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Abstract

Understanding where people are looking is an infor-

mative social cue. In this work, we present Gaze360, a

large-scale gaze-tracking dataset and method for robust 3D

gaze estimation in unconstrained images. Our dataset con-

sists of 238 subjects in indoor and outdoor environments

with labelled 3D gaze across a wide range of head poses

and distances. It is the largest publicly available dataset

of its kind by both subject and variety, made possible by

a simple and efficient collection method. Our proposed

3D gaze model extends existing models to include tempo-

ral information and to directly output an estimate of gaze

uncertainty. We demonstrate the benefits of our model

via an ablation study, and show its generalization perfor-

mance via a cross-dataset evaluation against other recent

gaze benchmark datasets. We furthermore propose a sim-

ple self-supervised approach to improve cross-dataset do-

main adaptation. Finally, we demonstrate an application

of our model for estimating customer attention in a super-

market setting. Our dataset and models are available at

http://gaze360.csail.mit.edu.

1. Introduction

In order to better understand humans – their desires, in-

tents and states of mind – one must be able to observe

and perceive certain behavioral cues. Eye gaze direction

is one such cue: it is a strong form of non-verbal commu-

nication, signalling engagement, interest and attention dur-

ing social interactions [1]. Detecting and following where

another person is looking is a skill developed early on in

a child’s life – four-month-old infants are known to use

eye gaze cuing to help visually process objects, for exam-

ple [21]. Just as a parent’s gaze can help to guide a child’s

attention, human gaze fixations have also been found to be

useful in helping machines to learn or interact in various

contexts [18, 22].

Figure 1. Overview: we introduce a novel dataset and method for

estimating 3D gaze in-the-wild. This figure illustrates our model’s

output on unseen video gathered from YouTube, demonstrating its

robustness to diverse, physically unconstrained scenes.

In recent years, while methods for related human model-

ing problems such as 2D body pose and face tracking have

achieved impressive success by leveraging the representa-

tional power of deep convolutional neural networks along

with very large annotated datasets [2, 6, 9, 14, 26], meth-

ods for gaze estimation have not yet reached such levels

of performance. This is primarily due to the lack of suffi-

ciently large and diverse annotated training data for the task.

Collecting precise and highly varied gaze data with ground

truth, particularly outside of the lab, is a challenging task.

In this work, we introduce an approach to help tackle this

task and narrow the perceived performance gap:

• we first describe a methodology to efficiently collect

annotated 3D gaze data in arbitrary environments;

• we use our method to acquire the largest 3D gaze
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dataset in the literature by subject and variety, captur-

ing video of 238 subjects in indoor and outdoor condi-

tions, and we carefully evaluate the error and charac-

teristics of the dataset;

• we train a variety of 3D gaze estimation models on

the dataset before converging on a final model which

uniquely takes a multi-frame input (to help resolve sin-

gle frame ambiguities) and employs a pinball regres-

sion loss for error quantile regression to provide an es-

timate of gaze uncertainty;

• we demonstrate the usefulness of our dataset versus

existing datasets by means of a cross-dataset model

performance comparison (training on one dataset and

testing on another), and introduce a simple method for

self-supervised domain adaptation of gaze models;

• finally we demonstrate how our Gaze360 model can

be applied to real-world use cases, such as estimating

a customer’s focus of attention in a supermarket.

2. Related Work

Gaze datasets. A summary of comparable gaze datasets

is shown in Table 1. While many gaze-related datasets have

been published in recent years [10, 12, 16, 17, 20, 23, 27,

30, 31], they are mostly geared towards physically con-

strained applications such as desktop or smartphone gaze

tracking. Typically, these datasets are captured using a static

recording setup [17, 20, 27, 34] or a camera integrated in

a smartphone [10, 12, 28]. The static approach allows for

more control and higher accuracy but can lack the diver-

sity in illumination and motion blur useful for more general

applications. Smartphone-based solutions overcome these

flaws and have the advantage of straightforward scaling via

crowd-sourcing to increase the subject variety. However,

they lack head pose and gaze variability due to the col-

location of the device’s camera and screen, as well as the

screen’s relatively narrow area for projecting targets.

To try to capture the nature of human gaze in arbitrary

natural scenes, it is important not to overly constrain the

subject’s pose, allowing for coverage over the full gamut

of head and eyeball orientations in relation to the camera.

While some existing datasets have relatively small head

pose and gaze variation [16, 17, 20], others do provide a

wider range [12, 27, 34] but are still restricted to primarily

frontal rather than oblique views. While it is true that the

eyes become increasingly occluded at larger angles of head

yaw, we wish to capture such cases so that our model can

be used in less constrained settings.

In one of the most comprehensive datasets from

Zhu and Deng [34], the authors increased acquisition speed

and viewpont variety by using an array of cameras in differ-

ent poses. However, the setup was restricted to collecting

data in the lab environment. While our approach also uses

a multi-camera setup, our goal was to quickly acquire many

Table 1. A comparison of popular gaze datasets. The type and

range of gaze labels, number of subjects and completeness of im-

age data publicly available. Full stands for full face images, Eyes

denotes crops of eye regions and N/A means that the dataset was

not available for use. Asterisks indicate datasets containing par-

tially occluded face images.

Dataset Gaze Range # Subj. Image Outdoor

TabletGaze [11] 2D ∼80� 51 Eyes No

iTracker [12] 2D ∼100� 1,450 Full Partially

UT MV [23] 3D ∼50� 50 Eyes No

Columbia [20] 3D 60� 56 Full* No

RT-GENE [4] 3D 75� 15 Full* No

MPIIFaceGaze [31] 3D ∼80� 15 Full No

EYEDIAP [17] 3D 90� 16 Full No

Weidenb. [27] 3D 180� 20 N/A No

Zhu [34] 3D 180� 200 N/A No

Gaze360 [ours] 3D 360� 238 Full Yes

subjects at once, using a free-moving rather than fixed tar-

get that allowed us to capture the full range of gaze direc-

tions, as described in Fig. 4 and Section 4. Moreover, as

our capture setup is mobile, this allowed us to efficiently

collect data from a broad demographic in more varied natu-

ral lighting environments, including a wider range of scale

variation and image blur from subject motion during cap-

ture. This more closely approximates the domains of sys-

tems such as interactive robots or surveillance/monitoring

cameras which might benefit from our gaze tracking model.

A recent work which also addresses gaze estimation in

natural settings with larger camera-subject distances and

less constrained subject motion, is that of [4]. Their ap-

proach to dataset generation was target-free, but required

subjects to wear gaze-tracking glasses, used motion capture

cameras to recover head pose, and needed a complicated se-

mantic in-painting step to remove the gaze tracking glasses

from the target image. In comparison, our approach is rel-

atively simple, allowing us to scale to many more subjects

(238 versus 15) and lighting conditions.

Geometric gaze models: Geometric models often use

corneal reflections of near infra-red light sources [8, 29, 35]

or other light sources with known geometry [10] to fit a

model of the eyeball from which gaze can be inferred. Since

these methods rely on a physical model, they generalize

quite easily to new subjects with little or no training data,

but at the cost of higher sensitivity to input noise such as

partial occlusions or lighting interference. Since they also

rely on a fixed light source, they are not feasible in uncon-

strained settings such as ours.

Appearance-based gaze models: Appearance-based

methods learn a more direct image-to-gaze mapping, using

large datasets of annotated eye or face images. Support vec-

tor regression [28], random forests [11] and most recently

deep learning [4, 12, 30, 31, 34] have been applied in this

way. A preprocessing step of eye or face detection is often

required [12, 30]. Our model does not rely on eye or face
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Figure 2. Acquisition setup. Our setup allows us to efficiently

collect large volumes of diverse, annotated data for 3D gaze es-

timation. We create a dataset with 238 subjects in a wide range

of lighting conditions (both indoor and outdoor) and distances and

angles to subjects.

detectors, which enables it to achieve higher robustness in

unconstrained settings when the required features become

partially occluded. Dependency between gaze and head

pose can either be handled by training implicitly [12, 30, 31]

or modeled explicitly with separate branches [34].

Gaze estimation becomes more difficult under partial oc-

clusion of eyes. Even at 90 − 135� head yaw a signifi-

cant part of one eyeball is often still visible and informa-

tive for gaze estimation (see Supplemental). Existing meth-

ods [12, 32] do not deal with these cases and typically as-

sume that the subject is facing the camera. However, such

models do not generalize well to challenging applications

such as in robotics or surveillance. Unlike previous ap-

proaches, our model is designed to cope with such situa-

tions by always providing best effort prediction along with

an appropriate confidence measure. We learn to predict un-

certainty via quantile regression [15] learned using a pinball

loss. Our model outputs an estimated gaze direction even

with fully occluded eyes by relying on visible head features,

while at the same time informing about the limited accuracy

of its prediction by outputting a correspondingly higher un-

certainty value. In addition, unlike previous models, we in-

vestigate the use of additional frames to improve gaze esti-

mates through the aggregation of image evidence over time.

This increases the chance of capturing relevant features that

may only be visible in few frames. We show how using mo-

tion significantly helps the system performance over a wide

range of view angles.

3. Dataset collection method

There is currently no dataset suitable to learn a model

capable of robustly estimating 3D gaze in-the-wild. Pre-

vious efforts to record large-scale datasets relied on care-

ful acquisition setups with precisely measured subject and

gaze target positioning [17, 23, 34]. Such setups are nearly

impossible to move to different locations, can only record

single subjects at a time and require constant verification

of the desired gaze from the subject which makes the col-

lection process inflexible and very slow. This is the reason

why all existing datasets with 3D gaze labels are recorded

in indoor environments and frequently use few subjects. As

evidenced by the success of 2D body and face tracking mod-

els in the wild [2], to improve in-the-wild robustness it is

important to collect data with a large number of different

subjects, large variation in natural illumination and a wide

range of head poses and gaze directions.

3.1. Setup

To tackle these issues we opted for a setup built around

a Ladybug5 360� panoramic camera (Fig. 2) placed on a

tripod in the center of the scene, and a large moving rigid

target board marked with an AprilTag [25] and a cross

on which subjects were instructed to continuously fixate.

This allowed data from multiple subjects to be recorded

simultaneously. The Ladybug5 consists of five synchro-

nized and overlapping 5 megapixel camera units each with

120� horizontal field of view, plus one additional upward-

facing camera which we do not use. We store each frame

as 3382 × 4096 pixels image after fish-eye lens rectifica-

tion. The face of a subject standing one meter away from

the camera could be fully captured in at least one of the

views. The camera is factory-calibrated and we rectified all

images after capture to remove barrel distortion. The com-

pactness of the setup, consisting of a single camera unit on a

tripod together with a laptop and portable power source, al-

lowed for easy portability and deployment for efficient data

collection in many environments.

Subject positioning. To build the dataset, we use Al-

phaPose [3] to detect the position of head keypoints and

feet of subjects in rectified frames from each camera unit

independently. For very close subjects whose feet are be-

yond the camera field of view, we use the average body

proportions of standing subjects to estimate their feet po-

sition from their hip position. The Ladybug camera pro-

vides a 3D ray in a global Ladybug Cartesian coordinate

system L = [Lx,Ly,Lz] for every image pixel. We use it

to derive the position of feet and eyes in spherical coordi-

nates. The remaining unknown variable is the distance from

Ladybug origin to eyes, d. We exploit a measured camera

height above the horizontal ground plane that the camera

and all subjects stand on. Although this limits our training

data collection to flat surfaces, it is not restrictive at test-

time. For further details on the trigonometry, please consult

the supplementary materials.

Target positioning: Our target consists of a white board

with a large AprilTag [25] on one side and a smaller cross

beside it on both sides (Fig. 2). The cross serves as a gaze

fixation target for the study subjects while the tag is used
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Figure 3. Dataset collection protocol: (a) the top view of the

scene and target board trajectory showing full coverage around the

subjects; (b) the image of the scene from the camera (stitched for

illustration only); (c) the side view of the scene and target board

trajectory showing large induced variation in pitch to the target.

for tracking of the board in 3D space. We use the original

AprilTag library to detect the marker in each of the camera

views and estimate its 3D pose using the known camera cal-

ibration parameters and marker size. We then use the pose

and known board geometry to find the 3D location of the

target cross pt.

Gaze direction: We compute the gaze vector in the

Ladybug coordinate system as a simple difference gL =
pt − pe. However, such a form would change with rotation

of the camera and its coordinate system L. To remedy this,

we express the gaze in the observing camera’s Cartesian eye

coordinate system E = [Ex,Ey,Ez]. E is defined so that

the origin is pe, Ez has the same direction as gL and Ex

lies in a plane defined by Lx and Ly (no roll). We can then

convert the gaze vector to the eye coordinate system by:

g = E ·
gL

||gL||2
. (1)

This definition of gaze direction guarantees that g =
[0, 0,−1] when the subject looks directly at the camera, in-

dependently of the subject’s position, and in general allows

to express the gaze orientation from the local appearance of

the head without the need for any global context.

3.2. Acquisition procedure

We acquired an institution review board approval for our

dataset collection experiment. Subjects were instructed to

stand around a camera at a distance of between 1− 3m (av-

erage 2.2m) and continuously track the target cross on the

side of the marker board visible to them (Fig. 3). For safety,

subjects were instructed to stay approximately in their start-

ing locations as they would not be able to both track the

target and see possible obstacles while moving.

The marker board was manipulated by one of the inves-

tigators who carried it once in a large loop around both the

subjects and the camera (2 − 5m radius) and then in be-

tween the camera and subjects (Fig. 3a). While in motion,

the target board was simultaneously moved up and down

(Fig. 3c) to elicit gaze pitch variation. The loop part of the

trajectory allowed to cover all possible gaze directions. The

inner path was added to sample more extreme gaze pitch

variation which can only be achieved from a closer distance

due to limitations on the vertical position of the marker in

the scene. We ensured that the marker board was always

positioned to face the camera with the AprilTag as fronto-

parallel as possible to reduce pose estimation error (Fig. 3b).

In order to capture a wide range of relative eyeball and

head poses, we alternated between “move” and “freeze” in-

structions during each capture. While in the “move” state,

subjects were allowed to naturally orient their head and

body pose to help track the target. When the “freeze” in-

struction was issued, subjects were only allowed to move

their eyes while maintaining a fixed head pose if possible.

4. Gaze360 dataset summary

Our dataset is unique for its combination of 3D gaze an-

notations, wide range of gaze and head poses, variety of

indoor and outdoor capture environments and diversity of

subjects. It is only surpassed in number of subjects by the

GazeCapture [12] dataset (1,450 subjects), which is 2D and

covers only a narrow gaze range for a limited use case. See

Table 1 for a dataset comparison. Notably, our dataset is

also the first to provide these qualities for short continuous

videos (8 Hz).

Summary statistics. We collected 238 subjects in 5 in-

door (53 subjects) and 2 outdoor (185 subjects) locations

over 9 recording sessions. This is an acquisition speed that

is unmatched by other on-site techniques and can only be

compared to crowd-sourced approaches which, however,

cannot compete in terms of experimental control. In total

we acquired 129K training, 17K validation and 26K test

images with gaze annotation. For privacy reasons we did

not survey additional data about our subjects, but a visual

inspection shows a wide distribution of subject ages, eth-

nicities and genders (58 % female, 42 % male). Please refer

to Fig. 5 for examples.

Data distribution. We plot the angular distribution of the

gaze labels covered by our and several other datasets using

the Mollweide projection in Fig. 4. This illustrates how our

dataset covers the entire horizontal range of 360�. While

a portion of these gaze orientations correspond to fully oc-

cluded eyes (facing away from the camera), our dataset al-

lows for gaze estimation up to the limit of eye visibility.

This limit can, in certain cases, correspond to gaze yaws of

approximately +−140� (where the head pose is at 90� such

that one eye remains visible, and that eye is a further 50� ro-

tated). The vertical range is limited by the achievable eleva-

tion of the marker. Sampling is less dense in the rear region

(around the left and right borders of the map). This can be

explained by occlusion of the target board by the subjects.
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Figure 4. Dataset statistics. Joint distributions of the gaze yaw

and pitch for TabletGaze [10], MPIIFaceGaze [31], iTracker [12]

and our Gaze360 dataset. The Mollweide projection used to visu-

alize the full unit sphere surface. All intensities are logarithmic.

Figure 5. Gaze360 dataset samples: showing the diversity in en-

vironment, illumination, age, sex, ethnicity, head pose and gaze

direction. Top: full body crops; bottom: closer-up head crops.

Yellow arrows show measured ground-truth gaze.

Error characterization. In order to validate the accuracy

of our gaze annotations we conducted a control experiment.

We followed the standard acquisition procedure with our

360� camera and a single participant at a time wearing an

additional front-facing test camera mounted above the right

eye. We measured the 3D gaze in the test camera using the

standard AprilTag based procedure and the known origin

coinciding with the camera. Additional AprilTags in the

background were used to register both cameras. We mea-

sured the mean difference between both gaze labels to be

2.9� over three recordings of two subjects. This is well

within the error of appearance-based eye tracking at dis-

tance, validating our acquisition procedure as a means of

collecting an annotated 3D gaze dataset.

5. Gaze360 model

Gaze is a naturally continuous signal. Gaze fixations

and transitions yield a sequence of gaze directions. To ex-

ploit this, we propose a video-based gaze-tracking model

t+3

Backbone

LSTM

t+2t+1tt-1t-2t-3

Gaze direction Quantile

LSTM LSTM LSTM LSTM LSTM LSTM

Fully Connected Layer

Backbone Backbone Backbone Backbone Backbone Backbone

LSTM LSTM LSTM LSTM LSTM LSTM LSTM

Figure 6. Gaze360 model architecture. The model receives mul-

tiple frames of input which are passed through a backbone net-

work. The output for each frame is fed to a bidirectional LSTM

to produce the compact representation which is used to make the

final prediction of gaze direction and quantile regression. We use

a 7-frame input window centered around the target frame.

using bidirectional Long Short-Term Memory capsules

(LSTM) [5], which provide a means of modeling sequences

where the output for one element is dependent on both past

and future inputs. In this paper, we utilize sequences of

7 frames to predict the gaze of the central frame. Note

that other sequence lengths including a single central frame

alone are also possible.

Fig. 6 illustrates the architecture of the Gaze360 model.

A head crop from each frame is individually processed by a

convolutional neural network (backbone), which produces

high-level features with dimensionality 256. These features

are fed to bidirectional LSTMs with two layers which digest

the sequence within forward and backward vectors. Finally,

these vectors are concatenated and passed through a fully

connected layer to produce two outputs: the gaze prediction

and an error quantile estimation.

The gaze prediction output regresses the angle of the

gaze relative to the camera view. In previous work, 3D

gaze was predicted as a unit gaze vector [17, 34] or as its

spherical coordinates [23, 31]. We use spherical coordi-

nates which we believe to be more naturally interpretable in

this context. We define the spherical coordinates such that

the pole singularities correspond to strictly vertical gaze ori-

ented either up or down, which are very rare directions.

We use an ImageNet-pretrained ResNet-18 [7] as the

backbone network. All the models were trained in PyTorch

using the Adam optimizer [13] with learning rate 10�4.

5.1. Error quantile estimation

To the best of our knowledge, all existing research ap-

plying neural networks to the task of gaze estimation do not

consider error bounds. Error bounds are useful when esti-

mating gaze in unconstrained environments, because preci-

sion is likely to degrade when the eye is viewed from a side-

ways angle, or when one or more eyes are partially obscured
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(e.g. by glasses frames). In a classification setting, softmax

outputs are often used as a proxy for confidence. However,

for regression this is not possible, as the magnitude of the

output corresponds directly to the predicted property.

To model error bounds, we use a pinball loss func-

tion [15] to predict error quantiles. We use one single net-

work to predict both the mean value and the 10% and 90%
quantile. The effect of this is that for a given image, we es-

timate through a single forward pass both the expected gaze

direction and a cone of error within which the ground truth

should lie 80% of the time. We assume that the distribu-

tion is isotropic in our spherical coordinate system. This

assumption is not strictly true, especially for large pitch an-

gles due to the space distortion around pole singularities.

However, for most of the observed gaze directions (Fig. 4)

it is a reasonable approximation to reduce dimensionality

and simplify the interpretation of the result.

The output of our network is f(I) = (θ,φ,σ), where

(θ,φ) is the expected gaze direction in spherical coordi-

nates, for which we already have a corresponding ground

truth gaze vector in the eye coordinate system g (see

Sec. 3.1) as θ = − arctan gx
gz

and φ = arcsin gy . The third

parameter, σ, corresponds to the offset from the expected

gaze such that θ + σ and φ + σ are the 90% quantiles of

their distributions while θ−σ and φ−σ are 10% quantiles.

Finally, we compute the pinball loss of this output. This

will naturally force φ and θ to converge to their ground truth

values and σ to the quantile threshold. If y = (θgt,φgt), the

loss Lτ for the quantile τ and the angle θ can be written as:

q̂τ =

(

θgt − (θ − σ), for τ ≤ 0.5

θgt − (θ + σ), otherwise
(2)

Lτ (θ,σ, θgt) = max(τ q̂τ ,−(1− τ)q̂τ ). (3)

A similar formulation is used for the angle φ. We average

the losses for both angles and quantiles τ = 0.1 and τ =
0.9. Thus, σ is a measure of the difference between the 10%
and 90% quantiles and the expected value.

5.2. Adapting to unseen domains

Despite the variety in the Gaze360 dataset, some real-

world applications may benefit from a closer adaptation of

the model to the target domain. For this reason, we intro-

duce a self-supervised method for domain adaptation.

Our general model is fine-tuned using a mix of the la-

beled Gaze360 images and unlabeled images from the new

domain. Inspired by [24], we introduce a discriminator

which tries to identify the source domain of the image fea-

tures as a binary classification task. The features are the

output of the backbone network. The discriminator loss LD

is added to the original supervised loss Lτ for those images

where ground truth is available.

In addition, we added a further loss to exploit the left-

right symmetry of the gaze-estimation task as a means of

encouraging model output consistency on unlabeled data.

We use the model to compute the gaze of the original and

horizontally flipped image, and the pinball loss LS to min-

imize the angular difference between the prediction from

the first input and horizontally mirrored prediction from the

second input. While this loss by itself can lead to collapse

to a gaze prediction along the line of symmetry, our ob-

servations in Sec. 6.2 show that this helps when used as a

regularizer to improve performance in an unseen target do-

main. Altogether we minimize L = α · Lτ + LD + β · LS

where α = 60 and β = 3 in our experiments.

6. Experimental Analysis

6.1. Model evaluation

In this section, we compare several approaches using

the Gaze360 dataset. We compared the following methods:

Mean - uses the mean gaze of the training set for all predic-

tions; Deep Head Pose - a deep network based head pose

estimator by Ruiz et al. [19]; Static - the backbone model,

ResNet-18, and two final layers to compute the prediction;

TRN - a version of Temporal Relation Network [33] where

the features of frames at fixed windows around time t are

concatenated before averaging the predictions of the tempo-

ral windows; LSTM - refers to the Gaze360 architecture.

For each of the three architectures introduced above, we

report accuracy of different baselines for uncertainty es-

timation: MSE - uses the mean squared error to regress

only the spherical angles of gaze without uncertainty;

MSE+Drop - using the MSE model, the uncertainty is es-

timated by 5 forward passes for each input while randomly

dropping neurons in the last layer and computing the vari-

ance of the output; Crop augmentation - 5 random head

crops are sequentially evaluated to estimate uncertainty us-

ing the variance of the 5 predictions of the MSE-trained

model; and Pinball Loss - gaze direction and error bounds

are jointly estimated using the pinball loss.

The angular errors in Table 2 are provided separately for

the entire test set (All 360�) and for samples where the sub-

ject is looking within 90� (Front 180�) and 20� (Front fac-

ing) of the camera direction. We also report the Spearman’s

rank correlation between the error quantile estimate and the

actual error, which is a metric for how well the predicted

error bounds estimate the actual error.

The results confirm that eye-free Mean predictions as

well as Head pose are insufficient to predict the rich varia-

tion of eye movement in our dataset. All of our gaze models

outperform these simple baselines. We also observe that,

under the same conditions, the error is generally lowest for

the model using Pinball loss. The same trend can be seen

for the correlation between the predicted uncertainty and

actual prediction error. Additionally, only a single forward

pass is required for the prediction. Hence, we chose the
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Figure 7. Test set examples: ground truth gaze (yellow) and

Gaze360 predictions (red) are shown for unseen test subjects. The

bars denote actual (yellow) and predicted (red) errors in degrees.

The inset shows a top-down view of the gaze estimates and the

predicted error versus ground truth. The bottom row shows sam-

ple failure cases where the model was overconfident.

Table 2. Performance comparison on Gaze360 dataset. The ta-

ble below reports the mean angular errors for various models and

benchmarks on the Gaze360 test data. The last column shows the

correlation between the actual error and the predicted uncertainty.

Model
Uncert.

Loss

All

360�
Front

180�
Front

Facing

Uncert.

Corr.

Mean - 59.0 40.5 19.0 -

Deep HP - 49.3 30.7 22.7 -

MSE Static No 15.8 13.7 13.4 -

MSE TRN No 14.3 11.8 11.8 -

MSE LSTM No 14.1 12.1 11.6 -

MSE+Drop Static No 15.8 13.7 13.4 0.24

MSE+Drop TRN No 14.3 11.8 11.8 0.31

MSE+Drop LSTM No 14.1 12.1 11.6 0.31

Crop Aug. Static No 16.0 13.2 12.6 0.37

Crop Aug. TRN No 14.2 11.5 11.4 0.39

Crop Aug. LSTM No 14.1 11.6 11.2 0.37

PinBall Static Yes 15.6 13.4 13.2 0.42

PinBall TRN Yes 14.1 11.7 11.6 0.46

Pinball LSTM

(i.e., Gaze360)
Yes 13.5 11.4 11.1 0.45

Pinball loss as our recommended approach.

Switching from a single-frame static model to a temporal

model also benefits the gaze prediction accuracy substan-

tially. We conclude that although the performance of TRN

and LSTM is similar, we recommend the Pinball LSTM

for its slightly better results in our metric and straightfor-

ward adaptation to use a different number of input frames.
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Figure 8. Error measured on Gaze360 dataset using the Pin-

ball models. The full lines show prediction error, the dashed lines

show predicted uncertainty.

In Fig. 8 we present the prediction error of the mod-

els using Pinball loss as a function of gaze yaw angle.

As expected, accuracy falls with increasing gaze yaw an-

gle. Unlike traditional eye trackers, our model smoothly

transitions into head pose estimation (between head yaws

of 90-150�) to provide a best guess of gaze even for rear

views. This is accompanied by a higher associated uncer-

tainty (dashed lines). Although the error for frontal views

is generally larger than errors reported on existing high-

resolution datasets, we next show that this is due to the chal-

lenging properties of Gaze360 which allow models trained

on it to transfer better to physically unconstrained images.

In Fig. 7 we show sample results on our test data. The

angular error denoted by the yellow bar intuitively grows as

the eyes become smaller due to distance or occluded due to

head pose variation. Although the prediction error for away-

looking poses is on average large, the uncertainty measure

provides a reasonable prediction of this behavior.

6.2. Cross-dataset evaluation

We evaluate the value of the Gaze360 dataset for gaze

estimation in the wild by training the Pinball Static model

using multiple pre-existing 3D gaze datasets and measur-

ing cross-dataset test error. The comparison datasets we

use are: Columbia [20] - high-resolution close-up faces;

MPIIFaceGaze [31] - faces captured by webcams; RT-

GENE [4] - low-resolution faces using in-painting to mask

out eye-tracking glasses; Gaze360 (Ours) - faces with vary-

ing resolution; For those datasets where no official splits

were provided [20, 31] we use all available samples for

training and do not measure the within-domain error.

Table 3 summarizes the results. This task is much more

Table 3. Cross-dataset evaluation: we report the mean angular

errors for the Static model trained using different datasets.

Train

Test
Columbia

MPII

FaceGaze
RT-GENE Gaze360

Columbia - 12.3 32.8 57.9

MPIIFaceGaze 12.4 - 26.5 57.8

RT-GENE 24.2 18.9 - 56.6

Gaze360 9.0 12.1 23.4 -

Gaze360 + DA 8.1 9.9 21.9 -
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Figure 9. Estimating 3D gaze in the wild: further examples of our model’s output on unseen video gathered from YouTube.

ShampooCoca-ColaSubject

Figure 10. An example application: we use Gaze360 to passively

infer the attention of a customer as they browse products on a shelf,

using video (left) from a camera next to the shelf (right).

challenging than within-domain tests. The best results are

consistently achieved when our dataset is used for train-

ing. In addition, we fine-tune our Gaze360-trained model

on new domains (Gaze360 + DA) using the self-supervised

approach described in Sec. 5.2, which does not utilize the

ground truth labels in other datasets. Our domain adaption

strategy improves performance further on all the datasets.

7. Tracking gaze in the wild

Prediction in unconstrained environments: The vari-

ation in appearance of subjects in the Gaze360 dataset al-

lows our model to perform well without further training or

fine-tuning on unseen image and video data from uncurated

online sources. We demonstrate this visually on numerous

examples in Figs. 1 and 9 and in our supplemental video.

Estimating attention in a supermarket: To illustrate

one possible application of Gaze360, we apply it to the task

of predicting which objects are being looked at on a su-

permarket shelf, which is relevant for product-placement in

stores. We recreate a supermarket shelf and ask subjects to

look at various objects while self-reporting those objects.

We record them with a camera next to the shelf, as shown in

Fig. 10. Despite a less than optimal view of the subject , we

are able to predict which object is being looked at correctly

51% of the time. Using a smartphone camera embedded di-

rectly in the shelf (so that the view of subjects is closer to

frontal), the accuracy increases to 68%. The objects along

the bottom shelves have highest error rate, as the eyes be-

come almost fully occluded when looking downwards. Fi-

nally, we are able to produce a heatmap of customer at-

tention, shown in Fig. 10. While simple, this application

demonstrates the flexibility of our system for use in a wide

range of real-world applications.

8. Conclusion

In this work, we introduced a novel approach to ef-

ficiently collect annotated gaze data at scale and used it

to generate a large and diverse dataset, suitable for deep

learning of 3D gaze from images and video. We pre-

sented a new temporal appearance-based gaze model using

a novel loss function to estimate error quantiles. Finally we

demonstrated the value of (i) our dataset via careful cross-

dataset performance comparison versus three existing 3D

gaze datasets, and (ii) our model via application to uncon-

strained unseen imagery from YouTube videos. It is our

hope that by using our dataset and model, researchers across

a range of fields will be able to better leverage gaze as a cue

to improve vision-based understanding of human behavior.
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