
 

 
Abstract 

Recent modern displays are now able to render high 

dynamic range (HDR), high resolution (HR) videos of up to 

8K UHD (Ultra High Definition). Consequently, UHD 

HDR broadcasting and streaming have emerged as high 

quality premium services. However, due to the lack of 

original UHD HDR video content, appropriate conversion 

technologies are urgently needed to transform the legacy 

low resolution (LR) standard dynamic range (SDR) videos 

into UHD HDR versions. In this paper, we propose a joint 

super-resolution (SR) and inverse tone-mapping (ITM) 

framework, called Deep SR-ITM, which learns the direct 

mapping from LR SDR video to their HR HDR version. 

Joint SR and ITM is an intricate task, where high frequency 

details must be restored for SR, jointly with the local 

contrast, for ITM. Our network is able to restore fine 

details by decomposing the input image and focusing on the 

separate base (low frequency) and detail (high frequency) 

layers. Moreover, the proposed modulation blocks apply 

location-variant operations to enhance local contrast. The 

Deep SR-ITM shows good subjective quality with increased 

contrast and details, outperforming the previous joint 

SR-ITM method. 

1. Introduction 
Modern TVs come with 4K/8K UHD (Ultra High 

Definition) displays and high dynamic range (HDR) 
capabilities. Nevertheless, the current Digital TV and 
Internet TV (IPTV) services still provide the legacy video 
contents of Full HD (FHD) resolution and standard 
dynamic range (SDR), which then, must be rendered on the 
premium TV displays that support 4K/8K UHD and HDR 
videos. Therefore at the terminal end, it is necessary to 
convert the FHD SDR videos to 4K/8K UHD HDR in order 
to display them on the premium displays. Furthermore, the 
new media services of high quality suffer from the lack of 
original 4K/8K UHD and HDR visual content. Thus, it is 
also essential to convert the legacy contents of Full HD and 
SDR video to 4K/8K UHD and HDR videos at the content 
production end. 

In this paper, we aim to tackle the joint super-resolution 
(SR) and inverse tone-mapping (ITM) problem, where 

low-resolution (LR) SDR video can be directly converted 
into high–resolution (HR) HDR video. Along with the 
benefits in the terminal and content production ends, less 
bandwidth is necessary if the transmitted LR SDR videos 
are directly reconstructed as HR HDR on the device, with 
this joint SR-ITM framework. Moreover, users can benefit 
from high quality HR HDR visual content on their high-end 
TVs. 

However, such joint SR-ITM is a complex problem. In 
LR images, high frequency details are lost with the reduced 
spatial resolution compared to HR images. In SDR images, 
local variations of contrast and local details are lost with the 
reduced signal range (amplitude) compared to HDR images. 
Therefore, for the joint SR-ITM task, it is important to 
jointly restore the fine details and contrast while increasing 
the spatial resolution and the signal amplitudes when 
predicting the HR HDR image from the LR SDR input. 

In our proposed architecture, called Deep SR-ITM, the 
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Figure 1: Qualitative comparison with other methods. Our 
method shows enhanced contrast compared to the cascade of 
existing SR [20] and ITM methods [9, 13, 15]. 
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input image signal is decomposed into the base and detail 
layers, and separate feature extraction passes are designed 
for the two layers. This allows the network to focus on 
restoring details in the detail layer pass. For enhancing 
local contrast, convolution operations are not suitable as 
they are spatially equivariant (identical filters are applied 
across all pixels, in a sliding window manner). Thus, we 
design modulation blocks, which perform spatially-variant 
(pixel-location-specific) multiplication operations to 
modulate the local intensities. The produced modulation 
maps are also image-specific as they are produced 
image-dependently, unlike convolution filters that are fixed 
for all images once trained. 

Our problem is functionally different from the previous 
ITM methods that aim to predict the luminance of the 
image in the linear domain, which is the physical brightness 
of the scene, typically in cd/m2 (candela per square meter), 
as our network directly predicts HR HDR images in the 
HDR display format, in the pixel domain. Hence, the color 
gamut must be expanded from BT.709 to BT.2020 [2], the 
bit-depth increased from 8 bits/pixel to 10 bits/pixel , and 
the transfer function also changes from gamma [1] to PQ 
[3] or HLG [4] OETF. Fig. 2 compares the conventional 
luminance-predicting-ITM, and our approach that directly 
produces HDR videos in the pixel domain, when producing 
HDR images in display format. To facilitate real-world 
applications, we train and test our network with 4K 
(3,8402,160) HDR videos. 

Our contributions are three-fold: 
 We introduce a novel deep network with modulation 

blocks that focus on enhancing local contrast for the 
joint SR-ITM problem. 

 We incorporate input decomposition methods for the 
Deep SR-ITM to focus on the distinct low and high 
frequency components of the input image. 

 For practicality, we experiment with 4K HDR videos 
to target realistic applications, and our network 
directly predicts HR HDR images in the HDR 
standard display format. 

2. Related work 

2.1. Inverse tone-mapping 
Traditional single exposure ITM methods [5-13] exploit 

internal image characteristics, often focusing on the 
over-exposed (saturated) pixels [7, 10-12] in predicting the 
luminance of the scene. However, these methods 
concentrate on expanding the dynamic range and neglect 
the reconstruction of lost details and contrast. The recent 
data-driven approaches in single exposure ITM [14, 15] 
indirectly resolved this issue through large amount of 
training data. Zhang et al. [14] focused on outdoor images 
and predicted the degree of sun elevation simultaneously, 
and Eilertsen et al. [15] trained a U-Net [41] structure only 
for the saturated regions and later blended the prediction 
with the input SDR image for the unsaturated regions.  

However, for our problem where color changes occur for 
all regions (saturated and unsaturated), it is unsuitable to 
convert only the saturated regions. The method in [14] 
cannot be applied for our problem since it only targets 
images with the sun in the sky. Furthermore, the previous 
methods predict the luminance (in cd/m2) and therefore, do 
not consider the color gamut expansion. Architecture-wise, 
the methods in [14, 15] employ auto-encoder-type 
structures (e.g. U-Net). However, for joint SR-ITM, relying 
fully on auto-encoder structures may result in losing 
important spatial-wise information that is crucial for 
reconstructing higher resolution images for the SR side. 
Therefore, we specifically design our network to focus on 
restoring the lost details and enhancing local contrast, for 
all pixel regions. The Deep SR-ITM, trained on 4K HDR 
videos, directly predicts the HR HDR image in the HDR 
display format for practical applications on HDR TVs. 

2.2. Super-resolution 
Starting with Dong et al.’s method [16], many 

CNN-based SR methods [17-24] have been proposed. After 
the pixel shuffler method [17] and the very deep SR with 
residual learning [18], deep networks have become more 
and more complex, with more recent structures employing 
residual blocks [19-20, 22-23], dense connections [21-22] 
and channel attention blocks [23]. Our method is highly 
inspired by very deep networks that are able to generate 
finer details. We employ different combinations of residual, 
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Figure 2: Comparison of the processing pipeline for rendering 
SDR to HDR video format between (a) linear domain, and (b) 
pixel domain prediction methods. 
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skip and modulation blocks, for reconstructing space-wide 
high frequency details, and restoring amplitude-wise local 
contrast. We let our network focus on the separate aspects 
by decomposing the input using the guided filter [26]. 

2.3. Joint SR-ITM  
A natural way to generate HR HDR images from LR 

SDR ones is to cascade existing SR and ITM methods in 
series. However, this is inefficient, as it increases overall 
complexity, and inaccurate, as cascading may accumulate 
the error made from the previous prediction [25]. An 
end-to-end jointly trainable SR-ITM network was first 
proposed by Kim et al. [25], where a multi-purpose CNN 
structure was designed to simultaneously perform three 
tasks of SR, ITM and joint SR-ITM in a single network 
with three output branches. The multi-purpose CNN simply 
consists of stacked convolution layers for the SR and ITM 
branches, and a third joint SR-ITM branch that makes use 
of the concatenated feature maps of the other two branches. 
On the other hand, the proposed Deep SR-ITM tackles the 
joint SR-ITM problem in a more elaborate and dedicated 
way by using the decomposed signal components of base 
and detail information for spatially-variant modulations. 

3. Proposed method 
We propose Deep SR-ITM, a deep residual network 

based on signal decomposition and modulations, where an 
HR HDR image in the HDR display format of BT.2020 [2] 

and PQ-OETF [3] is generated from a single LR SDR 
image. Our network architecture is shown in Fig. 3. 

3.1. Input decomposition 
Before entering the network, the input LR SDR image I 

is decomposed into the base layer Ib and the detail layer Id 
using the guided filter (an edge-preserving low-pass filter) 
[26]. Ib is computed by applying the guided filter to I, and 
then Id is obtained by simply dividing I by Ib as 

Id = I ⊘ Ib,                                      (1) 

where ⊘ denotes element-wise division. Ib contains a 
blurred color image, dominant with low frequency 
information, and Id is mostly colorless, dominant with high 
frequency information (e.g. edges and texture). 

Since I also contains useful information, it is 
concatenated along with Ib and Id in the channel direction.  

Ib
in = [I  Ib],   and   Id

in = [I  Id].                 (2) 

Then, Ib
in and Id

in proceed separately in two distinct feature 
extraction passes, so that the top base layer pass can 
concentrate on converting the color and expanding the 
amplitude, and the bottom detail layer pass can focus on 
restoring high frequency details.  

3.2. Residual skip modulation blocks 

Modulation. Convolution operations in convolution layers 
are spatially equivariant, since the same convolution filters 
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are applied to all pixel positions. Especially for enhancing 
local contrast, this property of convolutions limits the 
capability of the network, as image characteristics (such as 
the contrast to be restored) vary depending on pixel 
locations. Furthermore, convolution filters are fixed once 
the network is trained, and the same filters are applied to all 
image samples. Therefore, we introduce spatially-variant 
and image-adaptive modulations by element-wise 
multiplication, to aid the network in modelling more 
complex mappings, than can be modelled by simple CNNs. 
Operation-wise, this is similar to attention blocks (actually, 
a generalization of spatial channel attention) in high level 
vision tasks, such as object detection and classification. For 
those tasks, attention blocks help the network focus on 
semantically important regions. For a low level vision task 
like joint SR-ITM, the location-specific multiplication 
operation helps modulate the image signal pixel-by-pixel. 

Residual blocks. We design four different combinations of 
residual, skip and modulation blocks: ResBlock, 
ResModBlock, ResSkipBlock and ResSkipModBlock, in 
our network in Fig. 3.  

Firstly, if we let x be an input to the i-th block, the output 
of the i-th ResBlock RBi (orange box) can be expressed as, 

RBi(x) = (Conv ⸰ RL ⸰ Conv ⸰ RL) (x) + x = CRB(x) + x,  (3) 

where Conv is a convolution layer and RL is the ReLU 
activation [27] (RL() = max(0,  )).  
Secondly, the ResModBlock (green box) has an 

additional modulation component. It requires the shared 
modulation features (SMFb) of the base layer given by, 

SMFb= (RL ⸰ Conv ⸰ RL ⸰ Conv ⸰ RL ⸰ Conv) (Ib
in).    (4) 

The modulation component then goes through additional 
layers that are not shared with other ResModBlocks, to 
account for the difference depending on the depth of each 
block. The output of the i-th ResModBlock RMBi is then 
given by, 

RMBi(x) = CRB(x)⊙{(Conv ⸰ RL ⸰ Conv) (SMFb)} + x,   (5) 

where ⊙ denotes element-wise multiplication.  
The output (FEb) of the last feature extraction layer of the 

top base layer pass is then given by, 

FEb = (RMBm ⸰ RBm
b ⸰...⸰ RMB1 ⸰ RB1

b ⸰ Conv) (Ib
in),    (6) 

where FEb is obtained by alternatively applying the 
ResBlock and the ResModBlock, and contains m RBbs 
(ResBlocks in the base layer pass) and m RMBs. 
 For the detail layer pass, skip components are 
additionally used to aid the flow of information. The third 
type of block, ResSkipBlock (yellow box), bridges the 
features of the ResModBlock in the base layer pass. The 
output of the i-th ResSkipBlock RSBi is given by, 

RSBi(x) = (Conv ⸰ RL ⸰ Conv ⸰ DR ⸰ RL) ([x  RMBi]) + x, (7) 

where DR is a dimension reduction layer with 11 
convolutions, and [x y] denotes the concatenation of x and y 
in the channel direction, as in Eq. (2). The DR layer acts as 
a selection module that controls which and how much 
information to pass through from the expanded input. 
 Lastly, the ResSkipModBlock is designed with 
modulations as well as skip connections. The output of the 
i-th ResSkipModBlock RSMBi is given by, 

RSMBi(x) = {(Conv ⸰ RL ⸰ Conv ⸰ DR ⸰ RL) ([x  RBi
b])} ⊙ 

{(Conv ⸰ RL ⸰ Conv) (SMFd)} + x.         (8) 

 The output (FEd) of the last feature extraction layer of 
the bottom detail layer pass is then given by, 

FEd =  (RSMBm⸰RSBm-1⸰...⸰RSB1⸰RSMB1⸰ 1
dRB ⸰Conv)(Id

in). (9) 

FEd contains m RSMBs, m-1 RSBs, and 1 RBd (ResBlock in 
the detail layer pass). 

3.3. Fusion and synthesis 
The later parts of the Deep SR-ITM consist of fusing the 

features of the base layer and the detail layer (FEb and FEd), 
and finally producing the HR HDR output. ResBlocks are 
again used for the integration part, denoted as RBf. The 
input to the ResBlock, xf, is given by, 

xf = (Conv ⸰ DR ⸰ RL) ([FEb  FEd]),            (10) 

and the output yf after the n-th ResBlock is expressed as, 

yf = (RBn
f ⸰…⸰ RB1

f) (xf).                    (11) 

Then, the final HR HDR prediction Ĵ is given by, 

Ĵ = (Conv ⸰PS⸰RL⸰Conv⸰RL⸰Conv⸰RL) (yf) + Bic(I),  (12) 

where PS denotes pixel shuffle [17], and Bic(I) denotes 
bicubic up-scaling of I to match the resolution of Ĵ. Global 
residual learning is applied, as well as the local residual 
learning inside the four types of residual blocks to ease 
training and enhance the prediction accuracy. 

3.4. Toy network 
We design a separate toy network (simplified version of 

the Deep SR-ITM) to further analyze the effect of input 
decompositions (Sec. 4.2.) and evaluate different types of 
modulations (Sec. 4.3.). The toy network should be simple 
for the efficient management of experiments, but also 
representative of the original Deep SR-ITM so that 
experiment results on the toy network mirror those of the 
original Deep SR-ITM. The toy network is illustrated in Fig. 
4. It contains global and local residual connections, skip 
connections from the base to detail layer pass, and 
modulations for each pass, as well as input decomposition. 
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4. Experiment results 

4.1. Experiment conditions 
Implementation details. All convolution filters are of size 
33 with 64 output channels, except for the layer before 
pixel shuffle with 256 channels, and the output layer with 3 
channels. The network is trained and tested for all three 
YUV channels as the color container is also converted. In 
the network architecture, m = 3 and n = 10. For experiments 
with the scale factor (SF) of 4 for SR, two pixel shufflers 
were implemented, with a convolution layer in between 
them. All results with the SF unmentioned are for SF = 2. 
Data. We collected ten 4K-UHD HDR videos (BT.2020 
with PQ-OETF) of 59,818 frames in total from YouTube. 
Among these, 7 videos were used for training (44K frames) 
and 3 were left for testing. 20 to 40 patches of size 160160 
were randomly cropped within each frame. To avoid high 
coherence among the frames, patches were extracted with a 
frame stride ranging from 10 to 80. For testing, we selected 
28 different scenes in the test video. For tone-mapping to 
obtain SDR videos from their corresponding HDR ones, we 
investigated using 19 different TMOs selected from the 
implementations in HDR Toolbox [28]. In this case, the 
HDR videos were linearized and the color container was 
converted (BT. 2020 to BT. 709) prior to tone-mapping, 
and gamma-encoded afterwards. However, these methods 
exhibited unnatural colors, and produced unstable results 
for dark scenes as shown in Fig. 5. Since the LR SDR data 
should look natural and be as close to real SDR videos as 
possible, we gathered the SDR video pairs through the 
automatic conversion process of YouTube, and 
down-scaled the frames with bicubic filtering. 
Training. We used the L2 loss, Adam [29] optimizer and 
Xavier initialization method [30] for training. L2 loss 
works well, as the HR HDR prediction is in the pixel 
domain. The Deep SR-ITM is pre-trained without 
modulation (without the blue arrows in Fig. 3) for 490K 

iterations, with the learning rate of 510-7 for weights and 
510-8 for biases. After pre-training, the network was fully 
trained with modulation for another 660K iterations. We 
take this two-step training strategy so that the modulation 
maps are able to train on meaningful feature maps. The 
mini-batch size is 16. The whole training and testing 
processes were implemented using MatConvNet [31]. 

For the toy network, we used separately collected 
SDR-HDR pairs. It is also pre-trained first without 
modulation (without the blue arrows in Fig. 4), and is fully 
trained afterwards. The learning rate is set to 10-6, with 
other training parameters set the same as the Deep SR-ITM.  
Visualization. All visualizations of the HDR results in this 
paper are obtained through the madVR renderer with the 
MPC-HC player. 

4.2. Input decomposition 
We first analyzed the effect of input decomposition, by 

designing five variations of the toy network, with one to 
three feature extraction passes, each with possible 
combinations of the LR SDR image, its base layer and its 
detail layer as input. The network designs are summarized 
in Table 1. In all cases, no modulations were involved.  

Specifically the network in column (a) of Table 1, is a 
single-pass network with only the image (without the base 
nor the detail layer) entered as input. For the network in 

Drago [33] Reinhard [36]Lischinski [35]Fattal [32] Tumblin [34]

 
Figure 5: Tone-mapping examples. References at the top indicate 
the TMO used for producing images in the top row. On the 
second row are SDR images produced from YouTube, and on the 
last row are the original HDR images. 

 (a) (b) (c) (d) (e) 
pass 1 1 2 2 3 

image     
base/detail     

stack     
PSNR(dB) 38.11 38.25 38.11 38.46 38.21

SSIM 0.9905 0.9907 0.9911 0.9916 0.9914

Table 1: Effect of input decompositions and concatenations. 
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Figure 4: Network architecture of the toy network. 
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column (b), all three layers were stacked before entering 
the single-pass network. Column (c) describes a two-pass 
network as in Fig. 4 but without stacking the image. The 
network in column (d) is identical to the network in Fig. 4, 
where each of the base and detail layers are stacked with the 
LR SDR image prior to entering the network. The network 
in column (e) has three feature extraction passes, each for 
the image, base and detail layer. The number of filter 
parameters is matched for all networks in (a)-(e).  

The following can be analyzed from Table 1: 
(i) For single-pass structures, decomposing the input and 

stacking all three layers, as in column (b), results in 
0.14 dB increase in PSNR (compared to column (a)). 

(ii) For two-pass structures, stacking (column (d)) brings 
0.35 dB PSNR gain, with decomposed layers. 

(iii)  Designing separate passes for the base and detail 
layers (column (d)) is important with 0.21 dB PSNR 
gain over column (b). 

(iv) The undecomposed image is more useful when 
stacked, by comparing columns (b), (d) and (e). 

Most importantly, designing separate passes for the base 
and detail layers, and stacking the LR SDR image to each 
pass as a guidance as in column (d) obtains the highest gain 
in performance over the baseline of column (a).  

4.3. Modulation 

Input combinations. We explored using different 
combinations of using the image, base and detail layers to 
extract the shared modulation features (SMF) as shown in 
Table 2. Stacking decomposed layers for modulations 
results in maximum 0.08 dB PSNR gain in Table 2, which 
is less effective than for the network input (0.35 dB PSNR 
gain in Table 1). This implies that specific features, such as 
the overall brightness in the base layer or the high 
frequency components in the detail layer, are sufficient for 
modulation, while the integrated image is necessary for the 
main pass in order to restore a full HR HDR image. 
Visualization of modulation maps. We refer to the 
modulation features that are multiplied to the main branch 
feature maps at each modulation block as modulation maps. 
Fig. 6 shows the input image and the modulation maps of 
the base and detail layer pass. The modulation maps in Fig. 
6 are taken from RMB1 for the base layer pass, and RSMB1 

for the detail layer pass. It can be verified that the 
modulations are being performed on the intensity for the 
base layer, and on edges and details for the detail layer. 

4.4. Ablation study 
We performed an ablation study on three main 

components of the Deep SR-ITM. Table 3 summarizes the 
results of this ablation study. The guided filter 
decomposition and modulation yield 0.08 dB and 0.22 dB 
PSNR performance gain consecutively, with a total of 0.3 
dB gain compared to the baseline network (column (a)) 
without decomposition nor modulations. Also in Table 3, 
the skip connections are only effective without modulation. 
The benefits of skip connections and modulations seem to 
overlap, as they both help with the flow of information.  

4.5. Performance comparisons 

Compared methods. We compare against the cascade of a 
single image SR method [20] and ITM methods [9, 12, 13, 
15], and also the joint SR-ITM method in [25]. We used the 
official implementation provided by the authors for 
methods in [15, 20], and the implementations in HDR 
Toolbox [28] for methods in [9, 12, 13]. For the ITM 
methods of [9, 12, 13], the SDR input was linearized prior 
to the ITM process. For all ITM methods in [9, 12, 13, 15], 
color was converted from RGB709 to RGB2020 [2], and 
PQ-OETF [3] was applied after ITM, following the 
post-ITM pipeline in Fig. 2-(a). The maximum brightness 
was set to 1,000 cd/m2, following the HDR10 standard for 
HDR TVs. Note that methods in [9, 12, 13] are not 
data-driven methods (thus not dependent on training data), 
but expansion operators, applicable to any SDR image. 
Because Eilertsen et al’s method failed to train on our data 
(which do not contain sufficient saturated regions 
compared to their HDR luminance data in cd/m2), we 

 (a) (b) (c) (d) (e) 
GF*     
Skip     

Modulation     
PSNR (dB) 35.29 35.37 35.44 35.59 35.58

SSIM 0.9730 0.9732 0.9734 0.9747 0.9746
*GF = Guided Filter 

Table 3: Ablation study.

Input to SMFb image base [image base]*
Input to SMFd image detail [image detail]*

PSNR (dB) 38.43 38.44 38.52 
SSIM 0.9918 0.9918 0.9920 

     *[x y] denotes the concatenation of x and y 

Table 2: Effect of using various combinations of inputs for 
extracting the shared modulation features of the base (SMFb) and 
detail layer (SMFd) passes. 

Input Modulation Map 
(base layer pass)

Modulation Map 
(detail layer pass)

Figure 6: Modulation maps of base and detail layer passes. 
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experimented with their released test code without 
re-training. For the joint SR-ITM method in [25], we 
re-trained their multi-purpose CNN architecture for SF = 2, 
and SF = 4 on the same training data as ours. 
Qualitative comparison. We provide the qualitative 
comparison in Fig. 1 and Fig. 7. In Fig. 7, the cascaded 
methods lack overall contrast, and the results by [25] shows 
good contrast, but the produced colors are unnatural with 
obvious artifacts in some cases. Our method demonstrates 
natural colors with enhanced contrast and restored details. 
More results are provided as the Supplementary Material. 
Quantitative comparison. We provide the quantitative 
results on five metrics: PSNR, multi-exposure PSNR 
–mPSNR- [28], SSIM [37], multi-scale SSIM -MS-SSIM- 
[38] and HDR-VDP-2.2.1 [39]. For mPSNR, the 8-bit 

quantization in the pipeline is modified to 10-bit 
quantization, and PSNR is averaged for exposure values 
from -3 to +3. For HDR-VDP, the linearized Y channel was 
compared with the ‘luminance’ option and ‘pixel per 
degrees’ set to 30. The quantitative comparison on SF = 2 
and SF = 4 is given in Table 4, where the number after  
denotes the standard deviation. Deep SR-ITM outperforms 
the previous methods in all measures and scale, except 
HDR-VDP for SF = 4.  
Visualization of feature maps. Fig. 8. shows the three 
layers (image, base and detail) used as input and the 
intermediate feature maps (conv1, FEb, FEd and yf), where 
conv1 is produced after the first convolution layer of each 
pass in the main network. Features with edges and texture 
are extracted in the detail layer pass, while features with 
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overall brightness and global contrast are extracted from 
the base layer. Later layers are able to concentrate on such 
features. yf, produced during the fusion stage, already 
seems like an integrated gray scale image 
Runtime evaluation. Our method takes 5.85 seconds and 
5.05 seconds to generate a 4K frame for SF = 2 and SF = 4, 
respectively, on an NVIDIA TITAN Xp GPU. The total 
number of the filter parameters of Deep SR-ITM is 2.5M 
for SF = 2, and 2.64M for SF = 4. Note that the number of 
filter parameters of EDSR alone amounts to 43M. 

4.6. Reconstruction under realistic conditions 
We test our Deep SR-ITM on various videos that are 

originally 4K SDR (not tone-mapped), to verify its 
robustness in realistic conditions. As ground truth HDR 
videos do not exist for these videos, we only provide the 
visual results in Fig. 9. The Deep SR-ITM is still able to 
generate the HR HDR reconstructions with enhanced 
contrast and details under more realistic conditions. 

5. Conclusion 
In this paper, we proposed the Deep SR-ITM, a joint 

SR-ITM framework, where the low and high frequency 
information in the input SDR images are decomposed. 
Thanks to this input decomposition strategy, Deep SR-ITM 
is able to precisely predict the lost high frequency details 
assisted by the detail layer for spatial up-scaling, while 
simultaneously expanding the overall intensity and color to 
the HDR brightness context assisted by the base layer, for 
the ITM task. A modulation scheme is incorporated to 
boost the local contrast in the image signal amplitudes by 
introducing spatially-variant operations. Directly 
producing HR HDR images in the pixel domain is a very 
handy application for generating premium visual content 
for UHD HDR consumer displays. All relevant codes and 
the information on the test set are available in GitHub. 
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Method Scale PSNR (dB) mPSNR (dB) SSIM MS-SSIM HDR-VDP (Q)
EDSR [20]+Kovaleski et al. [9] 2 23.59  0.95 25.48  2.07 0.6504  0.1545 0.9737  0.0155 57.24  3.62 
EDSR [20]+Masia et al. [12] 2 24.71  3.21 26.65  5.13 0.7095  0.1158 0.9679  0.0324 60.04  5.68 
EDSR [20]+Huo et al. [13] 2 29.76  2.62 31.81  3.90 0.8934  0.0717 0.9764  0.0166 58.95  6.41 
EDSR [20]+Eilertsen  et al. [15] 2 25.80  3.80 28.22   4.39 0.7586   0.1638 0.9635  0.0204 53.51  7.73 
Multi-purpose CNN [25] 2 34.11  2.61 36.38  3.70 0.9671  0.0160 0.9817  0.0101 60.91  5.12 

Deep SR-ITM (Ours) 2 35.58  4.80 37.80  5.83 0.9746  0.0133 0.9839  0.0097 61.39  5.82 

EDSR [20]+Kovaleski et al. [9] 4 23.46  0.99 25.34  2.09 0.6325  0.1621 0.9670  0.0150 56.70  3.72 
EDSR [20]+Masia et al. [12] 4 24.54  3.18 26.47  5.10 0.6968  0.1173 0.9608  0.0318 57.74  5.27 
EDSR [20]+Huo et al. [13] 4 28.90  2.15 30.92  3.42 0.8753  0.0804 0.9693  0.0156 55.59  6.47 
EDSR [20]+Eilertsen  et al. [15] 4 26.54  2.69 28.75  3.20 0.7822  0.1951 0.9631  0.0161 53.88  5.79 
Multi-purpose CNN [25] 4 33.10  3.58 35.26  4.62 0.9499  0.0230 0.9758  0.0104 56.41  6.03 

Deep SR-ITM (Ours) 4 33.61  4.32 35.73  5.24 0.9561  0.0259 0.9748  0.0109 56.07  6.83 

Table 4: Quantitative performance comparison. 

Figure 9: Prediction results for realistic conditions. On the top 
row are the LR SDR inputs up-scaled using bicubic interpolation, 
and on the bottom row are the HR HDR predictions. 
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Figure 8: Visualization of intermediate feature maps. 
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