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Abstract

Recent advancements in fields like Internet of Things

(IoT), augmented reality, etc. have led to an unprecedented

demand for miniature cameras with low cost that can be in-

tegrated anywhere and can be used for distributed monitor-

ing. Mask-based lensless imaging systems make such inex-

pensive and compact models realizable. However, reduction

in the size and cost of these imagers comes at the expense

of their image quality due to the high degree of multiplexing

inherent in their design. In this paper, we present a method

to obtain image reconstructions from mask-based lensless

measurements that are more photorealistic than those cur-

rently available in the literature. We particularly focus on

FlatCam [2], a lensless imager consisting of a coded mask

placed over a bare CMOS sensor. Existing techniques for

reconstructing FlatCam measurements suffer from several

drawbacks including lower resolution and dynamic range

than lens-based cameras. Our approach overcomes these

drawbacks using a fully trainable non-iterative deep learn-

ing based model. Our approach is based on two stages: an

inversion stage that maps the measurement into the space of

intermediate reconstruction and a perceptual enhancement

stage that improves this intermediate reconstruction based

on perceptual and signal distortion metrics. Our proposed

method is fast and produces photo-realistic reconstruction

as demonstrated on many real and challenging scenes.

1. Introduction

Cameras have become ubiquitous in the present world.

Devices ranging from consumer products to high-end sci-

entific tools use cameras in one form or another. With the

proliferation of applications like augmented reality (AR),

surveillance, Internet of Things, etc., the purpose of cam-

eras has changed from merely taking photographs to also

being sensors for inferential inputs. Some of these novel

imaging applications impose stringent constraints in the

Figure 1. The FlatCam framework: The FlatCam is a thin lens-

less camera that captures a globally multiplexed measurement of

the scene and requires a reconstruction step to recover the true

scene. In this work, we propose a novel reconstruction algorithm

that gives higher resolution images with improved dynamic range

and robustness to noise than current methods.

size of the cameras. Consider, for example, the integration

of cameras into wearables like AR glasses or smartwatches.

This has resulted in a growing need for the miniaturization

of cameras. However, reduction in size and cost is possible

only to a certain extent for lens-based cameras. Lensless

cameras come to the rescue in such scenarios.

Recent advancements in sensor technologies and compu-

tational imaging techniques have resulted in the emergence

of lensless imaging systems. These imaging systems dif-

fer from the conventional imaging system in the sense that

they encode the incoming light to the sensor (instead of di-

rectly focusing it) [2, 1]. A reconstruction algorithm is then

required to decode the scene from the measurements.

Lensless imaging systems provide numerous benefits

over lens-based cameras. First, lensless imaging systems

eliminate the need for a lens, which is the major contribu-
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tor towards the size and weight of the camera. In addition,

a lensless design permits a broader class of sensor geome-

tries, allowing sensors to have more unconventional shapes

(e.g. spherical or cylindrical) or to be physically flexible

[37]. Moreover, lensless cameras can be produced with tra-

ditional semiconductor fabrication technology and therefore

exploit all its scaling advantages, yielding low-cost, high-

performance cameras [4]. Earlier instances of using lens-

less coded aperture imaging systems for X-ray and gamma

ray [11, 13, 5, 12, 6] are proofs that lensless imagers have

better wavelength scaling as well.

However, the absence of a focusing element and the re-

quirement of a reconstruction algorithm in lensless cameras

result in three major challenges. First, lensless design re-

sults in an ill-conditioned system, yielding imperfect recon-

structions. Second, poor design of the reconstruction algo-

rithm may greatly amplify noise in the images. Third, the

reconstruction algorithm’s runtime adds a delay to the imag-

ing pipeline which needs to be minimal for applications like

virtual or augmented reality. Therefore, lensless cameras

need efficient algorithms to overcome these challenges.

In this paper, we focus on developing a reconstruction

algorithm for the FlatCam lensless imaging system, which

consists of a coded mask placed above the bare imaging

sensor [2]. In this design, the sensor records the scene mul-

tiplexed by the mask pattern, requiring a demultiplexing al-

gorithm for the recovery of the underlying scene. Exist-

ing methods use traditional approaches such as Tikhonov

or total variation regularized least squares to reconstruct

the scene from FlatCam measurements [2]. However, these

methods suffer from several drawbacks including high noise

sensitivity, low resolution, low dynamic range, and poor

perceptual quality (see figure 1). Apart from these, they

also require careful calibration [2], and any error in the pro-

cess can result in severe degradation in the reconstruction

performance.

One way to improve the reconstruction performance

would be to exploit the natural image statistics within the

data using data-driven techniques like convolutional neural

networks [23]. Keeping this in mind, we build our approach

on the recent success of deep learning [22] and Generative

Adversarial Networks [14]. A simple approach to incor-

porate a deep network for reconstructing the scene from a

FlatCam measurement would be to pre-process the mea-

surement using a hand-crafted prior based reconstruction

algorithm (such as Tikhonov regularized least squares) and

then refine this reconstruction using the local filtering op-

erations of convolutional neural networks. However, such

an approach is dependent on the chosen hand-crafted prior,

which may not be suitable for the particular imaging sys-

tem. Therefore, we go a step further and present a fully

trainable deep architecture that provides fast and high qual-

ity reconstructions for FlatCam measurements. To the best

of our knowledge, our work is the first to use deep learn-

ing for mask based lensless image reconstruction and also

to incorporate the lensless camera model into the deep ar-

chitecture. Our major contributions include:

• We propose a fast and novel non-iterative end-to-end

deep learning based framework for FlatCam image re-

construction.

• We improve the quality of FlatCam reconstructions by

utilizing a weighted loss function based on perceptual

and distortion metrics.

• We propose an initialization scheme for our network

that removes the need for camera calibration.

• We show the effectiveness of our algorithm by evalu-

ating it on challenging real scenarios. Especially, we

show that, compared to existing techniques, proposed

technique can recover higher dynamic range scenes.

1.1. Related work

1.1.1 Data driven image reconstruction

Recently, deep learning has shown remarkable performance

in many computer vision and image processing tasks. This

has largely been driven by the ability of these learning based

methods to exploit the structure in the data. However, the

application of deep learning in computational imaging is

still in a nascent stage. Recently, Boominathan et al. [3]

proposed a deep network based on conditional GANs to

solve the Fourier Ptychography problem while Kulkarni et

al. [20] and Mousavi et al. [28] developed non-iterative

deep architectures for reconstructing true signals from com-

pressively sensed measurements. Another class of data-

driven methods used for imaging problems involves design-

ing data-dependent priors [8] or data-driven proximal map-

ping stages [31]. These methods, although more general

in comparison to the previous ones, are iterative in nature

and are therefore very slow during inference. In this pa-

per, we develop a fast and non-iterative deep architecture to

reconstruct scenes from FlatCam measurements with high

perceptual quality.

1.1.2 Lensless imaging

Lensless imaging involves capturing an image of a scene

without physically focusing the incoming light with a lens.

It has been widely used in the past for X-ray and gamma ray

imaging for astronomy [11, 6], but its use for visible spec-

trum has only recently been studied. In a lensless imaging

system, the scene is captured either directly on the sensor

[18] or after being modulated by a mask element. Types of

masks that have been used include phase gratings [36], dif-

fusers [1], amplitude masks [34, 2], compressive samplers

[16] and spatial light modulators [7, 10]. Replacing lens
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Figure 2. Overall architecture of the proposed system. Our network consists of a generator and a discriminator. In the generator, the

measurement is first mapped into an intermediate image space using a trainable inversion layer. A U-Net then enhances the perceptual

quality of the intermediate reconstruction. We use a weighted combination of three losses in training our system: a perceptual loss[17]

using a VGG16 network[35], mean-square error (MSE), and adversarial loss using a discriminator neural network [14].

with the above masks result in muddled sensor capture that

lacks any resemblance to the scene imaged. A recognizable

image is then recovered using a computational reconstruc-

tion algorithm. In this paper, we develop a deep learning

based reconstruction for a particular lensless camera called

FlatCam [2], which has a low complexity image formation

model due to the separable property of the amplitude mask

design.

2. FlatCam

FlatCam is a lensless imaging system developed by Asif

et al. [2] that consists of an amplitude mask placed above

the CMOS sensor. As the mask is made up of multiple aper-

tures/pinholes, the resultant measurement recorded at the

sensor is a superposition of the images formed due to each

pinhole. The mask pattern is an outer product of two differ-

ent maximum length sequences and as a result is a rank one

matrix. This causes the FlatCam to have a separable point

spread function (PSF) and the following forward model,

Y = ΦLXΦT

R
+N. (1)

Here, ΦL and ΦR are the corresponding matrix representa-

tion of the separable PSF kernel, X is the scene irradiance,

Y is the recorded measurement, and N models additive

noise. The separability of the PSF provides a means to effi-

ciently calibrate as well as invert the sensor measurements

[2, 10]. The current reconstruction method in [2] is to find

the Tikhonov regularized scene X that minimizes the error

in (1).However, in reality, the true physical process of lens-

less image capture contains non-idealities (such as diffrac-

tion) that (1) does not completely account for. Furthermore,

the operation tends to have poor conditioning, leading to

high sensitivity to noise. This makes recovering the true

scene radiance from these measurements very challenging.

3. End-to-end network for FlatCam recon-

struction

To address the difficulties in accurate FlatCam recon-

struction, we take a data-driven approach at recovering the

true scene from the highly multiplexed measurements. We

exploit the physics of the forward model along with the ef-

ficiency of a deep neural network in learning a photorealis-

tic mapping from the measurement space to the natural im-

age space. Following the success of Generative Adversarial

Nets [14], our proposed network has two main components:

a generator network that learns to output a visually mean-

ingful reconstruction from the measurement and a discrim-

inator network that tries to distinguish this reconstruction

from real images. Both the networks are finally trained in

an adversarial setup. Figure 2 shows the generalized block

diagram for our method. In the following subsections, we

describe each of these steps in more details.
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3.1. Generator architecture

Our generator network has two basic stages: the train-

able inversion stage maps the FlatCam measurements into

a space of intermediate reconstructions, and the perceptual

enhancement stage refines this mapping into a semantically

meaningful image. It should be noted here that both stages

of our approach are trained in an end-to-end way.

3.1.1 Trainable inversion stage

In the first stage, we use two layers of trainable left and

right matrix multiplications on the two-dimensional sensor

measurments followed by a non-linearity:

Xinterm = f(W1YW2), (2)

where Xinterm is the output of this stage, f is a pointwise

nonlinearity, Y is the input measurement, and W1 and W2

are the corresponding weight matrices for this stage. Figure

2 gives a diagrammatic overview of this stage. For the non-

linearity, we use the leaky ReLU[27]. The dimension of

the weight matrices depends on the dimension of the mea-

surement and the scene dimension we want to recover. It is

important to initialize the weight matrices of this stage prop-

erly, so that the network does not get stuck in local minima.

This can be done in two ways.

Transpose initialization: For this approach, we initial-

ize our weight matrices (W1 and W2) with the adjoint of the

calibration matrices, akin to back-projection. These calibra-

tion matrices are approximations of ΦL and ΦR in (1) phys-

ically obtained by the method described in [2]. This mode

of initialization leads to faster convergence while training.

Random initialization: Calibration of FlatCam require

careful alignment with display monitor [2], which can be

a time consuming and inconvenient process especially for

large volumes of FlatCams. Even a small error in calibra-

tion can lead to severe degradation in the performance of

the reconstruction algorithm. To overcome the problems

involved in calibration, we also propose a calibration-free

approach by initializing the weight matrices with carefully

designed pseudo-random matrices.

Initializing with any pseudo-random matrices of appro-

priate size does not yield successful reconstruction. To care-

fully design the random initialization, we make the follow-

ing two observations regarding the FlatCam forward model:

the calibration matrices have a ‘toeplitz-like’ structure and

the slope of constant entries in the ‘toeplitz-like’ structure

can be approximately determined using the FlatCam ge-

ometry, in particular the distance between the mask and

the sensor and the pixel pitch. As the FlatCam’s geome-

try is known apriori, we can construct the pseudo-random

‘toeplitz-like’ matrices with appropriate slope, and size,

thereby making our approach calibration free. The weight

matrices (W1 and W2) are initialized with the adjoint of

Figure 3. Product of the left weight matrix from the trainable in-

version stage for with the calibration matrix (W1×ΦL) before and

after training. The top row shows the initial product at the begin-

ning of training while the bottom row shows it after training the

network. a) Random initialization. b) Transpose initialization.

such constructed random matrices. We observed that the

training time increased slightly for this initialization in com-

parison to transpose initialization.

In our experiments, we found that the products of the

learned matrices W1 and W2 with the forward model cal-

ibration matrices ΦL and ΦR closely resemble an identity

matrices, implying that this stage has tried to invert the Flat-

Cam forward model. This is shown in figure 3. The left and

right matrix multiplication ensures that the global multi-

plexing of the forward model is captured by this stage which

may not have been possible using local operations like con-

volution. Moreover, this stage can also be interpreted as the

forward model dependent stage and can be replaced suitably

when the model changes.

3.1.2 Perceptual enhancement stage

Once we obtain the output of the trainable inversion stage,

which is of same dimension as that of the natural image, we

use a fully convolutional network to map it into the natural

image space. Owing to its large scale success in image-to-

image translation problems and its multi-resolution struc-

ture, we choose a U-Net [32] to map the intermediate re-

construction to the final perceptually enhanced image. We

keep the kernel size fixed at 3×3 while the number of filters

is gradually increased from 128 to 1024 in the encoder and

then reduced back to 128 in the decoder. In the end, we map

the signal back to 3 RGB channels.

3.2. Discriminator architecture

The trainable inversion and the perceptual enhancement

stage form the generator of our architecture. We then use a

discriminator framework to classify our generator’s output
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as real or fake. We find that using a a discriminator net-

work improves the perceptual quality of our reconstruction.

We use 4 layers of 2-strided convolution followed by batch

normalization and the swish activation function [30] in our

discriminator.

3.3. Loss function

(a) M (b) M+P (c) M+P+A (d) GT

Figure 4. Effect of the different weighted loss functions. a) Using

only MSE leads to blurry reconstruction. b) Using the weighted

combination of MSE and perceptual leads to a sharper output with

color artifacts. c) Addition of adversarial loss further improves the

perceptual quality. d) Corresponding ground truth for reference.

An appropriate loss function is required to optimize our

system to provide the desired output. Pixelwise losses like

mean absolute error (MAE) or mean squared error (MSE)

have been successfully used to capture signal distortion.

However, they fail to capture the perceptual quality of im-

ages. As our objective is to obtain high quality photorealis-

tic reconstructions from lensless measurements, perceptual

quality matters. Thus, we use a weighted combination of

signal distortion and perceptual losses. The losses used for

our model are given below:

Mean squared error: We use MSE to measure the dis-

tortion between the ground truth and the estimated output.

Given the ground truth image Itrue and the estimated image

Iest, this is given as:

LMSE = ‖Itrue − Iest‖
2

2
. (3)

Perceptual loss: To measure the semantic difference be-

tween the estimated output and the ground truth, we use

the perceptual loss introduced in [17]. We use a pre-trained

VGG-16 [35] model for our perceptual loss. We extract fea-

ture maps between the second convolution (after activation)

and second max pool layers, and between the third convo-

lution (after activation) and the fourth max pool layers. We

call these activations φ22 and φ43, respectively. This loss is

given as,

Lpercept = ‖φ22(Itrue)− φ22(Iest)‖
2

2
+

‖φ43(Itrue)− φ43(Iest)‖
2

2
. (4)

Adversarial loss: Adversarial loss [14, 24] was added

to further bring the distribution of the reconstructed output

close to those of the real images. Given a discriminator D,

this loss is given as,

Ladv = −log(D(Iest)). (5)

Total generator loss: Our total loss for the generator is

a weighted combination of the three losses and is given as,

L = λ1LMSE + λ2Lpercept + λ3Ladv. (6)

where, λ1, λ2 and λ3 are weights assigned to each loss.

Discriminator loss: Given Iest, Itrue and discriminator

D, the discriminator was trained using the following loss,

Ldisc = −log(D(Itrue))− log(1−D(Iest)). (7)

4. Experiments and results

In this section we describe all our experimental results.

It should be noted that all our experiments are performed

on real data, which demonstrates the practicality of our ap-

proach. For collecting real world data, we use two setups:

the display capture setup and the direct capture setup.

Collecting a large scale dataset of lensless measurements

along with their aligned ground truth is a challenging task.

To overcome this challenge, the first setup we use to cap-

ture real images is the display capture setup. In this setup,

we place a monitor in front of the FlatCam and capture the

images displayed on it. For the ground truth, we randomly

selected 10 images from each of the ImageNet [33] classes

and created a dataset of 10000 images. Out of this, we kept

9900 images from 990 classes for training and the rest 10

classes or 100 images for testing. We call these measure-

ments display captures. More detail on display captured

setup is provided in the supplementary material.

It is important to visually evaluate the performance of

our reconstruction network on a direct real world setup. For

collecting data for this setup, we place objects in front of

FlatCam and directly capture the measurement. For this

setup we do not have a corresponding ground truth. We

call these measurements direct captures.

4.1. Implementation details

The FlatCam prototype used is Point Grey Flea3 cam-

era with 1.3MP e2v EV76C560 CMOS sensor with a pixel

size of 5.3 µm. All the ground truth images were resized to

256×256 as the FlatCam is calibrated to produce 256×256
output images. This ensures that there is no misalignment

among the input and ground truth pairs. We directly used

the Bayer measurements of 4 channels (R,Gr,Gb,B) as our

input to the network and convert them into 3 channel RGB

within the network. FlatCam measurements of dimension

500× 620× 4 in batches of 4 were used as inputs for train-

ing. A smaller batch size was used due to memory con-

straints. We set λ1 as 1, λ2 to be 1.2 and λ3 to be 0.6.

For transpose initialization, we trained our model for 45K

iterations while for random initialization, we trained it for

60K iterations. The Adam [19] optimizer was used for all

models. We started with a learning rate of 0.0001 and grad-

ually reduced it by half every 5000 iterations. We train the
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(a) Ground Truth (b) Tikhonov[2] (c) TVAL3[25] (d) Naive (e) Proposed-R (f) Proposed-T

Figure 5. Reconstruction of display captured measurements using various approach. Inset shows the finer region in each image. a) Ground

truth image for reference. Finer details like the text in the first image and leg of the insect in the second image are lost in b) Tikhonov

regularized and c) TVAL3 reconstruction. d) Naive network improves the Tikhonov reconstruction but still lacks details. Finer details are

better preserved in our end-to-end model for both e) random and f) transpose initializations.

Method PSNR (in dB) SSIM Perceptual score Time taken (in sec)

Tikhonov[2] 10.95 0.33 2.25 0.03

TVAL3[25] 11.81 0.36 3.38 45.28

Naive 18.90 0.62 5.72 0.016

Proposed-R 19.06 0.62 5.86 0.006

Proposed-T 19.62 0.64 6.48 0.006

Ground Truth - 1 8.04 -

Table 1. PSNR, SSIM and perceptual score comparison for display captured measurements. Proposed method with transpose initialization

(Proposed-T) gives the best result. The comparable performance of Proposed-R indicates that our approach can be used for situations

where careful calibration isn’t possible.

discriminator and the generator alternatively as is done for

conventional GANs [14]. We use PyTorch [29] to imple-

ment our model.

4.2. Comparison with other approaches

We present a comparison of the performance of our

method with that of other techniques. The following are

the description of these techniques.

4.2.1 Traditional techniques

In this category, we use the closed form solution of Asif

et al. [2] for Tikhonov regularized reconstruction. This is

given as,

X̂ = VL[(Σ
T

L
UT

L
Y URΣR)./(σLσ

T

R
+ λ11T )]V T

R
, (8)

where ΦL = ULΣLV
T

L
and ΦR = URΣRV

T

R
and λ is the

regularization parameter. We set λ to 0.0003 for our re-

construction. We also used TVAL3[25] for reconstruction

which imposes sparsity on the gradients of the reconstruc-

tion.

4.2.2 Naive deep learning based approach

The Tikhonov solution of (8) is extremely fast to compute

as shown in [2]. A naive way to obtain higher quality re-

construction from FlatCam measurements would be to ob-
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(a) Tikhonov[2] (b) TVAL3[25] (c) Naive (d) Proposed-R (e) Proposed-T

Figure 6. Reconstruction of direct captured measurements using various approaches. a) Tikhonov regularized reconstruction kills off the

detail in the border and darker region. b) TVAL3 reconstructs the border but is unable to restore the sharpness. c) Naive network improves

Tikhonov reconstruction but is highly sensitive to noise and the regularization parameter. The proposed end-to-end models for both d)

random and e) transpose initialization produce the best reconstructions. These methods are robust to noise and does not contain any

regularization parameter.

(a) Tikhonov (b) Naive (c) Proposed

Figure 7. Reconstruction of resolution chart. Inset shows the

finer details. a) Tikhonov regularized reconstruction fails to cap-

ture high frequency details. b) Naive approach improves upon

Tikhonov regularized reconstruction but is restricted by the infor-

mation lost in Tikhonov reconstruction. c) Proposed method is

able to reconstruct the fine details.

tain the Tikhonov regularized reconstruction and then use

an image restoration framework to refine the reconstruc-

tion. To implement this, we pass the Tikhonov regularized

reconstruction through our perceptual enhancement block

(described in section 3.1.2). We use the same loss that is

defined in (6).

Qualitative comparison: Figure 5 shows the compari-

son of our approach with the traditional and naive approach

on some of the display captured images. In all figures and

tables, Proposed-R refers to the model using random initial-

ization and Proposed-T refers to the model using transpose

initialization as explained in section 3.1.1. Unless explicitly

mentioned, Proposed refers to Proposed-T. The Tikhonov

regularized reconstructions are prone to severe vignetting

effects which is somewhat reduced in the TVAL3 results.

As the naive approach is trained on the Tikhonov recon-

structions, it fails to reconstruct the regions lost in Tikhonov

regularization. Inset images in figure 5 show the preserva-

tion of finer details in our approach. Figure 6 shows the

comparison of our approach for direct captured measure-

ments. It should be noted that Tikhonov regularization has

a tendency to suppress low signal values and as a result

has difficulty restoring the poorly illuminated background

for most of the scenes in figure 6. The performance of

TVAL3[25] is also similar. As the naive model is based on

Tikhonov reconstruction, it heavily relies on the regulariza-

tion parameter. It also requires calibration and is sensitive
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to noise. This is verified by the distinguishable artifacts that

appear in the naive reconstructions in figure 6. Apart from

these disadvantages, it also lacks in ability to adapt to chal-

lenging low dynamic range scenes. This is further verified

in section 4.3. As we also show comparable performance

using random initialization, our method does not depend on

calibration unlike the rest of the approaches. Figure 7 gives

a better idea about the superiority of the proposed approach

in reconstructing finer details.

Quantitative comparison: Table 1 shows the quanti-

tative evaluation of our approach. We provide the test re-

sults on the 100 display captured test images we had pre-

viously separated from the 10,000 ImageNet captures. We

use PSNR, SSIM and the no-reference image quality metric

of Ma et al. [26] for signal distortion and perception evalu-

ation. Higher PSNR, SSIM and Ma score indicate superior

performance. From the metrics in table 1, it is clear that our

approach using transpose initialization (Proposed-T) out-

performs all the other reconstruction techniques for Flat-

Cam. The next best approach is the proposed method using

random initialization (Proposed-R) and it is worth noting

that unlike all other methods, Proposed-R is calibration-

free. The naive network also performs remarkably better

than the existing FlatCam reconstruction techniques but is

clearly outperformed by the proposed model for both cases

of initialization. We also compare the time complexities

for the various approaches in table 1. The Tikhonov and

TVAL3[25] regularized reconstructions are computed on

Intel Core i7 CPU with 16 GB RAM while the rest of the

approaches are evaluated on Nvidia GTX 1080 GPU.

4.3. Handling bright light sources

For a highly multiplexed lensless imager like FlatCam,

every pixel receives light from every point in the scene.

Hence, if there is any really bright object (like a highly re-

flective object or a lamp) in the scene, the light from the ob-

ject can dominate the pixel intensities and result in severe

reconstruction artifacts on the dimmer objects. We show

that, using our proposed reconstruction algorithm, the arti-

facts are minimized resulting in a higher quality reconstruc-

tion of the scene.

We show the bright object problem by introducing an

LED into the scene. Figure 8 shows two scenes, with an

LED introduced. With the LED, we see severe artifacts in

the Tikhonov reconstruction. The artifacts appear along the

row and column of the LED location due to the separable

model of FlatCam. The Naive network fails to compensate

for the information lost in Tikhonov reconstruction. How-

ever, the scene information for all levels of illumination is

still present in the multiplexed measurement. Using our

proposed reconstruction algorithm, we observe that the arti-

facts are reduced and a realistic representation of the scene

is reconstructed. As our network is trained end-to-end di-

rectly on the measurements, it adapts to extremely challeng-

ing dynamic range scenes.

Figure 8. Handling bright objects. Arrows indicate the position

of LED. The Tikhonov reconstructions for LED introduced scenes

have been scaled in intensity for visualization. Strong separable

mask artifact is seen in both Tikhonov regularized and naive ap-

proach, while proposed approach gives much cleaner and sharper

results.

5. Discussion

For the perceptual enhancement stage, we experimented

with several different architectures before settling down on

U-Net. In earlier works on image restoration [39, 21], resid-

ual blocks[15] had shown to improve the performance by al-

lowing finer details to pass. Thus, we replaced the original

U-Net structure with residual blocks in both encoder and

decoder while keeping rest of the architecture and losses

unchanged. However, we did not observe any significant

improvement over the original structure. We also exper-

imented with state-of-the art image restoration techniques

like DnCNN[39] and RCAN[40] and compressive image

recovery techniques like ISTANet[38] and Deep pixel level

prior[9]. Evaluation of these approaches is provided in the

supplementary materials.

6. Conclusion

We present an approach to recover photorealistic images

from highly multiplexed lensless images using a fully train-

able deep network. Although lensless imaging promises

a wide array of application due to its size, weight and

cost benefits, standard optimization-based methods cur-

rently used for reconstruction yield outputs that suffer from

low resolution and higher noise sensitivity. Our approach

attempts to solve these problems as exhibited by our exten-

sive experiments on real data. Moreover, as opposed to cur-

rent methods, our reconstruction algorithm doesn’t require

the error-prone and meticulous calibration of the FlatCam

system. In future, it will be interesting to look into the co-

design of mask along with the reconstruction algorithm.
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