, on other hand, use the

MMD [15] distance for comparing distributions and also

optimize a meta objective to produce samples suitable for

a downstream task. [7] learn to optimize simulator param-

eters for robotic control tasks, where trajectories between

the real and simulated robot can be directly compared. [39]

optimize high level exposed parameters by optimizing for

downstream task performance using Reinforcement Learn-

ing. We, however, optimize low level scene parameters (at

the level of every object) while also learning to match distri-

butions and optimizing downstream task performance. [12]

attempt to synthesize images by learning to generate even

lower-level programs (at the level of brush strokes) that a

graphics engine can interpret to generate realistic looking

images, as measured by a trained discriminator. [46] model

scene generation using a low dimensional space (imposing

stronger restrictions) and a discriminator for estimating the

likelihood of scenes. We, however, explicitly model the

graphical structure in scenes, have fewer constraints on pos-

sible generated scenes and can theoretically optimize all pa-

rameters for all objects in one sampled scene as compared

to only a few exposed low dimensional parameters, while

also explicitly modeling a downstream task.

3. Meta-Sim

In this section, we introduce Meta-Sim. Given a dataset

of real imagery XR and a task T (e.g. object detection),

our goal is to synthesize a training dataset DT = (XT , YT )
with XT synthesized imagery that resembles the given real

imagery, and YT the corresponding ground-truth for task T .

To simplify notation, we omit subscript T from here on.

We parametrize data synthesis with a neural network, i.e.

D(θ) = (X(θ), Y (θ)). Our goal in this paper is to learn the

parameters θ such that the distribution of X(θ) matches that
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Figure 2. Overview of Meta-Sim: The goal is to learn to transform

samples coming from a probabilistic grammar with a distribution

transformer, aiming to minimize the distribution gap between sim-

ulated and real data and maximize sim-to-real performance

of XR (real imagery). Optionally, if the real dataset comes

with a small validation set V that is labeled for task T , we

additionally aim to optimize a meta-objective, i.e. down-

stream task performance. The latter assumes we also have a

trainable task solving module (i.e. another neural network),

the performance of which we want to maximize by training

it on our generated training data. We refer to this module as

a Task Network, which will be treated as a black box in our

work. Note that Meta-Sim has parallels to Neural Architec-

ture Search [53], where our search is over the input datasets

to a fixed neural network instead of a search over the neural

network architecture given fixed data.

Image Synthesis vs Rendering. Generative models of

pixels have only recently seen success in generating real-

istic high resolution images [4, 19]. Extracting task spe-

cific ground-truth (eg: segmentation) from them remains a

challenge. Conditional generative models of pixels condi-

tion on input images and transform their appearance, pro-

ducing compelling results. However, these methods assume

ground truth labels remain unchanged, and thus are limited

in their content (structural) variability. In Meta-Sim we aim

to learn a generative model of synthetic 3D content, and

obtain D via a graphics engine. Since the 3D assets come

with semantic information (i.e., we know an asset is a car),

compositing or modifying the synthetic scenes will still ren-

der perfect ground-truth. The main challenge is to learn

the 3D scene composition by optimizing solely the distri-

bution mismatch of rendered with real imagery. The fol-

lowing subsections layout Meta-Sim in detail and are struc-

tured as follows: Sec. 3.1 introduces the representation of

parametrized synthetic worlds, while Sec. 3.2 describes our

learning framework.

3.1. Parametrizing Synthetic Scenes

Scene Graphs are a common way to represent 3D worlds

in gaming/graphics. A scene graph represent elements of a

scene in a concise hierarchical structure, with each element

having a set of attributes (eg. class, location, or even the

id of a 3D asset from a library) (see Fig. 3). The hierarchy

defines parent-child dependencies, where the attributes of

the child elements are typically defined relative to the par-

ent’s, allowing for an efficient and natural way to create and

modify scenes. The corresponding image and pixel-level

annotations can be rendered easily by placing objects as de-

scribed in the scene graph.

In order to generate diverse and valid 3D worlds, the

typical approach is to specify the generative process of the

graph by a probabilistic scene grammar [52]. For exam-

ple, to generate a traffic scene, one might first lay out the

centerline of the road, add parallel lanes, position aligned

cars on each lane, etc. The structure of the scene is defined

by the grammar, while the attributes are typically sampled

from parametric distributions, which require careful tuning.

In our work, we assume access to a probabilistic gram-

mar from which we can sample initial scene graphs. We

assume the structure of each scene graph is correct, i.e. the

driving scene has a road, sky, and a number of objects. This

is a reasonable assumption, given that inferring structure

(inverse graphics) is known to be a hard problem. Our goal

is to modify the attributes of each scene graph, such that the

transformed scenes, when rendered, will resemble the dis-

tribution of the real scenes. By modifying the attributes, we

give the model a powerful flexibility to change objects’ lo-

cations, poses, colors, asset ids, etc. This amounts to learn-

ing a conditional generative model, which, by conditioning

on an input scene graph transforms its node attributes. In

essence, we keep the structure generated by the probabilis-

tic grammar, but transform the distribution of the attributes.

Thus, our model acts as a Distribution Transformer.

Notation. Let P denote the probabilistic grammar from

which we can sample scene graphs s ∼ P . We denote

a single scene graph s as a set of vertices sV , edges sE
and attributes sA. We have access to a renderer R, that can

take in a scene graph s and generate the corresponding im-

age and ground truth, R(s) = (x, y). Let Gθ refer to our

Distribution Transformer, which takes an input scene graph

s and outputs a scene graph Gθ(s), with transformed at-

tributes but the same structure, i.e. Gθ(s = [sV , sE , sA])
= [sV , sE , Gθ(sA)]. Note that by sampling many scene

graphs, transforming their attributes, and rendering, we ob-

tain a synthetic dataset D(θ).

Architecture of Gθ. Given the graphical structure of

scene graphs, modeling Gθ via a Graph Neural Network is

a natural choice. In particular, we use Graph Convolutional

Networks (GCNs) [21]. We follow [49] and use a graph

convolutional layer that utilizes two different weight ma-

trices to capture top-down and bottom-up information flow

separately. Our model makes per node predictions i.e. gen-

erates transformed attributes Gθ(sA) for each node in sV .

Mutable Attributes: We input to Gθ all attributes sA, but

we might want to only modify specific attributes and trust

the probabilistic grammar P on the rest. For example, in

Fig. 3 we may not want to change the heights of houses,
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or width of the sidewalks, if our final task is car detection.

This reduces the number of exposed parameters our model

is tasked to tune thus improving training time and complex-

ity. Therefore, in the subsequent parts, we assume we have

a subset of attributes per node v ∈ sV which are mutable

(modifiable), denoted by sA,mut(v). From here onwards, it

is assumed that only the mutable attributes in sA,mut(v)∀v
are changed by Gθ; others remain the same as in s.

3.2. Training MetaSim

We now introduce our learning framework. Since our

learning problem is very hard and computationally inten-

sive, we first pre-train our model using a simple autoen-

coder loss in Sec. 3.2.1. The distribution matching loss is

presented in Sec 3.2.2, while meta-training is described in

Sec 3.2.3. The overview of our model is given in Fig. 2,

with the particular training objectives illustrated in Fig. 4.

3.2.1 Pre-training: Autoencoder Loss

A probabilistic scene grammar P represents a prior on how

a scene should be generated. Learning this prior is a nat-

ural way to pre-train our Distribution Transformer. This

amounts to training Gθ to perform the identity function i.e.

Gθ(s) = s. The input feature of each node is its attribute

set (sA), which is defined consistently across all nodes (see

suppl.). Since sA is composed of different categorical and

continuous components, appropriate losses are used per fea-

ture component when training to reconstruct (i.e. cross-

entropy loss for categorical attributes, and L1 loss for con-

tinuous attributes). We find pre-training to be crucial, and

convergence during this stage strongly affects performance

in the following training steps.

3.2.2 Distribution Matching

The first objective of training our model is to bring the dis-

tribution of the rendered images to be closer to the distribu-

tion of real imagery XR. The Maximum Mean Discrepancy

(MMD) [15] metric is a frequentist measure of the similarity

of two distributions and has been used for training genera-

tive models [9, 29, 26] to match statistics of the generated

distribution with the target distribution. An alternative, ad-

versarial learning with discriminators, however, is known to

suffer from mode collapse, and a general instability in train-

ing. Pixel-wise generative models with MMD have usually

suffered from not being able to model high-frequency sig-

nals (resulting in blurry generations). Since our generative

process goes through a renderer, we sidestep the issue alto-

gether, and thus choose MMD for training stability.
We compute MMD in the feature space of an Incep-

tionV3 [42] network (known as Kernel Inception Distance
(KID) [3]) with a gaussian kernel k(xi, xj). This feature
extractor is denoted by the function φ. We refer the reader
to [29] for more details. The Distribution Matching box
in Fig. 4 depicts the training procedure. Specifically, given
scene graphs s1, ..., sN sampled from P and target real im-
ages XR, the squared MMD distance can be computed as,

LMMD2 =
1

N2

N
∑

i=1

N
∑

i′=1

k(φ(Xθ(si)), φ(Xθ(si′))

+
1

M2

M
∑

j=1

M
∑

j′=1

k(φ(Xj
R), φ(X

j′

R ))

−
1

MN

N
∑

i=1

M
∑

j=1

k(φ(Xθ(si)), φ(X
j
R)) (1)

where the image rendered from s is Xθ(s) = R(Gθ(s))).
Empirically, we found using lower layers of the Incep-

tion network helps ameliorate domain adaptation issues that

arise in MMD computation with Inception features, due to

one set of images being real while the other is rendered.

Backprop through a Renderer. We backpropagate

through the non-differentiable rendering function R by ap-

proximating the gradient of R(Gθ(s)) w.r.t. Gθ(s) using

finite differences3. While this gives us noisy gradients, we

found it sufficient to be able to train our models in prac-

tice, with the benefit of being able to use photorealistic ren-

dering. We note that recent work on differentiable render-

ing [20, 28] could potentially benefit this work.

3.2.3 Optimizing Task Performance

The second objective of training the model Gθ is to gener-
ate data R(Gθ(S)) given samples S = {s1, ..., sK} from

3computed by perturbing each mutable attribute of each object in the

predicted scene graph Gθ(s)
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Algorithm 1 Pseudocode for Meta-Sim’s meta training phase

1: Given: P,R,Gθ ⊲ Probabilistic grammar, Renderer, GCN Model

2: Given: TaskNet, XR, V ⊲ Task Model, Real Images, Target Validation

Data

3: Hyperparameters: Em, Im, Bm ⊲ Epochs, Iters, Batch size

4: while em ≤ Em do ⊲ Meta training

5: loss = 0;

6: data = []; samples = []; ⊲ Caching data & samples generated in epoch

7: while im ≤ Im do

8: S = Gθ(sample(P , Bm)); ⊲ Generate Bm samples from P

9: and transform them

10: D = R(S); ⊲ Render images, labels from S

11: data += D; samples += S;

12: loss += LMMD2 (D,XR); ⊲ MMD between generated and

13: target real images

14: end while

15: TaskNet = train(TaskNet, data); ⊲ Train TaskNet on data

16: score = test(TaskNet, V ); ⊲ Test TaskNet on target val

17: loss += −(score−moving avg(score)) · log pGθ
(samples)

⊲ Eq. 3

18: Gθ = optimize(Gθ , loss); ⊲ SGD step

19: end while

the probabilistic grammar P , such that a model trained on
this data achieves best performance when tested on target
data V . This can be interpreted as a meta-objective, where
the input data must be optimized to improve accuracy on a
validation set. We introduce a task network TaskNet to
train using our data and to measure validation performance
on. We train Gθ under the following objective,

max
θ

ES′∼Gθ(S)

[

score(S′)
]

(2)

where score(S′) is the performance metric achieved
on validation data V after training TaskNet on data
R(Gθ(S

′)). The task loss in Eq. 2 is not differentiable w.r.t
the parameters θ, since the score is measured using valida-
tion data and not S′. We use the REINFORCE score func-
tion estimator (which is an unbiased estimator of the gradi-
ent) to compute the gradients of Eq. 2. Reformulating the
objective as a loss and writing the gradient gives,

Ltask = −ES′∼Gθ(S)

[

score(S′)
]

(3)

∇θLtask = −ES′∼Gθ(S)

[

score(S′)×∇θ log pGθ
(S′)

]

To reduce the variance of the gradient from the estimator

above, we keep track of an exponential moving average of

previous scores and subtract it from the current score [14].

We approximate the expectation using one sample from

Gθ(S). The Task Optimization box in Fig. 4 provides a pic-

torial overview of the task optimization.

Sampling from Gθ(s). Eq. 3 requires us to be able to

sample (and measure its likelihood) from our model. For

continuous attributes, we interpret our model to be predict-

ing the mean of a normal distribution per attribute, with a

pre-defined variance. We use the reparametrization trick to

sample from this normal distribution. For categorical at-

tributes, it is possible to sample from a multinomial distri-

bution from the predicted log probabilities per category. In

this paper, we keep categorical attributes immutable.

Calculating log pGθ
(S′). Since we assume independence

across scenes, attributes and objects in the scene, the likeli-
hood in Eq 3 for the full scene is simply factorizable,

log pGθ(S
′) =

∑

s′∈S′

∑

v∈s′
V

∑

a∈s′
A,mut

(v)

log pGθ
(s′(v, a)) (4)

where s′(v, a) represents the attribute a at node v in a sin-

gle scene s′ in batch S′. Note that the sum is only over

mutable attributes per node sA,mut(v). The individual log

probabilities come from the defined sampling procedure.

Training Algorithm. The algorithm for training with

Distribution Matching and Task Optimization is presented

in Algorithm 1.

4. Experiments

We evaluate Meta-Sim on three target datasets with three

different tasks. The subsequent sections follow a general

structure where we first outline the desired task, the target

data and the task network4. Then, we describe the proba-

bilistic grammar that the Distribution Transformer utilizes

for its input, and the associated renderer that generates la-

beled synthetic data. Finally, we show quantitative and

qualitative results after training the task network using syn-

thetic data generated by Meta-Sim. We observe boosts

in quantitative performance and noticeable qualitative im-

provements in content-generation quality.

The first two experiments presented are in a controlled

setting, each with increasing complexity. The aim here is to

probe Meta-Sim’s capabilities when the shift between the

target data distribution and the input distribution is known.

The input distribution refers to the distribution of the scenes

generated by samples from the probabilistic grammar that

our Distribution Transformer takes as input. Target data for

these tasks is created by carefully modifying the parame-

ters of the probabilistic program, which represents a known

distribution gap that the model must learn.

4.1. MNIST

We first evaluate our approach on digit classification

on MNIST-like data. The probabilistic grammar samples

a background texture, one digit texture (image) from the

MNIST dataset [25] (which has an equal probability for any

digit), and then samples a rotation and location for the digit.

The renderer transforms the texture based on the sampled

transformation and pastes it onto a canvas.

Task Network. Our task network is a small 2-layer CNN

followed by 3 fully connected layers. We apply dropout in

the fully connected layers (with 50, 100 and 10 features).

We verify that this network can achieve greater than 99%
accuracy on the regular MNIST classification task. We do

not use data-augmentation while training (in all following

4Task Network training details in suppl. material
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Figure 5. Examples from the rotated-MNIST dataset

Figure 6. Examples from the rotated and translated MNIST

experiments as well), as it might interfere with our model’s

training by changing the configuration of the generated data,

making the task optimization signal unreliable.

Rotating MNIST. In our first experiment, the probabilis-

tic grammar generates input samples that are upright and

centered, like regular MNIST digits (Fig 7 bottom). The tar-

get data V and XR are images (at 32×32 resolution) where

digits centered and always rotated by 90 degrees (Fig 5).

Ideally, the model will learn this exact transformation, and

rotate the digits in the input scene graph while keeping them

in the same centered position.

Rotating and Translating MNIST. For the second ex-

periment, we additionally add translation to the distribution

gap, making the task harder for Meta-Sim. We generate V

and XR as 1000 images (at 64×64 resolution) where in ad-

dition to being rotated by 90 degrees, the digits are moved

to the bottom left corner of the canvas (Fig 6). The input

probabilistic grammar remains the same, i.e. one that gen-

erates centered and upright digits (Fig. 8 bottom).

Quantitative Results. Table 1 shows classification on the

target datasets with the two distribution gaps described

above. The target datasets are fresh samples from the tar-

get distribution (separate from V ). Training directly on the

input scenes (coming from the input probabilistic grammar

i.e. generating upright and centered digits in this case) re-

sults in just above random performance. Our model re-

covers the transformation causing the distribution gap, and

achieves greater than 99% classification accuracy.

Data Rotation Rotation + Translation

Prob. Grammar 14.8 13.1

Meta-Sim 99.5 99.3

Table 1. Classification performance on our MNIST with different

distribution gaps in the data

Qualitative Results. Fig. 7 and Fig. 8 show generations

from our model at the end of training, and compares with

the input scenes. Clearly, the model has learnt to perfectly

transform the input distribution to replicate the target distri-

bution, corroborating our quantitative results.

4.2. Aerial Views (2D)

Next, we evaluate our approach on semantic segmen-

tation of simulated aerial views of simple roadways. In

the probabilistic grammar, we sample a background grass

texture, followed by a (straight) road at some location and

Figure 7. (bottom) Input scenes, (top) Meta-Sim’s generated ex-

amples for MNIST with rotation gap

Figure 8. (bottom) Input scenes, (top) Meta-Sim’s generated ex-

amples for MNIST with rotation and translation gap

Figure 9. Example label and image from Aerial2D validation

Figure 10. Example input scenes for Aerial2D

rotation on the background. Next, we sample two cars

with independent locations (constrained to be in the road

by parametrizing in the road’s coordinate system), and ro-

tations. In addition, we also sample a tree and a house ran-

domly in the scene. Each object in the scene gets a random

texture from a set of textures we collected for each object.

We ended up with nearly 600 car, 40 tree, 20 house, 7 grass

and 4 road textures. Overall, this grammar has more com-

plexity than MNIST, due to the scene graphs having higher

depth, more objects, and variability in appearance.

V and XR are created by tuning the grammar parameters

to generate a realistic aerial view. (Fig. 9). The input proba-

bilistic grammar uses random parameters (Fig. 10) bottom.

Task Network. We use a small U-Net architecture [37]

with a total of 7 convolutional layers (with 16 to 64 filters

in the convolution layers) as our task-network.

Quantitative Results. Table 2 shows semantic segmenta-

tion results on the target set. The results show that Meta-

Sim effectively transforms the outputs of the probabilistic

grammar, even in this relatively more complex setup, and

improves the mean IoU. Specifically, it learns to drastically

reduce the gap in performance for cars and also improves
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Figure 11. (bottom) input scenes, (top) Meta-Sim’s generated examples

for Aerial semantic segmentation

Data Car Road House Tree Mean

Prob. Grammar 30.0 93.1 98.3 99.7 80.3

MetaSim 86.7 99.6 95.0 99.5 95.2

Table 2. Semantic segmentation results (IoU) on Aerial2D

performance on roads.

Qualitative Results. Qualitative results in Fig. 11 show

that the model indeed learns to exploit the convolutional

structure of the task network, by only learning to orient.

This is sufficient to achieve its job since convolutions are

translation equivariant, but not rotation equivariant.

4.3. Driving Scenes (3D)

After validating our approach on controlled experiments

in a simulated setting, we now evaluate our approach for

object detection on the challenging KITTI [13] dataset.

KITTI was captured with a camera mounted on top of a

car driving around the city of Karlsruhe in Germany. It

consists of challenging traffic scenarios and scenes rang-

ing from highways to urban to more rural neighborhoods.

Contrary to the previous experiments, the distribution gap

which we wish to reduce arises naturally here.

Current open-source self driving simulators [8, 41] do

not offer the amount of low level control on object at-

tributes that we require in our model. We thus turn to

probabilistic grammars for road scenarios [34, 47]. Specif-

ically, SDR [34] is a road scene grammar that has been

shown to outperform existing synthetic datasets as mea-

sured by sim-to-real performance. We adopt a simpler ver-

sion of SDR and implement portions of their grammar as

our probabilistic grammar. Specifically, we remove support

for intersections and side-roads for computational reasons.

The exact parameters of the grammar used can be found

in the supplementary material. We use the Unreal Engine

4 (UE4) [1] game engine for the 3D rendering from scene

graphs. Fig. 12(left column) shows example renderings of

scenes generated using our version of the SDR grammar.

The grammar parameters were mildly tuned, since we aim

to have our model do the heavy lifting in subsequent parts.

Task Network. We use Mask-RCNN [16] with a Resnet-

50-FPN backbone (ImageNet initialized) detection head as

our task network for object detection.

Experimental Setup. Following SDR [34], we use car

detection as our task. Validation data V is formed by taking

100 random images (and their labels) from the KITTI train

set. The rest of the training data (images only) forms XR.

We report results on the KITTI val set. Training and finer

details can be found in the supplementary material.

Complexity. To reduce training complexity (coming from

rendering and numerical gradients), we train Meta-Sim to

optimize specific parts of the scene sequentially. We first

train to optimize attributes of cars. Next, we optimize car

and camera parameters, and finally add parameters of con-

text elements (buildings, pedestrians, trees) together to the

training. Similarly, we decouple distribution and task train-

ing. We first train the above with MMD, and finally opti-

mize all parameters above with the meta task loss. The com-

putation of the Jacobian through the renderer in our method

is expensive (250 - 900 seconds for a batch of size 16) for

large scene graphs in the 3D driving simulator, but we find

that the abstraction into scene graphs exhibits decently fast

convergence (4-5 hours on convergence of cars and 72 hours

for all the training steps in Table 3) on one TITAN Xp GPU

with the rendering also running on one TITAN Xp GPU.

Quantitative Results. Table 3 reports the average preci-

sion at 0.5 IoU of the task network trained using data gener-

ated from different methods, when tested on the KITTI val

set. We see that training with Meta-Sim beats just using the

data from the probabilistic grammar.

Data Easy Moderate Hard

Prob. Grammar 63.7 63.7 62.2

MetaSim (Cars) 66.4 66.5 65.6

+ Camera 65.9 66.3 65.9

+ Context 65.9 66.3 66.0

+ Task Loss 66.7 66.3 66.2

Table 3. AP @ 0.5 IOU for car detection on the KITTI val dataset

Training the task network online with meta-sim and of-

fline on final generated data results in similar final detection

performance. This ensures the quality of the final generated

data, since training while the transformation of data is being

learned could be seen as data augmentation.

Bridging the appearance gap. We additionally add a

state-of-the-art image-to-image translation network, MU-

NIT [18] after training our model to attempt to bridge the

appearance gap between the generated synthetic images and

real images. Table 4 shows training with image-to-image

translation still leaves a performance gap between MetaSim

and the baseline, confirming our content gap hypothesis.

Data Easy Moderate Hard

Prob. Grammar 71.1 75.5 65.3

Meta-Sim 77.5 75.1 68.2

Table 4. Effect of adding image-to-image translation to bridge the

appearance gap in generated images

Training on V . Since we have access to some labelled

training data, a valid baseline is to train the models on V
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Figure 12. (left) samples from our prob. grammar, (middle) Meta-Sim’s corresponding samples, (right) random samples from KITTI

Figure 13. Car detection results (top) of task network trained with Meta-Sim vs (bottom) trained with our prob. grammar

(100 images from KITTI train split). In Table. 5 we show

the effect of only training with V and finetuning using V .

TaskNet Initialization Easy Moderate Hard

ImageNet 61.2 62.0 60.7

Prob. Grammar 71.3 72.7 72.7

Meta-Sim (Task Loss) 72.4 73.9 73.9

Table 5. Effect of finetuning on V

Qualitative Results. Fig. 12 shows a few outputs of

Meta-Sim compared to the inputs sampled from the gram-

mar, alongwith a few random samples from KITTI(train).

There is a noticeable difference, as Meta-Sim’s cars are well

aligned with the road, and the distances between cars are

meaningful. Also notice the small changes in camera, and

the differences in the context elements, including houses,

trees and pedestrians. The last row in Fig. 12 represents a

failure case where Meta-Sim is unable to clear up a dense

initial scene, resulting in collided cars. Interestingly, Meta-

Sim perfectly overlaps two cars in the same image such that

a single car is visible from the camera (first car in front of

camera). This behavior is seen multiple times, indicating

that the model learns to cheat its way to good data. Ele-

ments are moved to final configurations sequentially, fol-

lowing our training procedure. We remind the reader that

these scene configurations are learned with only image/task

level supervision. In Fig. 13, we show results of training

the task network on our grammar vs. training with Meta-

Sim. We observe fewer false positives and negatives than

the baseline. Meta-Sim shows better recall and GT over-

lap. Both models lose in precision, arguably because of not

training for similar classes like Bus/Truck which would be

negative examples.

5. Conclusion
We proposed Meta-Sim, an approach that generates syn-

thetic data to match real content distributions while optimiz-
ing performance on downstream (real) tasks. Our model
learns to transform sampled scenes from a probabilistic
grammar so as to satisfy these objectives. Experiments on
two toy and one real task showcased that Meta-Sim gener-
ates quantitatively better and noticeably higher quality sam-
ples than the baseline. We hope this opens a new exciting
direction for simulation in the computer vision community.
Like any other method, it has its limitations. It relies on ob-
taining valid scene structures from a grammar, and hence is
still limited in the kinds of scenes it can model. Inferring
rules of the grammar from real images, learning to gener-
ate structure of scenes and introducing multimodality in the
model are intriguing avenues for future work.
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