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Abstract

State-of-the-art image captioning methods mostly focus

on improving visual features, less attention has been paid to

utilizing the inherent properties of language to boost cap-

tioning performance. In this paper, we show that vocab-

ulary coherence between words and syntactic paradigm of

sentences are also important to generate high-quality im-

age caption. Following the conventional encoder-decoder

framework, we propose the Reflective Decoding Network

(RDN) for image captioning, which enhances both the long-

sequence dependency and position perception of words in

a caption decoder. Our model learns to collaboratively at-

tend on both visual and textual features and meanwhile per-

ceive each word’s relative position in the sentence to maxi-

mize the information delivered in the generated caption. We

evaluate the effectiveness of our RDN on the COCO image

captioning datasets and achieve superior performance over

the previous methods. Further experiments reveal that our

approach is particularly advantageous for hard cases with

complex scenes to describe by captions.

1. Introduction

The goal of image captioning is to automatically gener-

ate fluent and informative language description of an image

for human understanding. As an interdisciplinary task con-

necting Computer Vision and Nature Language Processing,

it explores towards the cutting edge techniques of scene un-

derstanding [23] and it is drawing increasing interests in re-

cent years.

To build a top captioning system, there are two cru-

cial requirements. First, the captioning model needs to

distill representative and meaningful visual representation

from an image. Thanks to the success in image classifica-

tion [20] and object recognition [12, 33], recent methods

[2, 26, 45, 47] have shown significant advancements which

mostly benefited from the improved quality of extracted vi-

sual features. Second, and the relatively neglected require-

ment, is to make the generated captions coherent and intel-

ligent. Similar to the human language system, it needs to

1This work was done while Lei Ke was an intern at Tencent.

Basis decoder: A black and white photo 

of a clock tower in the background.

Ours: A view of a bridge with a clock  

tower over a river.  

A view of  a   bridge with a  clock  tower over a  river.

Figure 1. Top: Example captions generated by the basis decoder

(using traditional LSTM) and our Reflective Decoding Network

model. Bottom: The reflective attention weight distribution over

the past generated hidden states is shown when predicting the word

‘river’. The thicker line indicates a relatively larger weight and the

red line means the largest contribution to the prediction.

inference and reason during the generation process based

on what has been generated and watched. Typically, this

process is achieved by RNN (specifically, LSTM [14]) in

storing the sequential information during caption decoding.

The traditional LSTM model, however, tends to focus

more on the relatively closer vocabulary while neglecting

the farther one. For example, in Figure 1, the word ‘bridge’

has an important hint on predicting the word ‘river’ (which

is neglected by the basis decoder), but the two words are

separated by 6 words. Current mainstream caption decoder

is weak in handling this kind of long-term dependency in

sequential sentence, especially when the visual content of

an image is complex and hard to describe, which usually

leads to a general and less accurate caption description.

In this paper, we propose the Reflective Decoding Net-

work (RDN) for image captioning, which mitigates the

drawback of traditional caption decoder by enhancing its

long sequential modeling ability. Different from previous

methods which boost captioning performance by improv-

ing the visual attention mechanism [2, 26, 45], or by im-

proving the encoder to supply more meaningful intermedi-

ate representation for the decoder [17, 47, 48, 50], our RDN

focuses directly on the target decoding side and jointly ap-

ply attention mechanism in both visual and textual domain.
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Besides, we propose to model the positional information of

each word within a caption in a supervised way to capture

the syntactic structure of natural language. Another advan-

tage in RDN is to visualize how the model inferences and

makes word prediction based on the generated words. For

instance, our RDN successfully decodes the word ‘river’ in

Figure 1 by referring to the previously generated words, es-

pecially the most relevant word ‘bridge’.

The main contributions of this paper are four folds:

• We propose the RDN that effectively enhances the long

sequential modeling ability of the traditional caption

decoder for generating high-quality image captions.

• By considering long-term textual attention, we explic-

itly explore the coherence between words and visual-

ize the word decision making process in text domain

to show how we can interpret the principle and result

of the framework from a novel perspective.

• We design a novel positional module to enable our

RDN to perceive the relative position of each word in

the whole caption and thereby better comprehend the

syntactic paradigm of natural language.

• Our RDN achieves state-of-the-art performance on

COCO captioning dataset and is particularly supe-

rior over existing methods in hard cases with complex

scenes to describe by captions.

2. Related Work

Image Captioning. State-of-the-art captioning methods

are mostly driven by advancements in machine translation

[7, 36], where the encoder-decoder framework has demon-

strated to generate much more novel and coherent sen-

tences compared to the traditional template-based [21, 46]

or search-based [9] methods. In [10, 42], the authors in-

troduced a framework which utilizes a pre-trained CNN

as an encoder to extract image features, followed by an

RNN as a decoder to generate image descriptions. This

model was further improved by incorporating high-level

semantic attribute information [44, 49] or regularizing the

RNN decoder [6]. To distill the salient objects or impor-

tant regions from an image, different kinds of attention

mechanisms were integrated into the captioning framework

to exam the relevant image regions when generating sen-

tences [2, 26, 45, 47, 50].

Fusion learning of multiple encoders or decoders forms

an essential part of boosting image captioning performance.

In [17], the authors utilized multiple CNNs to extract com-

plementary image features, which forms a more informative

and integrated representation for decoder. Yao et al. [48]

proposed GCN-LSTM to build two kinds of graphs to in-

corporate both semantic and spatial relations into the frame-

work. The outputs from two different separately trained de-

coders are linearly fused to produce the final prediction.

Similar to [2, 28, 48], our RDN also utilizes the atten-

tion mechanism and follows the encoder-decoder frame-

work. However, we explicitly study the coherence between

words, which remedies the drawback of current captioning

framework in modeling long-term dependency in decoder.

Language Attention in joint vision and language tasks.

Learning language attention has attracted increasing atten-

tion in other joint vision and language problems, such as

VQA and grounding referential expressions. In [27], the

authors proposed a model to jointly reason both visual and

language attentions for visual question answering. Yu et

al. [51] attentively parsed the expressions into three phrase

embeddings to address the task of referring expression com-

prehension. Different from them, image captioning task is a

sequential language generation process. The target descrip-

tion of an image is unknown during inference stage. So,

our RDN explores the language attention based on the gen-

erated words in previous states. With more time steps, the

attended language content will increase dynamically, which

enables the word predicted later to capture more useful in-

formation for reference.

Language Attention in NLP tasks. Our RDN shares some

ideas of the self-attention mechanism in machine transla-

tion models [30, 39, 40], abstract summarization model [32]

and dialogue system [29]. A typical self-attention model

such as Transformer [40] aims to learn a latent represen-

tation for each position of a sequence by referring to the

whole context. In contrast, the Reflective Attention Mod-

ule (RAM) of our RDN is designed as an attachable mod-

ule which is seamlessly integrated into the recurrent decod-

ing framework. Thanks to our special two-layer recurrent

structure, our RAM collaborates smoothly with the visual

attention component of our RDN by sharing the same query

value to optimize the captioning process jointly, which is

beneficial to ensure our generated captions match with the

visual content of an image. To our knowledge, this paper is

the first work in jointly exploring both visual and language

attention in image captioning.

3. Reflective Decoding Network

The overall architecture of our framework is shown in

Figure 2. Given an input image, our model first uses Faster

R-CNN [33] as Encoder to obtain the visual features of ob-

jects in the image. The visual features are then fed to the our

Reflective Decoding Network (RDN) to generate caption.

Our RDN contains three components: (1) Attention-based

Recurrent Module, which attends to the visual features from

Encoder; (2) Reflective Attention Module, which employs

textual attention to model the compatibility between current

and past decoding hidden states, thus it is able to capture

more historical and comprehensive information for word

decision; (3) Reflective Position Module, which introduces

relative position information for each word in the generated

caption and helps the model to perceive the syntactic struc-
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Figure 2. Overview of our framework. Attref in RAM (Reflective Attention Module) is the attention layer used to selectively attend to the

generated decoding hidden states, Attvis layer in Attention-based Recurrent Module determines the attention distribution over the detected

image regions. Itp and I
t
r in RPM (Reflective Position Module) are respectively the t-th predicted and actual relative position in sentence.

ture of sentences. RDN is able to tackle the long-term de-

pendency difficulty in caption decoding.

3.1. ObjectLevel Encoder

The encoder in encoder-decoder framework aims to ex-

tract meaningful semantic representation from an input

image. We leverage object detection module (Faster R-

CNN [33]) with pretrained ResNet-101 [13] to produce the

region-level representation. The set of extracted regional

visual representation RI of an image I are denoted as RI =

{ri}
k

i=1
, ri∈R

D, where k denotes the number of extracted

regions, D denotes the feature dimension of each region,

and ri is the mean pooled convolutional feature within the

extracted region. Compared to the conventional uniform

meshing method on CNN features, the object-level encoder

focuses more on salient objects/regions in an image that is

closely related to the perception mechanism in human vi-

sual system [3].

3.2. Reflective Decoder

Given a set of regional image features RI produced by

encoder, the goal for the decoder is to generate the caption

S, where S = {s1, s2, ..., sn} consisting of n words. The

generated caption should not only capture the content infor-

mation from the image but also be meaningful and coher-

ent. Specifically, in Figure 2, the Attention-based Recurrent

Module is employed to selectively attend to the detected re-

gional features and serves the basic function of a captioning

decoder while Reflective Attention Module and Reflective

Position Module are designed above it as assistants to fur-

ther enhance captioning quality. Thus, the complete Reflec-

tive Decoder is able to take both historical coherence be-

tween words and syntactic structure information into con-

sideration while generating image captions.

Attention-based Recurrent Module includes the first

LSTM layer and visual attention layer Attvis, which is de-

signed mainly for top-down visual attention calculation. Its

input x1

t at time step t contains three concatenated parts,

the mean-pooled image feature r̄ = 1

k

∑k

i=1
ri, the embed-

ding vector WeOt for current input word Ot and the pre-

vious output h2

t−1
from the second LSTM layer, where r̄

represents the contextual information of the given image,

We∈R
E×Do is the embedding matrix for the one-hot vec-
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tor Ot, Do is the size of the captioning vocabulary and E

is the embedding size. The formula for updating the LSTM

units in the first layer is defined as :

h
1

t = LSTM(x1

t ,h
1

t−1
), x

1

t = [r̄,WeOt,h
2

t−1
]. (1)

For the visual attention layer Attvis, given the generated h
1

t

and the set of k image features RI = {ri}
k
i=1

, we calculate

the normalized attention weight αvis
t distribution over all

the proposed object-level region denotes as :

αvis
i,t = W

1

vtanh(W
1

rvri +W
1

hvh
1

t ), (2)

αvis
t = softmax(avist ), avist =

{

αvis
i,t

}k

i=1
, (3)

where W
1

v ∈ R
1×Dv , W1

rv ∈ R
Dv×DR , W1

hv∈ R
Dv×Dh

are learned embedding matrices, αvis
t denotes the calculated

attention probability for each regional feature ri at time step

t. So the attended feature is the weighted combination of

each subregion, r̂t =
∑k

i=1
αvis
i,t ri based on the weight dis-

tribution parameter avist .

3.2.1 Reflective Attention Module.

The Reflective Attention Module contains reflective at-

tention layer Attref , combined with the second layer of

LSTM, which is designed to output language description.

Its input vector is concatenated by the attended feature re-

sult r̂t and the hidden state h1

t . Thus the formula for updat-

ing the LSTM units in the second layer of LSTM is denoted

as :

h
2

t = LSTM(x2

t ,h
2

t−1
), x

2

t = [r̂t,h
1

t ]. (4)

Based on the current hidden state h
2

t at the time step t and

the past hidden states set {h2

1
,h2

2
, ...,h2

t−1
}, the reflective

attention layer Attref calculates the normalized weight dis-

tribution α
ref
t above all the generated t hidden states as

shown in the top right of Figure 2. The formula is defined

as :

α
ref
i,t = W

2

htanh(W
2

h2h
h
2

i +W
2

h1h
h
1

t ), (5)

α
ref
t = softmax(areft ), a

ref
t =

{

α
ref
i,t

}t

i=1

, (6)

where W2

h ∈R
1×Df , W2

h2h
∈R

Df×Dh , W2

h1h
∈R

Df×Dh

are three trainable matrices parameters, α
ref
t denotes the

generated attention probability set for each hidden state hi

in the set {h2

i }
t
i=1

at time step t and α
ref
i,t reflects the rele-

vance between the past predicted word at i-th step and cur-

rent prediction (at t-th step) by measuring the compatibility

between their corresponding hidden states. So we can cal-

culate the attended hidden state result ĥ2

t =
∑t

i=1
α
ref
i,t h

2

i .

The reflective decoding output ĥ2

t of the top attention

layer Attref is utilized to predict the word st under the con-

ditional probability distribution :

p(st|s1:t−1) = softmax(Wsĥ
2

t + bs), (7)

where Ws ∈ R
Do×Dh are the trainable weights and bs ∈

R
Do are the biases. By calculating st in this way, all the

generated hidden states {hi}
t
i=1

play a role in word preci-

sion and their extent of contributions can be clearly visual-

ized, as will be demonstrated in section 4.3.2.

It should be noted that our proposed Reflective Attention

Module models the dependencies between pairs of words at

different time steps explicitly, taking into account the corre-

sponding hidden states. In contrast, LSTM memorizes the

historical sequence information by balancing the overall rel-

evance of all time steps instead of modeling the dependency

for each pair of words specifically.

3.2.2 Reflective Position Module.

It is often the case that many of the words have relatively

fixed positions in a sentence due to the syntactic structure

in natural language. For example, the numeral and subject

words, i.e. ‘a man’ or ‘a woman’, mostly appear at the be-

ginning of the sentence while the predicates tend to occupy

the middle position. So we propose the Reflective Position

Module by injecting the word position information during

training as a guidance for the sequence decoding model to

perceive its relative position or progress in the whole sen-

tence. When decoding the t-th word, its actual relative posi-

tion Itr and the predicted relative position Itp are calculated

as :

Itr =
t

n
, Itp = σ(Wlĥ

2

t ), (8)

where n is the length of the sentence, σ is the sigmoid func-

tion and Wl∈ R
1×Dh is the trainable relative position em-

bedding matrix, respectively. The reflective position mod-

ule shown in top left of Figure 2 aims to minimize the differ-

ence between Itr and Itp by designing a loss function, which

refines the attended hidden state ĥ
2

t mentioned in 3.2.1 by

enabling it to perceive more sequential information of its

relative position.

It is different from the popular position embedding meth-

ods [11, 40], which add the absolute position embedding to

the corresponding input features in each dimension. Our

Reflective Position Module models the relative position in-

formation individually in a supervised way. A key benefit of

this design is that it can avoid the potential inter-pollution

between the regular input feature and the position embed-

ding, and equip our model with a strong perception of rela-

tive position for each word in the caption. Thus, the syntac-

tic structure in natural language can be well preserved.

3.3. Training and Inference

Training. Two kinds of losses are utilized for optimizing

our RDN model. The first is the cross entropy loss in tradi-

tional captioning training, which is to minimize the negative

log likelihood:

Lxe = −logp(S∗|I) = −

n
∑

t=2

logp(s∗t |s
∗

1:t−1
), (9)
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where I is the given image, S∗ is the ground truth caption,

formula for calculating p(s∗t |s
∗

1:t−1
) is defined in equation

7 and s∗
0

is the start of the sentence.

The second loss is defined as the Position-Perceptive

Loss Lpos:

Lpos =
n
∑

t=1

∥

∥Itr − Itp
∥

∥

2

, (10)

where Itr and Itp are the actual relative position and pre-

dicted relative position defined in Equation 8 and Lpos is

designed to minimize the gap between them.

The objective function for optimizing our RDN is de-

fined as :

L = Lxe + λLpos. (11)

The trade-off parameter λ balances the contribution be-

tween the traditional caption loss in encoder-decoder frame-

work and the Position-Perceptive Loss.

Inference. During the inference stage, since the length

of the whole predicted sentence is unknown, the relative

position information is removed from the input. As the

discrepancy problem [22] between training and inference,

which means the previous ground truth captioning token is

not available for inference, we use the previously predicted

word as input instead of ground truth word as in [5, 45].

This method is called teacher forcing algorithm [43]. Also,

we adopt the popular beam search strategy which iteratively

selects the top-k best sentences at time step t as candidates

to generate the new top-k sentence at time t + 1 in our ex-

periment instead of greedy search.

4. Experiments

4.1. Datasets and Experimental Settings

COCO Dataset. COCO captions dataset [4] contains

82,783 images for training and 40,504 images for valida-

tion. Each image has five corresponding human-annotated

captions. Also, we adopt the ‘Karpathy’ splits setting [18],

which includes 113,287 training images, 5K validation im-

ages and 5K testing images for offline evaluation. For the

online server evaluation, the entire images and captions in

dataset is used for training. Following the text preprocess-

ing in [2], we convert all the captions to lower case and re-

move the less frequent words which occur less than 5 times,

obtaining a captioning vocabulary of 10,010 words.

Visual Genome Dataset. Visual Genome [19] is a large

dataset for modeling the interactions and relations between

objects within an image. The dataset consists of 108K im-

ages with densely annotated objects, attributes and pairwise

relations. Compared to [48], we only utilize the annotated

object and attribute data from the dataset to pretrain the

object-level encoder and discard the pairwise relation data.

We follow the same data split setting in [2] to include 98K

images for training, 5K images respectively for validation

and testing. After cleaning these annotated object and at-

tribute strings, we obtain a dataset including 400 attributes

and 1,600 objects classes to train our Faster R-CNN model.

Evaluation Metrics. To objectively evaluate the perfor-

mance of our captioning model, we use five widely ac-

cepted automatic evaluation metrics, including CIDEr [41],

SPICE [1], BLEU [31], METEOR [8] and ROUGE-L [24].

Implementation Details. We implement our RDN using

Caffe [16]. To train the object-level encoder, we use the

Faster R-CNN with ResNet-101 pre-trained for image clas-

sification on ImageNet [35] and further refine it on the

Visual Genome dataset. For each image, we set the IoU

thresholds for region proposal suppression and object pre-

diction to 0.7 and 0.3 respectively. For the remaining image

subregions, we set a filter threshold 0.2. We rank the left-

over boxes by their confidence scores from high to low and

choose no more than top 100 as the final feature represen-

tations. Each region with dimension number 2,048 is the

global average pooling result of the layer Res5c.

We set the word embedding size and the hidden size in

each LSTM layer to 1,000. The dimensions for attention

layers Attvis and Attref are set to 512 respectively. Dur-

ing training, the initial learning rate is set to 0.01 and the

polynomial decay strategy is adopted to decline the effec-

tive learning rate to zero by 70k iterations using a batch size

100. We tune the trade-off parameter λ on the ‘Karpathy’

validation split to obtain the best performance and finally

set it to 0.02. For data augmentation, we adopt it only dur-

ing the online test server submission to boost performance

by flipping the original image and randomly cropping 90%.

During decoding process, the beam search size is set to 5.

4.2. Ablation Study on Reflective Modules

To study the effects of Reflective Attention Module and

Reflective Position Module in our model, an ablation exper-

iment is designed to compare the performance with follow-

ing combinations: (1) Baseline: the baseline denotes the

RDN without Reflective Attention Module and Reflective

Position Module; (2) RDNpos: the RDN with the Reflective

Attention Module removed, with only position module re-

served, the number of attention layers in decoder is reduced

to one; (3) RDNref : the RDN with the Reflective Position

Module removed, cutting down the relative position infor-

mation input; (4) RDN: the complete RDN implementation.

In Table 1, it can be observed that both the Reflective

Position Module and Reflective Attention Module are im-

portant for our model and RDN improves the caption per-

formance over all the metrics compared to baseline. The

fact that RDNpos outperforms baseline model validates the

contribution of Reflective Position Module to enhance the

quality of decoding hidden states during caption genera-

tion. Also, by injecting the Reflective Attention Module,
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Model BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR ROUGE-L CIDEr SPICE

Baseline 77.0 61.3 47.2 36.1 26.8 56.1 113.2 20.1
RDNpos 77.4 61.6 47.5 36.3 27.0 56.5 114.3 20.4
RDNref 77.6 61.6 47.4 36.3 27.1 56.7 115.0 20.5
RDN 77.5 61.8 47.9 36.8 27.2 56.8 115.3 20.5

Table 1. Ablation study on COCO ‘Karpathy’ test split on single model. Our experiments show the contribution for reflective attention and

position module, respectively. Results are obtained with beam size 5 without CIDEr optimization. All value reported in percentage (%).

Model BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR ROUGE-L CIDEr SPICE

Review Net [47] - - - 29.0 23.7 - 88.6 -
LSTM-A3 [49] 73.5 56.6 42.9 32.4 25.5 53.9 99.8 18.5
Att2in [34] - - - 31.3 26.0 54.3 101.3 -
Adaptive [26] 74.2 58.0 43.9 33.2 26.6 - 108.5 -
Up-Down [2] 77.2 - - 36.2 27.0 56.4 113.5 20.3
RFNet [17] 76.4 60.4 46.6 35.8 27.4 56.5 112.5 20.5

RDN 77.5 61.8 47.9 36.8 27.2 56.8 115.3 20.5

Table 2. Performance comparison on MSCOCO ‘Karpathy’ test split on single model. All image captioning models trained without

optimizing CIDEr metric. (−) indicates the metric is not provided.

Model BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR ROUGE-L CIDEr SPICE

NIC [42] - - - 32.1 25.7 - 99.8 -
Att2in [34] - - - 32.8 26.7 55.1 106.5 -
Review Net [47] 76.7 60.9 47.3 36.6 27.4 56.8 113.4 20.3
RFNet [17] 77.4 61.6 47.9 37.0 27.9 57.3 116.3 20.8

RDN 77.6 62.2 48.6 37.8 27.5 57.4 117.3 20.6

Table 3. Performance comparison on MSCOCO ‘Karpathy’ test split on ensemble models trained with cross entropy loss. Our model is the

ensembling result of 6 single models initialized with different random seeds.

RDNref performs obviously better than baseline, which

shows the importance of model’s ability to capture long-

term dependency between words. In particular, with a suit-

able combination of the two modules, RDN achieves the

best result with CIDEr score 115.7, BLEU-4 score 37.0

and BLEU-3 score 47.9, yielding the improvement over our

baseline model by 2.0%, 2.2% and 1.5% respectively, which

is a considerable advancement over the benchmark. Com-

pared the baseline model with total 1.15B parameters, RDN

has only 0.84% more in model size, which is neglectable.

4.3. Performance Comparison and Analysis

We compare our proposed RDN with other state-of-the-

art image captioning methods considering different aspects

both in offline and online situation. Latest and representa-

tive works include: (1) Adaptive [26] which proposes the

adaptive attention through designing a visual sentinel gate

for captioning model to decide whether to attend to the im-

age feature or just rely on the sequential language model,

(2) LSTM-A3 [49] which incorporates the high level se-

mantic attribute information to the encoder-decoder model,

(3) Up-Down [2] which introduces the bottom-up and top-

down attention mechanism to enable attention calculated at

the level of objects or salient subregions and (4) RFNet [17]

which uses multiple kinds of CNNs to extract complemen-

tary image feature and generate a more informative repre-

sentation for the decoder.

For fair comparison, our model and the baseline use stan-

dard ResNet-101 as basic architecture for encoder and all

the reported results on test portions of MSCOCO ‘Karpa-

thy’ splits are trained without additional CIDEr optimiza-

tion [34]. GCN-LSTM [48] is not included because it uses

the additional densely annotated pair-wise relation data be-

tween objects to pretrain semantic relation detector and

build convolutional graphs. We only adopt CIDEr optimiza-

tion strategy for the online server submission, since directly

optimizing the CIDEr metric has little effect on perceived

caption quality during human evaluation [25] and small dif-

ference in its optimization implementation would influence

the caption performance a lot.

4.3.1 Quantitative Analysis

Offline Evaluation. For offline evaluation, we com-

pare performance of different models on ‘Karparthy’ split

dataset both in single and ensemble model situations. In Ta-

ble 2, it can be observed that our single RDN achieves the

best results among all existing captioning methods across

the six evaluation metrics including all the BLEU entries,

ROUGE-L and CIDEr, performs on par with RFNet in

SPICE and is slightly inferior to it in METEOR. Different

from the previous captioning models (Up-Down, RFNet,

Review Net, Adaptive, etc.) that boost performance through
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Model
BLEU-1 BLEU-4 METEOR ROUGE-L CIDEr SPICE

c5 c40 c5 c40 c5 c40 c5 c40 c5 c40 c5 c40

NIC [42] 71.3 89.5 30.9 58.7 25.4 34.6 53.0 68.2 94.3 94.6 18.2 63.6
Review Net [47] 72.0 90.0 31.3 59.7 25.6 34.7 53.3 68.6 96.5 96.9 18.5 64.9
LSTM-A3 [49] 78.7 93.7 35.6 65.2 27.0 35.4 56.4 70.5 116.0 118.0 - -
Adaptive [26] 74.8 92.0 33.6 63.7 26.4 35.9 55.0 70.5 104.2 105.9 19.7 67.3
Att2all [34] 78.1 93.7 35.2 64.5 27.0 35.5 56.3 70.7 114.7 116.7 - -
Up-Down [2] 80.22 95.22 36.93 68.53 27.63 36.73 57.13 72.43 117.93 120.53 - -
RFNet [17] 80.41 95.03 38.01 69.22 28.21 37.22 58.21 73.12 122.91 125.12 - -

RDN 80.22 95.31 37.32 69.51 28.12 37.81 57.42 73.31 121.22 125.21 - -

Table 4. Performance comparison of published image captioning models on COCO Leaderboard. RDN achieves superior performance

when comparing to other state-of-the-art methods. Top-3 rankings are indicated by red footnote for each metric.
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Figure 3. Performance comparison between our RDN model and

Up-Down [2] on hard Image Captioning as a function of aver-

age length of annotations (ground truth captions). We rank the

‘Karpathy’ test set according to their average length of annota-

tions in descending order and extract four different size of subsets.

Smaller subset corresponds to averagely longer annotations and

harder captioning. It reveals that our model exhibits more superi-

ority over Up-Down in harder cases.

extracting more indicative and compact visual representa-

tion, the enhancement of our captioning model only at-

tributes to a better reasoning and inference ability of the

decoder directly on the target side. Moreover, from the

Table 3, we can see that our ensembled RDN outperforms

other ensemble models in most of evaluation metrics, with

the highest CIDEr score 117.3, and performs only inferiorly

to RFNet in METEOR and SPICE entry. RDN is the ensem-

bling result of 6 single models with different random seed

initialization while RFNet is composed of 4 RFNets with a

total of 20 groups of different image representations.

Online Evaluation on COCO Testing Server. We also

compare our model with the published state-of-the-art cap-

tioning systems on COCO Testing Server with 5(c5) and

40(c40) reference sentences as shown in Table 4. Using the

ensemble of 9 CIDEr optimized models, our RDN achieves

leading performance over all metrics while performing on

par with RFNet [17]. Surprisingly, RFNet has a much bet-

ter performance in online evaluation compared to the of-

fline case, in which it performs much poorer than our model

(even poorer than Up-Down [2] in some cases) shown in

Table 2. Since the code of RFNet is not released, it is

hard to investigate the inconsistence. Nevertheless, our

RDN achieves the superior performance in all the c40 en-

tries. Compared to c5, c40 has far more reference sentences

and existing evaluation experiments show it achieves higher

correlation with human judgement [4, 41]. Moreover, our

model is more simple and elegant with only one encoder-

decoder in single model compared to RFNet, which uti-

lizes multiple encoders (ResNet, DenseNet [15], Inception-

V3 [38] , Inception-V4, and Inception-ResNet-V2 [37]) to

extract 5 groups of features and includes time-consuming

feature fusion steps to produce the final thought vectors.

Besides, our RDN boosts captioning performance by op-

timizing the decoding stage while RFNet mainly focuses on

improving the encoder. Thus, it is a promising extension

to apply the encoding mechanisms of RFNet to our RDN.

Compared to Up-Down [2], which uses traditional LSTM

and object-level encoder, the CIDER-c40, CIDER-c5 and

METEOR-c40 are improved by 3.9%, 2.7% and 2.9%.

Evaluation on hard Image Captioning. We further inves-

tigate the effect of the average length of annotations (ground

truth captions) on the captioning performance, since gener-

ally the images with averagely longer annotations contain

more complex scenes and thus are harder for captioning.

Specifically, we rank the whole ‘Karparthy’ testset (5000

images) according to their average length of annotations in

descending order and extract four different size of subsets

(all set, top-1000, top-500, top-300 respectively). Smaller

subset corresponds to averagely longer annotations and im-

plies harder image captioning. Figure 3 shows the compar-

ison between our RDN and Up-Down [2] (main difference

of the two models is that Up-Down uses traditional LSTM).

It reveals that the performance of both models are decreas-

ing with the increasing average length of annotations, which

reflects that the captioning is getting harder. However, our

model exhibits more superiority over Up-Down in harder

cases, which in turn validates the ability of our RDN to

capture the long-term dependencies within captions. We

also provide one such comparison between our RDN and

Att2in [34] on hard captioning in the supplementary file.
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Generated sentence Reflective weight visualization

Basis decoder: a train that is sitting on 

the tracks

Ours: a train that is sitting on the tracks 

at a station

Basis decoder: a group of boats parked 

next to each other

Ours: a group of boats docked in front 

of  trees and buildings in the water

Basis decoder: a bedroom with a bed

and a desk

Ours:  a bedroom with a bed and a 

desk with a lamp

Basis decoder: a group of people are 

standing in the water

Ours: a group of people on a beach 

with some surfboards

a train that is sitting on the tracks at a station

a group of  boats docked in front of trees and buildings in the water

a bedroom with a bed and a desk with a lamp

a group of people on a beach with some surfboards

Figure 4. Examples of captions generated by our RDN compared to the basis decoder (using traditional LSTM) and their reflective attention

weight distribution over the past generated hidden states when predicting the key words highlighted in green. The thicker line indicates a

relatively larger weight and the red line means the largest contribution. More examples are provided in the supplementary material.

4.3.2 Qualitative Analysis

To investigate the physical interpretability of RDN model’s

improvement, some qualitative comparisons of captioning

results are shown in Figure 4. Compared to basis decoder,

our RDN is able to generate more detailed and discrimina-

tive descriptions for images. Take the first case in Figure 4

as an example, the basis decoder can provide a general and

reasonable caption for the image. However, it cannot rec-

ognize the word ‘station’ which actually exists in the image

while our model successfully infers it based on the previ-

ously generated words, especially the closely related words

‘train’,‘tracks’ and ‘sitting’. For the reflective weight vi-

sualization, the generated words with the largest contribu-

tion to the predicting word are usually strong related in vo-

cabulary coherence, such as the correlations between words

“boat” and “water”, “beach” and “surfboards”. We show

additional results in supplementary material.

In Figure 5, compared to other captioning models, our

RDN is able to predict the word and its relative position

in the sentence simultaneously during caption generation.

The predicted relative position in blue for each word is

highly close to its actual relative position value in sentence,

which demonstrates a good position-perceptive ability of

our model to capture the syntactic structure of a sentence.

5. Conclusion

We have presented a novel architecture, Reflective De-

coding Network (RDN), which explicitly explores the co-

GT: an older woman is talking 

on a cell phone

RDN: an older lady sitting in a

chair talking on a cell phone 

10%				15%					23%								32%				41%	48%			57%							65%					70%		78%		89%				98%		

an  older  lady  sitting  in  a  chair  talking on  a  cell  phone

8%					17%						25%								33%				42%	50%			58%							67%					75%		83%		92%			100%		

Predict:

Actual:

Figure 5. Top: Ground-truth caption and the example caption gen-

erated by our RDN model. Bottom: The predicted relative po-

sition value (shown in blue) from the Reflective Position Module

and the actual relative position for each word in the sentence. All

value reported in integer percentage value (%).

herence between words in the captioning sentence and en-

hances the long-term sequence inference ability of LSTM.

Particularly, the attention mechanism applied in both visual

and textual domain and the proposed position-perceptive

scheme are to maximize the reference information available

for captioning model. We also show how the learned at-

tention in textual domain can provide interpretability dur-

ing the captioning generation process from a new perspec-

tive. Extensive experiments conducted on standard and hard

COCO image captioning dataset with superior performance

validate the effectiveness of our proposal. For future work,

we are interested in extending our model to source code cap-

tioning and text summarization.
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