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Abstract

Domain shift is unavoidable in real-world applications

of object detection. For example, in self-driving cars, the

target domain consists of unconstrained road environments

which cannot all possibly be observed in training data. Sim-

ilarly, in surveillance applications sufficiently representa-

tive training data may be lacking due to privacy regulations.

In this paper, we address the domain adaptation problem

from the perspective of robust learning and show that the

problem may be formulated as training with noisy labels.

We propose a robust object detection framework that is re-

silient to noise in bounding box class labels, locations and

size annotations. To adapt to the domain shift, the model

is trained on the target domain using a set of noisy ob-

ject bounding boxes that are obtained by a detection model

trained only in the source domain. We evaluate the accu-

racy of our approach in various source/target domain pairs

and demonstrate that the model significantly improves the

state-of-the-art on multiple domain adaptation scenarios on

the SIM10K, Cityscapes and KITTI datasets.

1. Introduction

Object detection lies at the core of computer vision and

finds application in surveillance, medical imaging, self-

driving cars, face analysis, and industrial manufacturing.

Recent advances in object detection using convolutional

neural networks (CNNs) have made current models fast, re-

liable and accurate.

However, domain adaptation remains a significant chal-

lenge in object detection. In many discriminative problems

(including object detection) it is usually assumed that the

distribution of instances in both train (source domain) and

test (target domain) set are identical. Unfortunately, this as-

sumption is easily violated, and domain changes in object

detection arise with variations in viewpoint, background,

object appearance, scene type and illumination. Further,

object detection models are often deployed in environments

which differ from the training environment.

Common domain adaptation approaches are based on ei-

ther supervised model fine-tuning in the target domain or

unsupervised cross-domain representation learning. While

the former requires additional labeled instances in the tar-

get domain, the latter eliminates this requirement at the cost

of two new challenges. Firstly, the source/target represen-

tations should be matched in some space (e.g., either in in-

put space [69, 23] or hidden representations space [14, 54]).

Secondly, a mechanism for feature matching must be de-

fined (e.g. maximum mean discrepancy (MMD) [40, 35],

H divergence [2], or adversarial learning).

In this paper, we approach domain adaptation differently,

and address the problem through robust training methods.

Our approach relies on the observation that, although a (pri-

mary) model trained in the source domain may have subop-

timal performance in the target domain, it may nevertheless

be used to detect objects in the target domain with some

accuracy. The detected objects can then be used to retrain

a detection model on both domains. However, because the

instances detected in the target domain may be inaccurate,

a robust detection framework (which accommodates these

inaccuracies) must be used during retraining.

The principal benefit of this formulation is that the de-

tection model is trained in an unsupervised manner in the

target domain. Although we do not explicitly aim at match-

ing representations between source and target domain, the

detection model may implicitly achieve this because it is fed

by instances from both source and target domains.

To accommodate labeling inaccuracies we adopt a prob-

abilistic perspective and develop a robust training frame-

work for object detection on top of Faster R-CNN [47]. We

provide robustness against two types of noise: i) mistakes

in object labels (i.e., a bounding box is labeled as person

but actually is a pole), and ii) inaccurate bounding box lo-

cation and size (i.e., a bounding box does not enclose the

object). We formulate the robust retraining objective so

that the model can alter both bounding box class labels and

bounding box location/size based on its current belief of la-

bels in the target domain. This enables the robust detection
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model to refine the noisy labels in the target domain.

To further improve label quality in the target domain, we

introduce an auxiliary image classification model. We ex-

pect that an auxiliary classifier can improve target domain

labels because it may use cues that have not been utilized by

the original detection model. As examples, additional cues

can be based on additional input data (e.g. motion or opti-

cal flow), different network architectures, or ensembles of

models. We note however, that the auxiliary image classi-

fication model is only used during the retraining phase and

the computational complexity of the final detector is pre-

served at test time.

The contributions of this paper are summarized as fol-

lows: i) We provide the first (to the best of our knowledge)

formulation of domain adaptation in object detection as ro-

bust learning. ii) We propose a novel robust object detection

framework that considers noise in training data on both ob-

ject labels and locations. We use Faster R-CNN[47] as our

base object detector, but our general framework, theoreti-

cally, could be adapted to other detectors (e.g. SSD [32] and

YOLO [45]) that minimize a classification loss and regress

bounding boxes. iii) We use an independent classification

refinement module to allow other sources of information

from the target domain (e.g. motion, geometry, background

information) to be integrated seamlessly. iv) We demon-

strate that this robust framework achieves state-of-the-art on

several cross-domain detection tasks.

2. Previous Work

Object Detection: The first approaches to object detec-

tion used a sliding window followed by a classifier based

on hand-crafted features [6, 11, 60]. After advances in

deep convolutional neural networks, methods such as R-

CNN [19], SPPNet [22], and Fast R-CNN [18] arose which

used CNNs for feature extraction and classification. Slow

sliding window algorithms were replaced with faster region

proposal methods such as selective search [55]. Recent

object detection methods further speed bounding box de-

tection. For example, in Faster R-CNN [47] a region pro-

posal network (RPN) was introduced to predict refinements

in the locations and sizes of predefined anchor boxes. In

SSD [32], classification and bounding box prediction is per-

formed on feature maps at different scales using anchor

boxes with different aspect ratios. In YOLO [44], a regres-

sion problem on a grid is solved, where for each cell in the

grid, the bounding box and the class label of the object cen-

tering at that cell is predicted. Newer extensions are found

in [66, 45, 5]. A comprehensive comparison of methods is

reported in [25]. The goal of this paper is to increase the

accuracy of an object detector in a new domain regardless

of the speed. Consequently, we base our improvements on

Faster R-CNN, a slower, but accurate detector.1

Domain Adaptation: was initially studied for image

classification and the majority of the domain adaptation

literature focuses on this problem [10, 9, 30, 21, 20, 12,

50, 33, 34, 14, 13, 17, 1, 39, 31]. Some of the meth-

ods developed in this context include cross-domain kernel

learning methods such as adaptive multiple kernel learn-

ing (A-MKL) [10], domain transfer multiple kernel learn-

ing (DTMKL) [9], and geodesic flow kernel (GFK) [20].

There are a wide variety of approaches directed towards ob-

taining domain invariant predictors: supervised learning of

non-linear transformations between domains using asym-

metric metric learning [30], unsupervised learning of in-

termediate representations [21], alignment of target and do-

main subspaces using eigenvector covariances [12], align-

ment the second-order statistics to minimize the shift be-

tween domains [50], and covariance matrix alignment ap-

proach [62]. The rise of deep learning brought with it steps

towards domain-invariant feature learning. In [33, 34] a re-

producing kernel Hilbert embedding of the hidden features

in the network is learned and mean-embedding matching

is performed for both domain distributions. In [14, 13] an

adversarial loss along with a domain classifier is trained to

learn features that are discriminative and domain invariant.

There is less work in domain adaptation for object de-

tection. Domain adaptation methods for non-image clas-

sification tasks include [15] for fine-grained recognition,

[3, 24, 67, 61] for semantic segmentation, [29] for dataset

generation, and [36] for finding out of distribution data in

active learning. For object detection itself, [64] used an

adaptive SVM to reduce the domain shift, [43] performed

subspace alignment on the features extracted from R-CNN,

and [2] used Faster RCNN as baseline and took an adversar-

ial approach (similar to [13]) to learn domain invariant fea-

tures jointly on target and source domains. We take a fun-

damentally different approach by reformulating the prob-

lem as noisy labeling. We design a robust-to-noise train-

ing scheme for object detection which is trained on noisy

bounding boxes and labels acquired from the target domain

as pseudo-ground-truth.

Noisy Labeling: Previous work on robust learning has fo-

cused on image classification where there are few and dis-

joint classes. Early work used instance-independent noise

models, where each class is confused with other classes in-

dependent of the instance content [41, 38, 42, 49, 68, 65].

Recently, the literature has shifted towards instance-specific

label noise prediction [63, 37, 56, 57, 58, 59, 53, 27, 7, 46].

To the best of our knowledge, ours is the first proposal for

an object detection model that is robust to label noise.

1Our adoption of faster R-CNN also allows for direct comparison with

the state-of-the-art [2].

481



3. Method

Following the common formulation for domain adapta-

tion, we represent the training data space as the source do-

main (S) and the test data space as the target domain (T ).

We assume that an annotated training image dataset in S
is supplied, but that only images in T are given (i.e. there

are no labels in T ). Our framework, visualized in Fig. 1,

consists of three main phases:

1. Object proposal mining: A standard Faster R-CNN,

trained on the source domain, is used to detect objects

in the target domain. The detected objects form a pro-

posal set in T .

2. Image classification training: Given the images ex-

tracted from bounding boxes in S , we train an image

classification model that predicts the class of objects

in each image. The resulting classifier is used to score

the proposed bounding boxes in T . This model aids in

training the robust object detection model in the next

phase. The reason for introducing image classification

is that i) this model may rely on representations differ-

ent than those used by the phase one detection model

(e.g., motion features) or it may use a more sophisti-

cated network architectures, and ii) this model can be

trained in a semi-supervised fashion using labeled im-

ages in S and unlabeled images in T .

3. Robust object detection training: In this phase a

robust object detection model is trained using object

bounding boxes in S and object proposals in T (from

phase one) that has been rescored using the image clas-

sification (from phase two).

We organize the detailed method description as follows.

Firstly, we introduce background notation and provide a de-

scription of Faster R-CNN in Sec. 3.1 to define the model

used in phase one. Secondly, a probabilistic view of Faster

R-CNN in Sec. 3.2 provides a foundation for the robust ob-

ject detection framework presented in Sec. 3.3. This defines

the model used in phase three. Lastly, the image classifica-

tion model used in phase two is discussed in Sec. 3.4.

Notation: We are given training images in S along with

their object bounding box labels. This training set is de-

noted by DDDS = {(xxx(s), yyy(s))} where xxx(s) ∈ S represents

an image, yyy(s) is the corresponding bounding box label for

xxx(s) and s is an index. Each bounding box yyy = (yc, yyyl) rep-

resents a class label by an integer, yc ∈ Y = {1, 2, . . . , C},

where C is the number of foreground classes, and a 4-tuple,

yyyl ∈ R4, giving the coordinates of the top left corner,

height, and width of the box. To simplify notation, we as-

sociate each image with a single bounding box.2

2This restriction is for notational convenience only. Our implementa-

tion makes no assumptions about the number of objects in each image.

In the target domain, images are given without bounding

box annotations. At the end of phase one, we augment this

dataset with proposed bounding boxes generated by Faster

R-CNN. We denote the resulting set by DDDT = {xxx(t), ỹyy(t)}

where xxx(t) ∈ T is an image, ỹyy(t) ∈ Y is the corresponding

proposed bounding box and t is an index. Finally, we obtain

the image classification score obtained at the end of phase

two for each instance inDDDT from pimg(yc|xxx, ỹyyl) which rep-

resents the probability of assigning the image cropped in the

bounding box ỹyyl in xxx to the class yc ∈ Y ∪{0} which is one

of the foreground categories or background.

3.1. Faster RCNN

Faster R-CNN [47] is a two-stage detector consisting of

two main components: a region proposal network (RPN)

that proposes regions of interests (ROI) for object detection

and an ROI classifier that predicts object labels for the pro-

posed bounding boxes. These two components share the

first convolutional layers. Given an input image, the shared

layers extract a feature map for the image. In the first stage,

RPN predicts the probability of a set of predefined anchor

boxes for being an object or background along with refine-

ments in their sizes and locations. The anchor boxes are a

fixed predefined set of boxes with varying positions, sizes

and aspect ratios across the image. Similar to RPN, the re-

gion classifier predicts object labels for ROIs proposed by

the RPN as well as refinements for the location and size

of the boxes. Features passed to the classifier are obtained

with a ROI-pooling layer. Both networks are trained jointly

by minimizing a loss function:

L = LRPN + LROI . (1)

LRPN and LROI represent losses used for the RPN and

ROI classifier. The losses consist of a cross-entropy cost

measuring the mis-classification error and a regression loss

quantifying the localization error. The RPN is trained to

detect and localize objects without regard to their classes,

and the ROI classification network is trained to classify the

object labels.

3.2. A Probabilistic View of Faster RCNN

In this section, we provide a probabilistic view of Faster

R-CNN that will be used to define a robust loss function for

noisy detection labels. The ROI classifier in Faster R-CNN

generates an object classification score and object location

for each proposed bounding box generated by the RPN. A

classification prediction pcls(yc|xxx, ỹyyl) represents the prob-

ability of a categorical random variable taking one of the

disjoint C + 1 classes (i.e., foreground classes plus back-

ground). This classification distribution is modeled using a

softmax activation. Similarly, we model the location pre-

diction ploc(yyyl|xxx, ỹyyl) = N (yyyl; ȳyyl, σIII) with a multivariate
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Figure 1: The robust learning approach consists of three phases. In phase 1, a detection module is trained using labeled data

in the source domain. This detector is then used to generate noisy annotations for images in the target domain. In phase 2,

the annotations assigned in phase 1 are refined using a classification module. Finally, in phase 3, the detector is retrained

using the original labeled data and the refined machine-generated annotations in the target domain. Retraining is formulated

to account for the possibility of mislabeling.

Normal distribution3 with mean ȳyyl and constant diagonal

covariance matrix σIII . In practice, only ȳyyl is generated by

the ROI classifier which is used to localize the object.

3.3. Robust Faster RCNN

To gain robustness against detection noise on both the la-

bel (yc) and the box location/size (yyyl), we develop a refine-

ment mechanism that corrects mistakes in both class and

box location/size annotations. The phase three detection

model is trained using these refined annotations.

If the training annotations are assumed to be noise-free

then both pcls and ploc are used to define the maximum-

likelihood loss functions in Eq. 1. In the presence of noisy

labels, argmax pcls and argmax ploc may disagree with

the noisy labels but nevertheless correctly identify the true

class or location of an object. Additionally, we also have

access to the image classification model pimg from phase 2

that may be more accurate in predicting class labels for pro-

posed bounding boxes in T since it is trained using infor-

mation sources different from the primary detection model.

The question then is how to combine pcls, ploc from Faster

R-CNN and pimg from the image model to get the best pre-

diction for the class and location of an object?

Vahdat [56] has proposed a regularized EM algorithm for

robust training of image classification models. Inspired by

this approach, we develop two mechanisms for correcting

classification and localization errors, based on the assump-

tion that when training a classification model on noisy la-

beled instances, the distribution over true labels should be

close to both the distributions generated by the underlying

3This assumption follows naturally if the L2-norm is used for the lo-

calization error in Eq. 1. In practice however, a combination of L2 and L1

norms are used which do not correspond to a simple probabilistic output.

classification model and an auxiliary distribution obtained

from other sources. Since the accuracy of the learned clas-

sification model improves during training, the weighting of

these information sources should shift during training.

Classification Error Correction: We seek a distribution,

q(yc), which is close to both the classification model of

Faster R-CNN and the image classification model pimg , that

is trained in phase two. We propose the following optimiza-

tion objective for inferring q(yc)

min
q

KL(q(yc)||pcls(yc|xxx, ỹyyl))+αKL(q(yc)||pimg(yc|xxx, ỹyyl)).

(2)

KL denotes the Kullback-Leibler divergence and α > 0 bal-

ances the trade-off between two terms. With large values

of α, q favors the image classification model (pimg) over

Faster R-CNN predictions (pcls), and with smaller α, q fa-

vors pcls. Over the course of training, α can be changed to

set a reasonable balance between the two distributions.

The following result provides a closed-form solution to

the optimization problem in Eq. 2:

Theorem 1. Given two probability distributions p1(z) and

p2(z) defined for the random variable z and positive scalar

α, the closed-form minimizer of

min
q

KL(q(z)||p1(z)) + αKL(q(z)||p2(z))

is given by:

q(z) ∝
(

p1(z)p
α
2 (z)

)
1

α+1 (3)

Proof. Here, we prove the theorem for a continuous random
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variable defined in domain Ω.

min
q

KL(q(z)||p1(z)) + αKL(q(z)||p2(z))

=

∫

Ω

q(z) log
q(z)

p1(z)
dz + α

∫

Ω

q(z) log
q(z)

p2(z)
dz

= (α+ 1)

∫

Ω

q(z) log
q(z)

[

p1(z)pα2 (z)
]

1
α+1

dz

= (α+ 1)KL(q(z) ||
1

Z

[

p1(z)p
α
2 (z)

]
1

α+1 ) + C

where Z is the normalization for
(

p1(z)p
α
2 (z)

)
1

α+1 and C
is a constant independent of q. The final KL is minimized

when Eq. 3 holds.

Using Theorem. 1, the solution to Eq. 2 is obtained as

the weighted geometric mean of the two distributions:

q(yc) ∝
(

pcls(yc|xxx, ỹyyl)p
α
img(yc|xxx, ỹyyl)

)
1

α+1 . (4)

Since both pcls(yc|xxx, ỹyyl) and pimg(yc|xxx, ỹyyl) are categori-

cal distributions (with softmax activation), q(yc) is also a

(softmax) categorical distribution whose parameters are ob-

tained as the weighted mean of the logits generated by pcls
and pimg , i.e., σ

(

(lllcls+αlllimg)/(1+α)
)

where σ is the soft-

max and lllcls and lllimg are the corresponding logits. Setting

α = ∞ in Eq. 4 sets q(yc) to pimg(yc|xxx, ỹyyl) while α = 0
sets q(yc) to pcls(yc|xxx, ỹyyl). During training we reduce α
from large to smaller values. Intuitively, at the beginning of

the training, pcls(yc|xxx, ỹyyl) is inaccurate and provides a poor

estimation of the true class labels, therefore by setting α to

a large value we guide q(yc) to rely on pimg(yc|xxx, ỹyyl) more

than pcls. By decreasing α throughout training, q will rely

on both pcls and pimg to form a distribution over true class

labels.

Bounding Box Refinement: Eq. 4 refines the classifica-

tion labels for the proposal bounding boxes in the target

domain. Here, we provide a similar method for correct-

ing the errors in location and size. Recall that Faster R-

CNN’s location predictions for the proposal bounding boxes

can be thought as a Normally distributed N (yyyl; ỹyyl, σIII) with

mean ỹyyl and constant diagonal covariance matrix σIII . We let

pinit(yyyl|xxx, ỹyyl) := N (yyyl; ỹyyl, σIII) denote the initial detection

for image xxx. At each iteration Faster R-CNN predicts a lo-

cation for object using ploc(yyyl|xxx, ỹyyl) = N (yyyl; ȳyyl, σIII) for

image xxx and the proposal ỹyyl. We use the following objec-

tive function for inferring a distribution q over true object

locations:

min
q

KL(q(yyyl)||ploc(yyyl|xxx, ỹyyl))+αKL(q(yyyl)||pinit(yyyl|xxx, ỹyyl)) (5)

As with Eq. 2, the solution to Eq. 5 is the weighted geomet-

ric mean of the two distributions.

Theorem 2. Given two multivariate Normal distributions

p1(zzz) = N (zzz;µµµ1,ΣΣΣ) and p2(zzz) = N (zzz;µµµ2,ΣΣΣ) with com-

mon covariance matrix ΣΣΣ defined for the random vari-

able zzz and a positive scalar α, the weighted geometric

mean q(zzz) ∝
(

p1(zzz)p
α
2 (zzz)

)
1

α+1 is also Normal with mean
(

µµµ1 + αµµµ2

)

/(α+ 1) and covariance matrix ΣΣΣ.

Proof. By the definition of the Normal distribution, we

have:

q(zzz) ∝
(

p1(zzz)p
α
2 (zzz)

)
1

α+1

∝ e−
1
2

[

1
α+1

(zzz−µµµ1)
TΣΣΣ−1(zzz−µµµ1)+

α
α+1

(zzz−µµµ2)
TΣΣΣ−1(zzz−µµµ2)

]

∝ e−
1
2

[

zzzTΣΣΣ−1zzz−2zzzTΣΣΣ−1(
µµµ1+αµµµ2

α+1
)
]

∝ e−
1
2

(

zzz−(
µµµ1+αµµµ2

α+1
)
)T

ΣΣΣ−1
(

zzz−(
µµµ1+αµµµ2

α+1
)
)

Hence, q(zzz) = N (zzz; (µµµ1 + αµµµ2)/(α+ 1),ΣΣΣ)

Using Theorem. 2, the minimizer of Eq. 5 is:

q(yyyl) = N
(

yyyl; (ȳyyl + αỹyyl)/(α+ 1), σIII
)

. (6)

This result gives the refined bounding box location and size

as the weighted average of box location/size extracted from

phase one and the current output of Faster R-CNN. Setting

α = ∞ ignores the current output of Faster R-CNN while

α = 0 uses its output as the location. At training time, we

initially set α to a large value and then gradually decrease

it to smaller values. In this way, at early stages of training

q relies on pinit because it’s more accurate than the current

estimation of the model, but as training progresses and ploc
becomes more accurate, q relies more heavily on ploc.

Training Objective Function: We train a robust Faster

R-CNN using DDDS ∪DDDT . At each minibatch update, if an

instance belongs to DDDS then the original loss function of

Faster R-CNN is used for parameter update. If an instance

belongs to DDDT then q(yc) in Eq. 4 and q(yyyl) in Eq. 6 are

used to refine the proposed bounding box annotations. q(yc)
is used as the soft target labels in the cross entropy loss func-

tion for the mis-classification term and (ȳyyl+αỹyyl)/(α+1) is

used as the target location for the regression term. The mod-

ifications are made only in the ROI classifier loss function

because the RPN is class agnostic.

False Negative Correction: Thus far, the robust detec-

tion method only refines the object proposals generated in

phase one. This allows the model to correct false positive

detections, i.e., instances that do not contain any foreground

object or that contain an object from a class different than

the predicted class. However, we would also like to correct

false negative predictions, i.e., positive instances of fore-

ground classes that are not detected in phase one.
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To correct false negative instances, we rely on the hard

negative mining phase of Faster R-CNN. In this phase a

set of hard negative instances are added as background in-

stances to the training set. Hard negatives that come from

DDDS are actually background images. However, the “back-

ground” instances that are extracted from DDDT may be false

negatives of phase one and may contain foreground objects.

Therefore, during training for negative samples that belong

to DDDT , we define pimg(yc) to be a softened one-hot vector

by setting the probability of a background to 1 − ǫ and the

probability of the other class labels uniformly to ǫ/C. This

is used as a soft target label in the cross-entropy loss.

3.4. Image Classification:

Phase two of our framework uses an image classifica-

tion model to re-score bounding box proposals obtained in

phase one. The image classification network is trained in a

semi-supervised setting on top of images cropped from both

DDDS (clean training set) and DDDT (noisy labeled set). For im-

ages in DDDS , we use the cross-entropy loss against ground

truth labels, but, for images in DDDT the cross-entropy loss is

computed against soft labels obtained by Eq 2, where the

weighted geometric mean between predicted classification

score and a softened one-hot annotation vector is computed.

This corresponds to multiclass extension of [56] which al-

lows the classification model to refine noisy class labels for

images in DDDT .

Note that both DDDS and DDDT have bounding boxes an-

notations from foreground classes (although instances in

DDDT have noisy labels). For training the image classifica-

tion models, we augment these two datasets with bounding

boxes mined from areas in the image that do not have over-

lap with bounding boxes in DDDS or DDDT .

4. Experiments

To compare with state-of-the-art methods we follow the

experimental design of [2]. We perform three experi-

ments on three source/target domains and use similar hyper-

parameters as [2]. We use the Faster R-CNN implemen-

tation available in the object detection API [25] source

code. In all the experiments, including the baselines and our

method, we set the initial learning rate to 0.001 for 50, 000
iterations and reduce it to 0.0001 for the next 20, 000 itera-

tions (a similar training scheme as [2]). We linearly anneal

α from 100 to 0.5 for the first 50, 000 iterations and keep

it constant thereafter. We use InceptionV2 [52], pre-trained

on ImageNet [8], as the backbone for Faster R-CNN. In one

slight departure, we set aside a small portion of the train-

ing set as validation for setting hyper-parameters. Incep-

tionV4 [51] is used for the image classification phase with

initial learning rate of 3 × 10−4 that drops every 2 epochs

by a factor 0.94. We set the batch size to 32 and train for

300 000 steps.

Baselines: We compare our method against the following

progressively more sophisticated baselines.

• Faster R-CNN [47]: This is the most primitive base-

line. A Faster R-CNN object detector is trained on the

source domain and tested on the target domain so that

the object detector is blind to the target domain.

• Pseudo-labeling [26]: A simplified version of our

method in which Faster R-CNN is trained on the

source domain to extract object proposals in the target

domain, and then based on a pre-determined threshold,

a subset of the object proposals are selected and used

for fine-tuning Faster R-CNN. This process can be re-

peated. This method corresponds to the special case

where α = 0 is fixed throughout training. The origi-

nal method in [26] performs a progressive adaptation,

which is computationally extensive. Since our method

and the previous state-of-the-art method perform only

one extra fine-tuning step, we perform only one repe-

tition for a fair comparison.

• Feature Learning [2]: This state-of-the-art domain

adaptation method reduces the domain discrepancy by

learning robust features in an adversarial manner. We

follow the experimental setup used in [2].

Datasets: Following [2] we evaluate performance on

multi- and single-label object detection tasks using three

different datasets. Depending on the experiment, some

datasets are used as both target and source domains and

some are only used as either the source or target domain.

• SIM 10K [28] is a simulated dataset containing 10, 000
images synthesized by the Grand Theft Auto game

engine. In this dataset, which simulates car driving

scenes captured by a dash-cam, there are 58, 701 anno-

tated car instances with bounding boxes. We use 10%
of these for validation and the remainder for training.

• Cityscapes [4] is a dataset4 of real urban scenes con-

taining 3, 475 images captured by a dash-cam, 2, 975
images are used for training and the remaining 500 for

validation. Following [2] we report results on the val-

idation set because the test set doesn’t have annota-

tions. In our experiments we used the tightest bound-

ing box of an instance segmentation mask as ground

truth. There are 8 different object categories in this

dataset including person, rider, car, truck, bus, train,

motorcycle and bicycle.

• Foggy Cityscapes [48] is the foggy version of

Cityscapes. The depth maps provided in Cityscapes

are used to simulate three intensity levels of fog in

[48]. In our experiments we used the fog level with

4This dataset is usually used for instance segmentation and not object

detection.
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Cityscapes → Foggy Cityscapes

Method Cls-Cor Box-R FN-Cor person rider car truck bus train motorcycle bicycle mAP

Faster R-CNN[47] 31.69 39.41 45.81 23.86 39.34 20.64 22.26 32.36 31.92

Pseudo-labeling[26] 31.94 39.94 47.97 25.13 39.85 27.22 25.01 34.12 33.90

Feature Learning [2] 35.81 41.63 47.36 28.49 32.41 31.18 26.53 34.26 34.70

Noisy Labeling (Ours) :

✓ ✗ ✗ 34.82 41.89 48.93 27.68 42.53 26.72 26.65 35.76 35.62

✓ ✓ ✗ 35.26 42.86 50.29 27.87 42.98 25.43 25.30 35.94 36.06

✓ ✓ ✓ 35.10 42.15 49.17 30.07 45.25 26.97 26.85 36.03 36.45

Faster R-CNN[47] trained on target 40.63 47.05 62.50 33.12 50.43 39.44 32.57 42.43 43.52

Table 2: Quantitative results comparing our method to baselines for adapting from Cityscapes to Foggy Cityscapes. We

record the average precision (AP) on the Cityscapes validation set. “Cls-Cor” represents “classification error correction”,

Box-R stands for “Bounding Box Refinement” component, and FN-Cor stands for “False Negative Correction” component

of our method. The last row shows the base detector’s performance if labeled data for target domain was available.

highest intensity (least visibility). The same dataset

split used for Cityscapes is used for Foggy Cityscapes.

• KITTI [16] is another real-world dataset consisting of

7, 481 images of real-world traffic situations, including

freeways, urban and rural areas. Following [2] we used

the whole dataset for both training, when it is used as

source, and test, when it is used as target.

4.1. Adapting synthetic data to real world

In this experiment, the detector is trained on synthetic

data generated using computer simulations and the model

is adapted to real world examples. This is an important use

case as it circumvents the lack of annotated training data

common to many applications (e.g. autonomous driving).

The source domain is SIM 10K and the target domain is

Cityscapes dataset (denoted by “SIM 10K → Cityscapes”).

We use the validation set of Cityscapes for evaluating the

results. We only train the detector on annotated cars be-

cause cars is the only object common to both SIM 10K and

Cityscapes.

SIM 10K → Cityscapes

Method Cls-Cor Box-R FN-Cor AP

Faster R-CNN[47] 31.08

Pseudo-labeling[26] 39.05

Feature Learning [2] 40.10

Noisy Labeling (Ours) :

✓ ✗ ✗ 41.28

✓ ✓ ✗ 41.83

✓ ✓ ✓ 42.56

Faster R-CNN[47] trained on target 68.10

Table 1: Quantitative results comparing our method to base-

lines for adapting from SIM 10K dataset to Cityscapes. We

record average precision (AP) on the Cityscapes validation

set. The last row shows the base detector’s performance if

labeled data for target domain was available.

Table 1 compares our method to the baselines. We

tested our method with “Classification Error Correction

(Cls-Cor)”5, with or without the “Bounding Box Refine-

ment (Box-R)” and “False Negative Correction (FN-Cor)”

components. The state-of-the-art Feature Learning [2]

method has +1.05% improvement over the basic Pseudo-

labeling[26] baseline. Our best performing method has a

+3.51% improvement over the same baseline yielding more

than triple the improvement over the incumbent state-of-

the-art.

4.2. Adapting normal to foggy weather

Changes in weather conditions can significantly affect

visual data. In applications such as autonomous driving,

the object detector must perform accurately in all condi-

tions [48]. However, it is often not possible to capture

all possible variations of objects in all weather conditions.

Therefore, models must be adaptable to differing weather

conditions. Here we evaluate our method and demonstrate

its superiority over the current state-of-the-art for this task.

We use Cityscapes dataset as the source domain and Foggy

Cityscapes as the target domain (denoted by “Cityscapes →
Foggy Cityscapes”).

Table. 2 compares our method to the baselines on multi-

label domain adaptation. The categories in this experiment

are person, rider, car, truck, bus, train, motorcycle, bicycle.

Average precision for each category along with the mean

average precision (mAP) of all the objects are reported. Our

method improves Faster R-CNN mAP by +4.53%, while

the state-of-the-art’s improvement is +2.78%.

4.3. Adapting to a new dataset

The previous examples of domain adaptation (synthetic

data and weather change) are somewhat specialized. How-

5Turning off Cls-Cor reduces our approach to a method similar to

Pseudo-labeling[26] with similar performance. To maintain robustness to

label noise, we run all experiments with Cls-Cor component.
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Figure 2: Qualitative comparison of our method with Faster R-CNN on the “Cityscapes → KITTI” experiment. Each column

corresponds to a particular image in the KITTI test set. Top and bottom images in each column illustrate the bounding boxes

of the cars detected by Faster R-CNN and our method respectively. In the first two columns our method corrects several false

positives. In all cases our method successfully corrected the size/location of the bounding boxes (e.g. the rooflines in the third

column). In the fourth and fifth examples, our method has detected cars that Faster R-CNN has missed. Nevertheless, false

positives do occur (e.g. in column five), though the probability of those specific false positives is low (53% in this example).

ever, any change in camera (e.g. angle, resolution, qual-

ity, type, etc.) or environmental setup can cause domain

shift. We investigate the ability of our method to adapt

from one real dataset to another real dataset. We use

Cityscapes and KITTI as the source and target domain in

two separate evaluations. We denote the experiment in

which Cityscapes is the source domain and KITTI is the tar-

get domain by “Cityscapes → KITTI”, and vice versa by

“KITTI → Cityscapes”.

Tables 3 and 4 compare average precision on the car

class, the only common object. Our method signifi-

cantly outperforms the state-of-the-art in both situations

(Cityscapes ⇄ KITTI). Qualitative results of our method on

the KITTI test set are shown in Figure 2.

5. Conclusion

Domain shift can severely limit the real-world deploy-

ment of object-detection-based applications when labeled

data collection is either expensive or infeasible. We have

proposed an unsupervised approach to mitigate this prob-

lem by formulating the problem as robust learning. Our ro-

bust object detection framework copes with labeling noise

on both object classes and bounding boxes. State-of-the-

art performance is achieved by robust training in the target

domain using a model trained only in the source domain.

This approach eliminates the need for collecting data in the

target domain and integrates other sources of information

using detection re-scoring.
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KITTI → Cityscapes

Method Cls-Cor Box-R FN-Cor AP

Faster R-CNN[47] 31.10

Pseudo-labeling[26] 40.23

Feature Learning [2] 40.57

Noisy Labeling (Ours) :

✓ ✗ ✗ 42.03

✓ ✓ ✗ 42.39

✓ ✓ ✓ 42.98

Faster R-CNN[47] trained on target 68.10

Table 3: Quantitative comparison of our method with base-

lines for adapting from KITTI to Cityscapes. We record

average precision (AP) on the Cityscapes test set. The last

row gives the base detector’s performance if labeled data for

the target domain was available.

Cityscapes → KITTI

Method Cls-Cor Box-R FN-Cor AP

Faster R-CNN[47] 56.21

Pseudo-labeling[26] 73.84

Feature Learning [2] 73.76

Noisy Labeling (Ours) :

✓ ✗ ✗ 76.36

✓ ✓ ✗ 76.93

✓ ✓ ✓ 77.61

Faster R-CNN[47] trained on target 90.13

Table 4: Quantitative comparison of our method with base-

lines for adapting Cityscapes to KITTI. We record average

precision (AP) on the KITTI train set. The last row gives

the base detector’s performance if labeled data for target

domain was available.
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nio M López. Domain adaptation of deformable part-based

models. IEEE transactions on pattern analysis and machine

intelligence, 36(12):2367–2380, 2014. 2

[65] Xiyu Yu, Tongliang Liu, Mingming Gong, and Dacheng Tao.

Learning with biased complementary labels. In Proceedings

of the European Conference on Computer Vision (ECCV),

pages 68–83, 2018. 2

[66] Liliang Zhang, Liang Lin, Xiaodan Liang, and Kaiming He.

Is faster r-cnn doing well for pedestrian detection? In

European Conference on Computer Vision, pages 443–457.

Springer, 2016. 2

[67] Yang Zhang, Philip David, and Boqing Gong. Curricu-

lum domain adaptation for semantic segmentation of urban

scenes. In The IEEE International Conference on Computer

Vision (ICCV), volume 2, page 6, 2017. 2

[68] Zhilu Zhang and Mert R Sabuncu. Generalized cross entropy

loss for training deep neural networks with noisy labels. In

Neural Information Processing Systems (NIPS), 2018. 2

[69] Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A

Efros. Unpaired image-to-image translation using cycle-

consistent adversarial networks. In Proceedings of the IEEE

International Conference on Computer Vision, pages 2223–

2232, 2017. 1

490


