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Abstract

Many 4D light field processing methods and applications

rely on superpixel segmentation, for which occlusion-aware view

consistency is important. Yet, existing methods often enforce

consistency by propagating clusters from a central view only,

which can lead to inconsistent superpixels for non-central views.

Our proposed approach combines an occlusion-aware angular

segmentation in horizontal and vertical epipolar plane image

(EPI) spaces with a clustering and propagation step across all

views. Qualitative video demonstrations show that this helps

to remove flickering and inconsistent boundary shapes versus

the state-of-the-art light field superpixel approach (LFSP [25]),

and quantitative metrics reflect these findings with greater self

similarity and fewer numbers of labels per view-dependent pixel.

1. Introduction

Superpixel segmentation attempts to simplify a 2D image into

small regions to lessen future computation, e.g., for later graph

inference in interactive object selection. Desirable superpixel

qualities vary between applications [18], but generally we wish

for them to be accurate, i.e., to adhere to image edges; to

otherwise be compact in shape, and to be efficient to compute

(see Stutz et al. for a review [17]).

Light fields represent small view changes onto a scene, e.g.,

an array of 9×9 2D image views (‘4D’). Processing light fields

is computationally harder due to the increased number of pixels,

but many of these pixels are similar because the view change is

small. As such, we have much to gain from simplifying light field

images into superpixels. This introduces a new desirable property

for our light field superpixels: we wish them to be view consistent,

e.g., they do not drift, swim, or flicker as the view changes, and

we wish superpixels to include all similar pixels across views

such that they respect occlusions. This is particularly important

for applications which will use every light field view, such as

editing a light field photograph for output to a light field display.

It is difficult to achieve the four properties of accuracy, com-

pactness, efficiency, and view consistency. Existing approaches of-

ten propagate superpixel labels into other views via a central-view

disparity map. However, this can cause inconsistency for regions

occluded in the central view, e.g., the recent light field superpixel

(LFSP) method [25] does not always maintain view consistency.

Figure 1: Light field superpixel comparison for the central view.

Top left: Input scene. Top right: Our method. Bottom left: k-means

on (x, y, d, L∗, a∗, b∗) with disparity maps computed by Wang

et al. [20, 21]. Bottom right: LFSP [25] computed with Wang et

al. disparity map. Please refer to our supplemental material for

high-quality video results animating through all light field views.

We can attempt to estimate per-view disparity maps, but this can

be difficult for small occluded regions in off-central views.

We propose a method for accurate and view-consistent super-

pixel segmentation on 4D light fields which implicitly computes

disparity per view and explicitly handles occlusion (Fig. 2). First,

we robustly segment horizontal and vertical epipolar plane images

(EPIs) of the 4D light field. This provides view consistency in an

occlusion-aware way by explicit line estimation, depth ordering,

and bipartite graph matching. Then, we combine the angular seg-

mentations in horizontal and vertical EPIs via a view-consistent

clustering step. Qualitative results (Fig. 1) show that this reduces

flickering from inconsistent boundary shapes when compared to

the state-of-the-art LFSP approach [25], and quantitative metrics

reflect these findings with improved view consistency scores.

Code: https://github.com/brownvc/lightfieldsuperpixels.
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Figure 2: Overview of our algorithm. Step 1: We find lines within EPIs extracted from the central horizontal and vertical views of a 4D

light field. Step 2: Then, we use an occlusion-aware bipartite patching to pair these lines into regions with explicit depth ordering. Step 3:

We cluster these segments and propagate labels into a view-consistent superpixel segmentation.

2. Related Work

Light Field Depth Estimation Tošić and Berkner [19] use

an oriented scale-space of ray Gaussian filters to compute depth;

we take a related filtering approach. Given this idea, Wang

et al. [20, 21] proposed a photo-consistency measure which

accounts for occlusion. This method computes depth maps with

sharp transitions at occlusion edges, but only produces depth for

the central light field view. Chuchwara et al. [5] presented a fast

and accurate depth estimation method for light fields captured

with wide baseline camera arrays, and showed the use of over-

segmentation for higher level vision tasks. Their method relies

on a per view superpixel segmentation. Huang et al. [9] provided

a learning-based solution to the multi-view depth reconstruction

problem. This applies to an arbitrary number of unstructured

camera views and produces a disparity map for a single reference

view. Simiarly, Jiang et al. [10] learn to fuse individual stereo

disparity estimates for dense and sparse light fields. Finally, Chen

et al. use central-view 2D superpixels to regularize light field

depth estimation for accurate occlusion boundaries [4].

Light Field Segmentation One application requires the user

to provide label annotations marking objects to be segmented.

Wanner et al. [23] used a Markov random field (MRF) to assign

per-pixel labels to the central view of a light field. Mihara et

al. [13] extended Wanner’s work by segmenting using an MRF-

based graph-cut algorithm which produces labels for all views

of the light field. Hog et al.’s work [6] improves the running time

of a naive MRF graph-cut by bundling rays according to depth.

Campbell et al. [2] presented a method without user input for auto-

matic foreground-background segmentation in multi-view images.

This uses color-based appearance models and silhouette coher-

ence; as such, their method is more effective for larger baselines

with larger change in object silhouettes. All these methods seek

to calculate object-level labels; however, we wish to automatically

produce superpixel segmentations as a preprocess for other tasks.

Light Field Superpixel Segmentation Given the familiar 2D

simple linear iterative clustering algorithm (SLIC) for superpixel

segmentation [1], Hog et al. [12] propose an approach for light

fields which is focused on speed, computing in 80s on CPU and

4s on GPU on the HCI dataset [22]. Then, the authors extend

this work to handle video processing [7]. However, with their

focus on fast processing, the results are not view consistent.

Given a disparity map for the central view, Zhu et al. [25]

posed the oversegmentation problem in a variational framework,

and solved it efficiently using the Block Coordinate Descent

algorithm. While their method generates compact superpixels,

these sometimes flicker as shape changes across views (Fig. 1).

Our approach specifically enforces view consistency, which is

desirable for many light field applications.

3. View-consistent Superpixel Segmentation

Definitions Given a 4D light field LF(x,y,u,v), we define the

central horizontal row of viewsH=LF(x,y,u,vc) and central

vertical column of views V=LF(x,y,uc,v). Each view I∈H
contains a set of EPIs Ei(x,u)=I(x,yi,u), with corresponding

I∈V containing Ej(y,v)=I(xj,y,v).
With a Lambertian reflectance assumption, a 3D scene point

corresponds to a straight line l in an EPI, where the depth of

the point determines the slope of the line. By extension, a

region of neighboring 3D surface points with similar depth and

visual appearance is topologically bound in each EPI by a set

L of two lines (l1, l2) on the boundary of R. Either one or

both of l1 and l2 may be occluded in any particular Ei. Our

goal is to identify the boundaries L= {(l1,l2)} for all visible

regions {R} across all EPIs in an accurate, occlusion-aware, and

spatio-angularly-consistent way and as efficiently as possible.

Overview Our algorithm has three major steps (Fig. 2).

Step 1: Line Detection (Sec. 3.1): Providing view-consistent

and occlusion-aware segmentation relies critically on accurate

edge line detection (i.e., disparity estimation at edges). As such,

we begin by creating two slices of the light field as EPIs, one each

for the central horizontal and vertical directions. Then, we robustly

fit lines with the specific goal of later handling occlusion cases.

Step 2: Occlusion-aware EPI Segmentation (Sec. 3.2): Next,

we must reason about the scene order of detected lines to pair

them into segments. This is solved via a bipartite graph matching

process, which allows us to strictly enforce occlusion awareness.

It produces per-EPI view-consistent regions in horizontal and

vertical dimensions, which must be merged spatially.

Step 3: Spatio-angular Segmentation via Clustering (Sec. 3.3):

Finally, we merge EPI regions into a consistent segmentation

via a segment clustering, which uses our estimated disparity to

regularize the process. Remaining unlabeled off-central-directions

occluded pixels are labeled via a simple propagation step.
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Algorithm 1: EPI edge detection

FindEdgesEPI (E,F)
Input: E: A w×h EPI

F : A set of 60 2h×2h directional filters.

Output: An edge slope map Z with confidences C.

foreach fi∈F do

ri←E⊛fi;
end

foreach pixel location(u,v)∈I do

Z(u,v)←argmax
i

ri(u,v) ;

C(u,v)←max
i

ri(u,v) ;

V (u,v)←StdDev(I(N(u,v))) for neighborhood

N(u,v) around (u,v) ;

end

C←NonMaxSuppress(C) ⊙ V ;

return Z, C
end

3.1. Line Detection

For robust occlusion handing, we must accurately detect the

intersections of lines in EPIs (Fig. 3). However, classical edge

detectors like Canny [3] and Compass [15] often generate curved

or noisy responses at line intersections, which makes later line

fitting and occlusion localization difficult. Instead, we propose

an EPI-specific method. Note: We describe line detection for the

central horizontal views; central vertical views follow similarly.

EPI Edge Detection We take all EPIs Ei(x,u) (size w×h)

from the horizontal central view images I ∈H. We convolve

them with a set of 60 oriented Prewitt edge filters with each

representing a particular disparity. We filter only the central views

for efficiency, and later on will propagate their edges across all

light field views. To detect small occluded lines, we use 2h×2h
filters and convolve the entire (x,u) space. This effectively

extends occluded edge response to span the height of the EPI.

From this, we pick the filter with maximal response per pixel,

which is a disparity map Z at edges, and we take the value

of the filter response as an edge confidence map C. Then, we

perform non-maximal suppression per EPI. To suppress false

response in regions of uniform color, we modulate edge response

by the standard deviation of a 3×3 window around each pixel

in the original EPI [11]. Our final C map has clean intersections

(Fig. 3). Algorithm 1 summarizes our approach.

Line Fitting To create a parametric line set L, we form lines

li from each pixel in C in confidence order, with line slopes from

Z. As we add lines, any pixels in C which lie within an λ-pixel

perpendicular distance of the line li are discarded. λ determines

the minimum feature size that our algorithm can detect. In all

our experiments, we set λ= 0.2h. We proceed until we have

considered all pixels in C. For efficiency, we detect edges and

form line sets in a parallel computation per EPI.

Figure 3: Our method can detect edge intersections more accu-

rately than the Canny or Compass methods. These intersections

provide valuable occlusion information.

Outlier Rejection We wish to exploit information from across

the spatio-angular light field. As such, we defer outlier rejection

until after we have discovered L for each EPI in each horizontal

view, and then project all discovered lines into the central view.

Given this, we wish to keep both (a) high confidence lines,

and (b) low confidence lines which have similar spatio-angular

neighbors, and reject faint lines caused by noise.

Given a line li ∈L with confidence ci and disparity zi, we

count the number of lines within a p×q pixel spatial neighbor-

hoodN (li), and weight this number by the confidence ci:

A(li)={lk∈N (li) | zk=zi}. (1)

Then, we discard a line li∈L if:

ci|A(li)|

pq
<τ, (2)

where p and q are 1/15th of the width and height of the light

field, and τ = 8× 10−5. This is similar to Canny’s use of a

double threshold to robustly estimate strong edges: strong lines

must have a confidence greater than τpq, and weak lines must

have τpq/ci neighbors at the same disparity.

Spatial Multi-scale Processing To detect broader lines and

improve consistency between neighboring EPIs, we compute

coarse-to-fine edge confidence across a multi-scale pyramid with

2× scaling in the spatial dimensions only. At each scale and

after the outlier removal processes, we double the x location of

detected lines intercepts, and repeat each line twice along u. We

replace any lines in a coarser scale which are close to lines in

a finer scale. That is, we replace a coarse line only if both of

its end points are within λ pixels of the fine line. Thus, broader

spatial lines which are not detected at a finer scale are still kept.

With this, we have now discovered a line set L for each EPI

of the central horizontal and vertical views of our light field.
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(a) Two intersecting line segments represent an occlusion in the light

field. The occluding line, shown in color, makes a larger angle with

the x-axis. The arrows represent the direction opposite to the one in

which occlusion occurs.

(b) The direction of occlusion can be found by considering a small

region of the edge image around the point of intersection. The side of

the foreground line on which the background line is visible defines

the direction of occlusion.

(c) An occluding line can only match with other lines in the matching

direction. However, it can not match with any line that lies beyond

other occluding lines.

(d) A background line can match twice: once each to its left and right.

Figure 4: Illustrating the rules which govern line coupling.

3.2. Occlusionaware EPI Segmentation

Given a set of lines L, we wish to match lines into

pairs to define an EPI segmentation. One simple ap-

proach is to match every line twice: once each to its left

and right neighbors. However, as per the inset diagram,

this fails when lines intersect

at occlusions as it produces an

under-constrained problem in

which segment order cannot be

uniquely determined.

We solve it by considering a small region around the point of

intersection in the edge image E, which allows us to constrain the

occlusion direction and determine the correct matching (Fig. 4b).

The occlusion direction is given by the side of the foreground line

in which the background line is visible. The foreground line is

determined by the relative slope of the two lines.

The sequence of steps to narrow down the potential matches

for each line is shown in Figure 4. Once we have omitted any line

pairings which violate the occlusion order, we pose line matching

as a two-step maximum value bipartite matching problem on a

complete bipartite graph G(L,L,E) an solve it using Dulmage-

Mendelsohn decomposition. In the first step, we match only

intersecting lines to resolve occlusions. In the second step, all

Algorithm 2: EPI line segment matching.

SegmentEPI (L)
Input: L: An ordered list of line segments bounded

by the top and bottom edges of EPI I.

Output: A set M∈L×L of line couplings.

Create the complete bipartite graph G=(L,L,Ef) for

matching all occluding lines ;

S←OccludingLines(L) ;

foreach e=(li,lj)∈Ef do

if li /∈S and lj /∈S then

w(e)←−∞ ;

else if lj does not lie to the left of li then

w(e)←−∞ ;

else if ∃k∈S to the left of li |
Distance(li,k)<Distance(li,lj) then

w(e)←−∞ ;

else

w(e)←Distance(li,lj) ;

end

end

A←MaxBipartiteMatching(G) ;

U←{l∈L | (∃k)[k∈L∧(l,k)∈A]} ;

V ←{k∈L | (∃l)[l∈L∧(l,k)∈A]} ;

Create the complete bipartite graph

H=(L\U,L\V,E) for matching all other lines;

foreach e=(lj,lk)∈E do

if lk does not lie to the left of lj then

w(e)←−∞ ;

else
w(e)←Distance(lj,lk)

end

end

B←MaxBipartiteMatching(H) ;

return A∪B
end

remaining lines are matched. We compute line distance as:

Distance(li,lk)=(ωd|ti−tk−bi+bk|

+(1−ωd)|ti+bi−tk−bk|)
−1, (3)

where ti and bi are the line intercepts li at the top and bottom of

the EPI image. ωd is a constant which determines the relative

importance of disparity similarity over spatial proximity of lines.

Finally, to prevent forming large superpixels in uniform regions,

we recursively split any segment that has a width larger than 15

pixels by adding new lines. To regularize segments across the

vertical and horizontal EPI directions—especially in textureless

regions—the slope of new lines is always set to match the disparity

of the vertical segment covering that spatial region.

The procedure is given in Algorithm 2. Figure 5 shows an

example EPI result after the computations of Sections 3.1 and 3.2.
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(a)

(b)

(c)

(d)

(e)

(f)

Figure 5: From top to bottom: (a) Input EPI. (b) Edge confidence

map C from Sec. 3.1. (c) Parametric lines L fit to C. As we do

not threshold, faint edge lines are visible along with some outliers.

(d) Outliers are robustly removed via spatial neighbor statistics,

depth, and edge confidence weights. Note: remaining overlapping

lines represent occlusions. (e) & (f) Line pairs are matched in an

occlusion-aware manner to form angular segments. Note: The

EPIs have been stretched vertically for viewing; input is 9 views.

3.3. Spatioangular Segmentation via Clustering

Our occlusion-aware segmentation per EPI must now be com-

bined across different EPIs as, currently, we have no correspon-

dence between the horizontal and vertical EPI segments (other

than the large-region split lines added in the previous step). We ad-

dress this by jointly clustering the segments in the central view of

the light field using k-means in (x,y,d,L∗,a∗,b∗) space (Fig. 6).

This clustering approach with disparity d might seems similar

to methods which exploit a central depth map for propagation,

like LFSP [25]. However, our method is view consistent: our EPI

segment-based computation allows us to estimate d for every light

field view, including those segments occluded from the central

view. These are all considered within the clustering.

For each segment, we compute the average pixel value in

the CIELAB color space: L∗,a∗,b∗. We define the disparity

d from the larger (deeper) slope of the two segment lines. For

segments in horizontal EPIs, y equals the EPI index and we

determine x to be the midpoint of the segment lines in the central

view. For vertical EPIs, we reverse this relation. The number of

clusters is user specified and determines superpixel size. We seed

clusters at uniformly-distributed spatial locations [1], and assign

x,y,d,L∗,a∗,b∗ from the segment center closest in image space.

Within the feature vector, x,y have weight 1 and L∗,a∗,b∗

have weight 3. We normalize d given our current scene estimates

then weight it by 120. This larger weight helps the method not to

cluster across occlusions, which usually have different disparities.

Clustering within the central view allows us to correspond

and jointly label the horizontal and vertical EPI segments, and to

provide spatial coherence. However, the boundaries from these

two EPI segmentations do not always align. Thus, after projecting

these segments into all light field views, we discard labels for

pixels where the two segmentations disagree.

3.3.1 Label Propagation

At this point, our only unlabeled pixels are those either occluded

from or in disagreement between both central sets of views in the

vertical and horizontal directions. We note that 1) the set U of

unlabeled pixels is sparse even within a local neighborhood; and

that 2) at this stage, we know the disparity of each labeled pixel

in the light field. As such, we minimize a cost with color, spatial,

and disparity terms to label the remaining pixels.

Given an unlabeled pixel (x,y)∈U in light field view Iu,v, let

L(x,y) define the set of labeled pixels in a spatial neighborhood

around (x,y). For every pixel (p,q)∈L(x,y), let ℓ(p,q) denote

its label, and d(p,q) its disparity. Moreover, let Is,r(·,·) represent

the color of any pixel, labeled or unlabeled, in light field view

Is,r. We define the cost of assigning (x,y) label ℓ(p,q) as:

E(x,y)(ℓ(p,q))=ωc(Iu,v(x,y)−Iu,v(p,q))
2

+ωs

(

(x−p)2+(y−q)2
)

+ωd

(

∑

s

∑

r

Iu,v(x,y)−Is,r(x+d(p,q),y+d(p,q))

)

.

(4)

We set weights empirically: wc=1, ws=1, wd=1e−5.

Label assignment total cost is E =
∑

(x,y)∈U E(x,y). We

efficiently compute this by minimizing E(x,y) per pixel. Along

with finding ℓ(x,y), we set d(x,y) equal to d(argminE(x,y)),
which allows us to project newly-assigned labels to any unlabeled

pixels in other views. In practice, this strategy only requires

minimization over the central row and column of light field views,

with the few remaining pixels in off-center views after projection

labeled by nearest neighbor assignment.

4. Experiments

4.1. Setting

Datasets We use synthetic light fields with both ground truth

disparity maps and semantic segmentation maps. From the HCI

Light Field Benchmark Dataset [22], we use the four scenes with

ground truth: papillon, buddha, horses, and still life. Each light

field image has 9×9 views of 768×768 pixels, except horses

with 1024×576 pixels. For real-world scenes, we use the EPFL

MMSPG Light-Field Image Dataset [26]. These images were

captured with a Lytro Illum camera (15×15 at 434×625). Please

refer to our supplementary materials for more results.

Baselines We compare to the state-of-the-art LFSP (light field

superpixel segmentation) approach of Zhu et al. [25]. This method

takes as input a disparity map for the central light field view. We

apply their method on the disparity estimates from Wang et

al. [20, 21] as originally used in the Zhu et al. paper, and on

ground truth disparity. Comparing these two results shows the

errors which are introduced from inaccurate disparity estimation.

We also compute a k-means clustering baseline, which is

similar in spirit to RGBD superpixel methods like DASP [24]

methods. Given a disparity map for the central light field view,

we convert the input images to CIELAB color space and form a
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Figure 6: Vertical and horizontal view-consistent segments are clustered in the central light field view to obtain spatio-angularly consistent

labels. Pixel labels which are not consistent across the vertical and horizontal segmentations are recalculated in the label propagation step.

vector f=(x,y,d,L∗,a∗,b∗) for each pixel in the central view of

the light field. Then, from uniformly-distributed seed locations,

we cluster using the desired number of output superpixels, and

project these labels into other views. For any pixels in non-central

views which remain unlabelled, we assign the label of the nearest

neighbor based on f=(x,y,L∗,a∗,b∗). For each feature, we use

the same weight parameters as in our method. As for LFSP, we

compute results using ground truth disparity maps and with the

estimation method of Wang et al. [20, 21].

4.2. Metrics

We use two view-consistency-specific metrics: self similarity

error [25] and number of labels per pixel; explained below. We

also use three familiar 2D boundary metrics: achievable accuracy,

boundary recall, and undersegmentation error; we explain these

in our supplemental material. Achievable accuracy, self similarity,

and number of labels per pixel describe overall accuracy and

consistency across views. Boundary recall and undersegmentation

error describe characteristics of over segmentation [14]. As a

measure of superpixel shape, we use the compactness metric

from Schick et al. [16]. We compute each metric across average

superpixel sizes of 15–40 square (225–1600 pixels each).

Self Similarity Error As defined in Zhu et al. [25], we project

the center of superpixels from each view into the center view,

and compute the average deviation versus ground truth disparity.

Smaller errors indicate better consistency across views.

Number of Labels Per View-dependent Pixel We compute

the mean number of labels per pixel in the central view as pro-

jected into all other views via the ground truth disparity map. This

gives a sense of the number of inconsistent views on average

(cf. HCI dataset with 81 input views). For ease of computation,

we discard pixels which are occluded in the central view.

4.3. Results

Figure 7 shows all metrics averaged over all four scenes; our

supplementary material includes per-scene metrics. For qualitative

results, please see our supplemental video.

View Consistency Our method outperforms both LFSP and

the k-means baselines using estimated disparity maps (Fig. 7(a)).

These findings are reflected in qualitative evaluation where we

reduce view inconsistencies such as flickering from superpixel

shape change over views (Fig. 8). Using ground truth disparity

maps, our method outperforms LFPS on both metrics, but only

outperforms k-means on self similarity error: k-means with

ground truth disparity produces fewer numbers of labels per pixel

than our method. As a reference for interpretation, the small

baselines cause occlusion in∼3–5% of light field pixels.

Achievable Accuracy, Boundary Recall, and Undersegmen-

tation Error Our method outperforms LFSP for all three met-

rics on both estimated and ground truth disparity for all superpixel

sizes (Fig. 7(c)). For smaller superpixel sizes (15–25), we are com-

petitive in accuracy and undersegmentation error with k-means

using ground truth disparity; at larger sizes k-means is better. Our

method recalls fewer boundaries than k-means: we occasionally

miss an edge section during step 1, which defers these regions to

our less robust final propagation step for unlabeled pixels instead.

However, k-means can create very small regions (Fig. 8) which

are broadly undesirable.

Compactness Our method is competitive with LFSP at smaller

superpixel sizes (15–25), and better at larger sizes (Fig. 7(b)). The

k-means baseline generates the least compact superpixels of the

tested methods, even with ground truth disparity. As we just saw,

this shape freedom helps it recall more boundaries.

Computation Time We use an Intel i7-5930 6-core CPU and

MATLAB for our implementation. We report times on the 9×9
view light fields with images of 768×768 pixels. Disparity map

computation for Wang et al. takes ∼8 minutes, which is a pre-

process to both the k-means baseline and LFSP. LFSP itself takes

∼2 minutes, with k-means taking∼2.5 minutes. Our approach

implicitly computes a disparity map and takes∼3.3 minutes total.

5. Discussion and Limitations

Our approach attempts to compute a view-consistent super-

pixel segmentation and produces competitive results; however,
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(a) View consistency: Self-similarity error and number of labels per pixel. (b) Shape quality: Superpixel compactness.

(c) Boundary accuracy: Achievable segmentation accuracy, boundary recall, and undersegmentation error.

Figure 7: Quantitative evaluation metrics for light field oversegmentation.

some issues still remain as not every pixel in the light field is

view consistent. First, our occlusion-aware EPI segmentation is

explicitly enforced by matching rules; however, the clustering step

in Section 3.3 does not explicitly handle occlusion—this is only

softly considered within the clustering by a high disparity weight.

Further, for efficiency, we rely on only the central horizontal

and vertical views. When segment boundary estimates do not

align between these two sources, or when pixels are occluded

from both of these sets of views, we rely on our less robust label

propagation (Section 3.3.1) which is not occlusion aware and uses

no explicit spatial smoothing, e.g., via a more expensive pairwise

optimization scheme. Both of these issues can cause minor label

‘speckling’ at superpixel boundaries. We hope to improve these

aspects of our method in future work.

While a valued resource for its labels, the HCI dataset [22]

has minor artifacts in its ground truth disparity, such as jagged

artifacts on the wooden plank in the ‘buddha’ scene. It is no longer

supported and a replacement exists [8]; however, this does not

include object segmentation labels for non-central views, which

makes evaluating view consistency with it difficult.

Our Lambertian assumption makes it difficult to handle spec-

ular objects: view-dependent effects break the assumption that

a 3D scene point maps to a line in EPI space, e.g., in the HCI

dataset ‘horses’ scene where all methods have trouble. Further, as

the normalized ratio of area to perimeter, compactness is only a

measure of average shape across the superpixel, and sometimes

our superpixel boundaries have higher curvature than LFSP.

6. Conclusion

We present a view-consistent 4D light field superpixel seg-

mentation method. It proceeds with an occlusion-aware EPI

segmentation method which provides view consistency by explicit

line estimation, depth ordering constraints, and bipartite graph

matching. Then, we cluster and propagate labels to produce per-

pixel 4D labels. The method outperforms the LFSP method on

view consistency and boundary accuracy metrics even when LFSP

is provided ground truth disparity maps, yet still provides similar

shape compactness. Our method also outperforms a depth-based

k-means clustering baseline on view consistency and compactness

metrics, and is competitive in boundary accuracy measures. Our

qualitative results in supplemental video show the overall benefits

of view consistency for light field superpixel segmentation.
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Figure 8: Superpixel segmentation boundaries and view consistency for the k-means baseline, LFSP [25], and our method. Disparity

maps for LFSP and k-means were calculated using the algorithm of Wang et al. [20, 21]. Top two rows: HCI dataset [22]; we highlight

superpixels which either change shape or vanish completely across views. Bottom two rows: EPFL Lytro dataset [26]. Our superpixels

tend to remain more consistent over view space, which can be easily seen as reduced flickering in our supplementary video. Note: Small

solid white/black regions appear when superpixels are enveloped by the boundary rendering width. k-means tends to have more of these

regions which helps it increase boundary recall, but this behavior is not useful for a superpixel segmentation method.
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