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Abstract

Deep learning-based object detectors have shown re-

markable improvements. However, supervised learning-

based methods perform poorly when the train data and the

test data have different distributions. To address the is-

sue, domain adaptation transfers knowledge from the label-

sufficient domain (source domain) to the label-scarce do-

main (target domain). Self-training is one of the power-

ful ways to achieve domain adaptation since it helps class-

wise domain adaptation. Unfortunately, a naive approach

that utilizes pseudo-labels as ground-truth degenerates the

performance due to incorrect pseudo-labels. In this pa-

per, we introduce a weak self-training (WST) method and

adversarial background score regularization (BSR) for do-

main adaptive one-stage object detection. WST diminishes

the adverse effects of inaccurate pseudo-labels to stabilize

the learning procedure. BSR helps the network extract dis-

criminative features for target backgrounds to reduce the

domain shift. Two components are complementary to each

other as BSR enhances discrimination between foregrounds

and backgrounds, whereas WST strengthen class-wise dis-

crimination. Experimental results show that our approach

effectively improves the performance of the one-stage object

detection in unsupervised domain adaptation setting.

1. Introduction

Object detection is a fundamental and core problem in

computer vision. Recent studies [26, 21, 25] have achieved

remarkable improvements with the advances of deep neu-

ral networks and large-scale benchmarks [7, 19, 8]. Deep

learning-based object detectors can be categorized as two-

stage detectors or one-stage detectors. Two-stage detectors

first extract object regions and then refine them through

classification and regression [26, 6]. On the other hand,

one-stage object detectors [25, 21, 35, 20, 39] directly es-

timate the coordinates and classes of objects without the

Region of Interest (RoI) pooling procedure.

Figure 1. Illustration of unsupervised domain adaptive one-stage

object detection. We train an object detector with labeled source

images and unlabeled target images. Our method improves the

performance of the network for target inputs.

One limitation of these supervised learning-based meth-

ods is the assumption that test data have the same distribu-

tion as train data. However, domain shift frequently occurs

in many practical applications. For example, variances of

object appearance, viewpoints, backgrounds, illumination,

and weather condition can degenerate the performance of

the network. One possible solution is collecting labeled

data for a new domain, but it is usually expensive and time-

consuming. To address this issue, domain adaptation trans-

fers knowledge from the train data domain (source domain)

to the test data domain (target domain). Especially, unsuper-

vised domain adaptation assumes there are no labels avail-

able in the target domain. The goal of domain adaptation is

to train the network that performs well on the target domain

dataset.

Unfortunately, domain adaptive object detection has re-

ceived less attention in contrast to classification [22, 10, 33,
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Figure 2. Trends of mAP on the target domain with training

epochs. A naive self-training degenerates the accuracy without

image-level labels and the regression loss (blue, triangle). Our

weak self-training (WST) enables effective self-training under the

same settings (red, rectangle).

32, 36, 23] and semantic segmentation [13, 14, 31, 40, 4].

For object detection, the authors of [3] propose a global

feature alignment approach in an adversarial way. How-

ever, the global feature alignment is not sufficient for object

detection since it will align non-transferable backgrounds.

Besides, this work is designed only for a two-stage object

detector, Faster R-CNN [26]. On the other hand, a recent

work [15] presents cross-domain weakly-supervised object

detection on SSD [21], which is a representative one-stage

object detector. However, this work assumes that image-

level labels are available on the target domain. Unlike prior

works, we introduce one-stage object detection under unsu-

pervised domain adaptation setting. Figure 1 summarizes

the overall framework of our method.

In this paper, we propose weak self-training (WST) for

stable learning procedure and adversarial background score

regularization (BSR) to reduce domain shifts. Previous

studies [32, 36, 9, 40, 4, 15] show the effectiveness of

self-training for domain adaptation. However, naive self-

training approaches without image-level labels harmful for

object detectors as shown in Fig. 2. To achieve robust self-

training, WST minimizes adverse effects of both false pos-

itives and false negatives occurred in pseudo-labels. WST

does not require any label on the target domain contrary to

weakly-supervised approaches [37, 30, 38, 15] that utilize

image-level labels for a reliable choice of pseudo-labels.

Besides, we add BSR at the training phase to reduce the

domain shift. We point out that backgrounds of the source

and the target data have less common features than fore-

grounds. From this motivation, BSR extracts discriminative

features for target backgrounds. This objective is crucial for

one-stage detectors since they do not have region proposal

process. WST and BSR are complementary to each other

as BSR considers discrimination between foregrounds and

backgrounds, and WST provides category information of

detections.

The contribution of our paper is as follows.

• We introduce weak self-training (WST) for domain

adaptive object detection which reduces negative ef-

fects of inaccurate pseudo-labels.

• We propose adversarial background score regulariza-

tion (BSR) to reduce the domain shift by extracting

discriminative features for target backgrounds.

• Experimental results show that our approach improves

the performance of one-stage object detection under

unsupervised domain adaptation setting.

2. Related Work

2.1. Object Detection

Two-stage detectors first extract foreground proposals

and then refine the results in the second stage. R-CNN

[12] utilizes selective search for region proposal and con-

volutional neural network for classification. For a faster in-

ference, Fast R-CNN [11] shares the feature map from the

same input images. Faster R-CNN [26] further improves the

performance via replacing selective search with a fully con-

volutional network called region proposal network (RPN).

On the other hand, one-stage detectors also have been re-

searched and show impressive performance on the inference

speed. YOLO [25] is a fast object detector based on a fully

convolutional network. SSD [21] improves the performance

of accuracy by utilizing feature maps from various scales.

The authors of [18] point out that one-stage detectors suf-

fer from the class imbalance problem between foregrounds

and backgrounds, and propose focal loss which focuses on

hard examples rather than easy ones. Furthermore, recent

studies [35, 20, 39] have improved the performance both in

accuracy and inference speed maintaining the efficiency of

one-stage detectors.

2.2. Domain Adaptation

Domain adaptation reduces the domain gap between

train data and test data. For classification, most recent meth-

ods manage to reduce the discrepancy between feature dis-

tributions of the source and the target. Early work [22] uses

Maximum Mean Discrepancy (MMD) as a metric for the

discrepancy between two distributions. The authors of [10]

propose adversarial learning by adding a gradient reversal

layer (GRL) and a discriminator to extract domain invari-

ant features. Recent works [33, 23, 32, 36] are based on the

domain adversarial learning framework and further improve

the discriminative property on the target domain.

For semantic segmentation, GAN-based domain adapta-

tion approaches are shown to be effective. The authors of

[13] point out that earlier feature-level distribution matching

approaches fail to capture pixel-level domain shifts. They

propose adversarial domain adaptation model, which aligns
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Figure 3. The framework of proposed weak self-training. First, we generate pseudo-labels using SRRS (Supporting Region-based Reliable

Score) as a criterion. Second, by following traditional hard negative mining, we obtain two sets of positive examples and negative examples

(Pos and Neg respectively). Finally, since the chosen hard negatives are risky for self-training, we select easy samples among Neg and

construct Ñeg. We use examples in Pos and Ñeg for weak self-training.

both pixel-level and feature-level distribution. In [14], con-

ditional GAN was used to model the residual of the feature

map between the source and target domain.

Some prior works use self-training [1, 17] to compensate

for the lack of categorical information for either classifica-

tion [2, 24, 27, 34, 9, 36, 32, 5] or segmentation [40, 4].

2.3. Domain Adaptive Object Detection

Compared to classification and semantic segmentation,

domain adaptive object detection has received less atten-

tion. The authors of [3] present two domain adaptation com-

ponents, image-level adaptation and instance-level adapta-

tion. They adopt domain adversarial approach using a dis-

criminator for each component. Recently, the focal loss is

utilized for a weak global alignment [28]. However, it is

hard to apply their algorithm to one-stage detector since the

algorithms are designed for Faster R-CNN [26]. The au-

thors of [16] utilize style transfer method, but the method

needs large amount of augmented data.

For one-stage object detection, the authors of [15] pro-

pose pseudo-labeling and pixel-level adaptation on a cross-

domain weakly-supervised setting, which assumes that

image-level labels are available for all target images. They

first fine-tune the detector with style transferred source

images. After that, they generate pseudo-labels by sim-

ply choosing the top-1 confidence detections considering

image-level labels. They further improve the performance

via fine-tuning the network with generated pseudo-labels.

However, we confirmed that this method is not valid with

the unsupervised domain adaptation setting and degenerates

the detection performance.

On the other hand, proposed WST achieves stable learn-

ing without image-level labels and BSR extracts discrim-

inative features for target backgrounds instead of aligning

non-transferable features.

3. Proposed Method

In this section, we introduce details of WST and BSR.

We adopt SSD [21] as our baseline.

3.1. Problem Setting

We assume that source data (xs, ys) is drawn from the

source domain Xs, and target data (xt, yt) is drawn from

the target domain Xt. Here, x is an image and y = (b, c)
is a corresponding label, where b is the coordinates of the

bounding box and c is the class to which the object be-

longs. We denote the distribution of domain X as P (X),
and P (Xs) 6= P (Xt). We assume that both source data and

target data have K + 1 classes including the background.

We set c to 0 for the background. We do not have access to

target labels, yt.
We denote layers before conv5 of SSD by F , and the

others by C. The output of the SSD is O = {ri}
n
i=1, where

ri is the ith detection and n is the total number of detec-

tions (e.g., n = 8732 for SSD300). We only take remaining

detections after Non-Maximum Suppression (NMS) as final

detections. We denote the final outputs as O∗ = {r∗l }
n∗

l=1
,

where r∗l is the lth detection and n∗ is the number of detec-

tions in the final outputs.

3.2. Weak Self­Training

We propose a weak self-training scheme (WST) to com-

pensate for the lack of categorical information on the target

domain. Unfortunately, the base network often produces in-

correct outputs with high confidence due to large domain

shift. These misclassified outputs become false positives

when we choose them for pseudo-labels. Also, false neg-

ative error occurs when the network fails to detect some

objects in an image. To overcome such problems, WST

is designed to omit unreliable examples from the training

procedure. The framework of WST is shown in Fig. 3.
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Reducing False Negatives. We minimize the effects of

false negatives by modifying the training loss for supervised

learning. As defined in [21], the original loss is

Ltask(x
t, b̂, ĉ) =−

∑

i∈Pos

log(pi(ĉi|x
t))−

∑

i∈Neg

log(pi(0|x
t))

+ Lloc(x
t, b̂),

(1)

where Pos and Neg are sets of positive and negative exam-

ples respectively, b̂ is a pseudo-bounding box label, ĉi is a

pseudo-class label of ith detection, pi(ĉi|x
t) and pi(0|x

t)
are the probability values of the class ĉi and the background

of ith detection, and Lloc is the localization loss. However,

we observe that Eq. (1) is not effective for self-training.

Especially, false negatives selected by hard negative mining

are harmful to training. We reduce the false negatives by

masking out the gradients of background examples during

the training. However, it is undesirable to neglect all the

background examples because the network will be biased

to the foregrounds. Thus, we ignore background examples

that have the potential of being foregrounds.

Negative examples in the Neg set have a large poten-

tial of being foregrounds since hard negative mining refers

to incorrect pseudo-foregrounds and selects background ex-

amples with the highest confidence loss values. For exam-

ple, in Fig. 3, conventional hard negative mining will select

the false negative example of the boat as a background ex-

ample. Thus, we choose ||Neg||/3 examples that have the

lowest confidence loss value among negative examples in

Neg. We call this process as weak negative mining, and

the obtained set from the process is denoted as Ñeg. Addi-

tionally, we do not update the network for bounding box re-

gression since pseudo-labels usually have inaccurate bound-

ing box information. Finally, the modified loss function for

weak self-training is defined as

LST (x
t, ĉ) = −

∑

i∈Pos

log(pi(ĉi|x
t))−

∑

i∈Ñeg

log(pi(0|x
t)).

(2)

Reducing False Positives. We propose a criterion for

instance-level pseudo labeling based on supporting RoIs.

Here, supporting RoIs denote examples having IoU value

larger than some threshold δ with the final detection r∗.

Rather than using only a single confidence score of a de-

tected box, we consider all the boxes close to the final detec-

tion r∗. We define Supporting Region-based Reliable Score

(SRRS) as

SRRS(r∗) =
1

Ns

Ns∑

i=1

IoU(ri, r
∗) · P (c∗|ri), (3)

where Ns is the number of supporting regions, IoU(A,B)
denotes the IoU value between region A and region B, c∗ is

Algorithm 1 Generating Pseudo Labels

Input O,O∗, ǫ, δ
Output Ŷ = {ŷ}

1: for r∗l ∈ O∗ do

2: for ri ∈ O do

3: if IoU(ri, r
∗) ≥ δ then

4: Collect ri from O
5: end if

6: end for

7: Calculate SRRS(r∗l ) by Eq. (3)

8: if SRRS(r∗l ) ≥ ǫ then

9: Add r∗l into the set of pseudo-labels, Ŷ
10: end if

11: end for

a predicted class of r∗, and P (c∗|ri) is a probability for a

region ri to belong to the c∗. By thresholding the score with

ǫ, we choose reliable detections. The pipeline of generating

pseudo-labels is described in Algorithm 1.

3.3. Adversarial Background Score Regularization

We point out that backgrounds of the source domain

and target domain share less common features compared to

those of foregrounds. We claim that simple global feature

alignment enforces to align non-transferable backgrounds,

and makes the training procedure unstable. Motivated by

[29], we propose background score regularization (BSR) in

an adversarial way. The loss function for BSR can be de-

fined as the binary cross entropy function as follows:

Ladv(x
t) =− t

∑

i

log(pi(0|x
t))

− (1− t)
∑

i

log(1− pi(0|x
t)),

(4)

where i is the index of a detection, and t ∈ [0, 1] is a tar-

get value of pi(0|x
t). As we minimize the loss, the value

of pi(0|x
t) becomes close to t. On the contrary, pi(0|x

t)
should be close to 0 or 1 to maximize the loss.

At the training phase, both the classifier C and the fea-

ture extractor F minimize the supervised loss Ltask for the

source inputs. For the target inputs, we regularize C to pre-

dict the value of pi(0|x
t) close to t by minimizing Ladv .

On the other hand, F is trained to maximize the adversarial

loss to make pi(0|x
t) close to 0 or 1. Thus, F will learn

discriminative features to deceive the classifier. The overall

training objectives for BSR can be written as follows:

min
F

Ltask(x
s, ys)− Ladv(x

t), (5)

min
C

Ltask(x
s, ys) + Ladv(x

t). (6)
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Figure 4. Left: The network architecture with the training losses. θ represents the parameters of SSD. We add Gradient Reversal Layer

(GRL) after relu4 3 of SSD300. Note that GRL is activated only when the target input xt is used for BSR (Ladv(x
t)). The example input

image is from the target domain. Right: We present feature space representations of the adversarial learning. Each point is a detection.

(a): Initial state. (b): The network is trained with the source data. Source examples are well classified, while the boat object of the target

data is misclassified as the background. (c): The classifier C minimizes the adversarial loss. The boundary passes through the clusters of

the target data. (d): The feature extractor F maximizes the adversarial loss. The example points move away from the boundary.

We enable the adversarial training using gradient reversal

layer (GRL) right after relu4 3 of SSD300.

Without BSR, the base network will produce incorrect

prediction with high confidence. The proposed adversar-

ial background score regularization can be thought of as

training the classifier to predict with less certainty for tar-

get inputs and training the feature extractor to deceive the

classifier. In the end, the feature extractor will extract dis-

criminative features, which are easily classified. Figure 4

depicts the process of the adversarial learning.

However, it is not desirable to apply the adversarial loss

for all examples because the output of the object detector

has an enormous number of background examples. Thus,

we sort all examples by their background scores in ascend-

ing order and choose low 3N examples. Here, N is the

number of examples predicted as foregrounds. We found

that applying this selection in a batch-wise helps to stabi-

lize the learning. In other words, we combine all examples

in a single batch and choose the samples among them. Fur-

thermore, we add a focal term in Eq. (4) to make the loss

numerically stable and still effective. The final adversarial

loss is defined as

Ladv(x
t) =− t

∑

i

|t− pi(0|x
t)|γ · log(pi(0|x

t))

− (1− t)
∑

i

|t− pi(0|x
t)|γ · log(1− pi(0|x

t)),

(7)

where γ is a hyperparameter. We set t to 0.5 in our experi-

ments.

Combining BSR and WST will complement each other.

BSR reduces domain gaps by helping the network to ex-

tract discriminative features for the background class. On

the other hand, the network learns category information

through WST.

4. Experiments

In this section, we present details of the implementation

and compare our results with other methods.

4.1. Datasets and Evaluation

In our experiments, we used Pascal VOC2007-trainval

and VOC2012-trainval dataset [8] as a source domain

dataset, and Clipart1k, Watercolor2k, or Comic2k dataset

[15] as a target domain dataset.

Pascal VOC [8] is a real-world image dataset. It pro-

vides both instance-level bounding box annotations and

pixel-level annotations. VOC2007-trainval and VOC2012-

trainval set have total 16,551 images with 20 distinct cate-

gories. Clipart1k [15] is a dataset of graphical images which

have a large domain gap with real-world images. It provides

1k images and has the same categories as Pascal VOC. We

used all images as a target dataset both for training and eval-

uation. Watercolor2k and Comic2k [15] are also unrealistic

datasets. Each dataset provides 2k of images, 1k for a train

set and the other 1k for a test set. Both Watercolor2k and

Comic2k have 6 classes which also exist in VOC. We used

the train set for training and the test set for evaluation.

For all experiments, we evaluated methods using mean

average precision (mAP). We set the confidence threshold

to 0.05 and the IoU threshold to 0.5.

4.2. Implementation Details

In all experiments, we used SSD300 as a base network.

Following the original paper [21], inputs were resized to

300 × 300, and we applied all augmentations used in the

original paper. SGD was used as an optimizer.

Base Network. For the base network, only source dataset

was used. We trained the network for 120k iterations with
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Method BSR WST aero bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv mAP

Base [21] 27.3 60.4 17.5 16.0 14.5 43.7 32.0 10.2 38.6 15.3 24.5 16.0 18.4 49.5 30.7 30.0 2.3 23.0 35.1 29.9 26.7

ST 11.8 16.4 9.1 10.8 0.3 17.7 13.9 9.1 14.7 4.5 11.1 9.1 2.3 15.2 9.1 23.7 1.8 9.1 4.5 19.8 10.7

DANN [10] 24.1 52.6 27.5 18.5 20.3 59.3 37.4 3.8 35.1 32.6 23.9 13.8 22.5 50.9 49.9 36.3 11.6 31.3 48.0 35.8 31.8

Ours X 26.3 56.8 21.9 20.0 24.7 55.3 42.9 11.4 40.5 30.5 25.7 17.3 23.2 66.9 50.9 35.2 11.0 33.2 47.1 38.7 34.0

Ours X 30.8 65.5 18.7 23.0 24.9 57.5 40.2 10.9 38.0 25.9 36.0 15.6 22.6 66.8 52.1 35.3 1.0 34.6 38.1 39.4 33.8

Ours X X 28.0 64.5 23.9 19.0 21.9 64.3 43.5 16.4 42.2 25.9 30.5 7.9 25.5 67.6 54.5 36.4 10.3 31.2 57.4 43.5 35.7

Table 1. Comparison of various methods in terms of mAP. For all methods, the base network is SSD300 [21]. Pascal VOC2007 trainval

and VOC2012 trainval is used for source dataset and Clipart1k is used for target dataset. Descriptions of each method is in Sec. 4.3.

Method BSR WST bike bird car cat dog person mAP

Base [21] 77.5 46.1 44.6 30.0 26.0 58.6 47.1

ST 78.9 48.1 44.9 30.1 29.1 61.7 48.8

DANN [10] 73.4 41.0 32.4 28.6 22.1 51.4 41.5

Ours X 82.8 43.2 49.8 29.6 27.6 58.4 48.6

Ours X 77.8 48.0 45.2 30.4 29.5 64.2 49.2

Ours X X 75.6 45.8 49.3 34.1 30.3 64.1 49.9

Table 2. Comparisons on Watercolor2k test set.

an initial learning rate of 1.0 × 10−3, momentum of 0.9,

weight decay of 5.0×10−4. We applied learning rate decay

of 0.1 at 80k and 100k, so the final learning rate became

1.0 × 10−5. From this setting, the base network shows an

accuracy of 77.43% mAP on the VOC2007 test set.

Adversarial Background Score Regularization. Both

source and target data were used. Each batch is composed

of 32 images, 16 from the source domain, and the other 16

from the target domain. We used t = 0.5 and γ = 2.0 in

Eq. (4). We trained the network for 50k iterations with a

learning rate of 1.0×10−3, and reduced the learning rate to

1.0× 10−4 for another 10k.

Weak Self-Training. We fine-tuned the base model with

generated pseudo-labels. This method is different from PL

in [15] because we update pseudo-labels for every iteration.

The network was trained for 10 epochs with a batch size

of 32 and a learning rate of 1.0 × 10−5. In the process

of generating pseudo-labels, we set ǫ to 0.8 in Algorithm 1

unless otherwise stated. Also, δ = 0.5 was used since the

evaluation metric regards an example as a positive when it

has a value of IoU larger than 0.5 with the ground-truth.

BSR with WST. We followed all the settings of BSR. WST

was employed after 50k iterations as the network is not

reliable before then. The training was early stopped at

55k iterations since self-training is not helpful when it is

overused. The threshold of ǫ = 1

1+e−3p was taken where

p = current iteration
max iteration

.

DANN. The same configuration with BSR was used to im-

plement DANN for SSD. We aligned distribution of features

extracted from relu4 3.

Method BSR WST bike bird car cat dog person mAP

Base [21] 43.3 9.4 23.6 9.8 10.9 34.2 21.9

ST 27.3 9.1 17.3 1.5 9.1 20.8 14.2

DANN [10] 33.3 11.3 19.7 13.4 19.6 37.4 22.5

Ours X 45.2 15.8 26.3 9.9 15.8 39.7 25.5

Ours X 45.7 9.3 30.4 9.1 10.9 46.9 25.4

Ours X X 50.6 13.6 31.0 7.5 16.4 41.4 26.8

Table 3. Comparisons on Comic2k test set.

4.3. Results and Comparisons

We compared our method with the base network [21],

DANN [10] and ST. Here, ST is the naive approach of self-

training that utilizes pseudo-labels as ground-truth with-

out localization loss. While PL in [15] generates pseudo-

labels only once before training, ST and our method recre-

ate pseudo-labels for every single iteration. By comparing

DANN and ST with our method, we can directly confirm

the effectiveness of the proposed algorithm.

Results on Clipart1k. As shown in Table 1, our weak self-

training method can improve the accuracy of the object de-

tector without any labels in the target domain. On the other

hand, the naive approach (ST) degenerates the performance

due to the effects of false positives and false negatives oc-

curred in generated pseudo-labels. To validate each compo-

nent of weak self-training, we did ablation study in Sec.

5.1. Applying BSR shows performance gaps of 8% and

2.2% mAP compared to the baseline and DANN respec-

tively. Without any additional networks such as discrimina-

tor, adversarial background score regularization effectively

improves the performance. Using both BSR and WST fur-

ther enhances the performance as they complement each

other.

Self-training approaches have inferior performance on

the class of sheep, because of the poor performance of

the base network, while the domain adaptation methods

(DANN and BSR) show improvement of nearly 9% AP.

Results on Watercolor2k and Comic2k. Comparison

of performances on VOC → Watercolor2k and VOC →
Comic2k is shown in Table 2 and 3.

In the case of Watercolor2k, we set the learning rate to

1.0× 10−6 for self-training methods, since most of the im-

ages contain single instance and thus the network is easily

overfitted [15]. Furthermore, images in Watercolor2k have
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Method SRRS Mask Weak Mask mAP

ST (A) 10.7

SRRS (B) X 10.5

Mask (C) X 16.8

SRRS+Mask (D) X X 29.2

Weak Mask (E) X 31.3

SRRS+Weak Mask (F) X X 33.8
Table 4. Ablation study on WST. Mask denotes that no negative

example is used for learning. Weak Mask indicates that weak neg-

ative mining is used for sampling negative examples. Method A

is identical to ST in Table 1 and method F is the proposed weak

self-training.

Figure 5. The change of accuracy with the training procedure. We

provide all performances during training for each epoch. Different

combinations of each method are shown in Table 4. The perfor-

mances of method A, B and C decreased dramatically due to the

adverse effects of false positives and false negatives in pseudo-

labels. The proposed method F had the highest value with the

stable learning process.

no hard backgrounds such as obstacles. From these rea-

sons, our algorithms show less improvement compared to

Clipart1k and Comic2k.

For Comic2k, γ = 3.0 was used in Eq. (7). Proposed

methods improve the accuracy about 5% mAP from the

base, while DANN method seems no improvement.

5. Analysis

We conducted ablation studies on WST and parameter

sensitivity experiments on BSR. All experiments in this sec-

tion use Clipart1k as a target dataset.

5.1. Ablation Study on WST

To validate each component of proposed weak self-

training, we provided ablation study. In these experiments,

we set ǫ to 0.9 without SRRS, and 0.8 with SRRS in Al-

gorithm 1. In Table 4, we present several combinations

of three components with their method names and perfor-

mances. Method A is the naive self-training and method F

is the proposed weak self-training. In Fig. 5, we provide the

performance trends with training epochs to validate learning

stability.

t γ mAP γ t mAP

0.0 not converge 0.25 28.5

1.0 not converge 0.33 19.8

0.5 2.0 34.0 2.0 0.5 34.0

4.0 32.9 0.67 21.2

5.0 31.1 0.75 20.8
Table 5. Parameter sensitivity on BSR. The table shows the perfor-

mance of BSR with various values of γ and t in Eq. (7).
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Figure 6. Visualization of background score regularization (BSR)

with different values of γ. pbg denotes the probability of back-

ground class. BCE stands for binary cross entropy loss, and it is

identical to BSR with γ = 0. Note that t = 0.5 for all graphs.

From the results of method A, B, and C, self-training

cannot be accomplished without either SRRS or Mask. The

accuracy of the three methods rapidly decreases as training

proceeds. This implies that reducing both false positives

and false negatives is crucial for object detection.

Comparing with Mask, proposed Weak Mask showed re-

markable performance improvement by 14.5% mAP with-

out SRRS and 4.6% mAP with SRRS (E compared to C

and F compared to D). Comparing methods A and E, only

adding weak negative mining can improve the performance

dramatically. From these results, we confirm that selecting

reliable negative samples is even more effective than select-

ing positive samples. More specifically, since pseudo-labels

commonly omit some foreground instances, hard negative

mining tends to select those missing instances as back-

grounds. Masking all the gradients of the negative examples

can stabilize the learning, but the network will be biased to

foregrounds as it never learns about backgrounds. Thus, the

proposed weak negative mining is critical for a self-training

under domain adaptation setting.

We observed that SRRS is not valuable when it is used

alone. Combined with either Mask or Weak Mask, SRRS

succeeded to enhance both learning stability and accuracy

(D compared to C and F compared to E). Although SRRS

can reduce not only false positives but also true positives,

we experimentally confirmed that reducing false positives is

crucial even though less true positives are used for training.
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Figure 7. Qualitative results on Clipart1k, Watercolor2k, and Comic2k. We present the results of the base network, our method, and

ground-truth from left to right.

5.2. Parameter Sensitivity on BSR

Table 5 shows the results for parameter sensitivity of

both γ and t in Eq. (7). The focusing parameter γ con-

trols the strength of the loss. As γ gets smaller, more de-

tections contribute to the adversarial training. More specif-

ically, the network will have too strong regularization on

backgrounds with γ = 0 and γ = 1. On the other hand,

the regularization is relaxed with large values of γ. The net-

work will ignore examples which have the probability of the

background around 0.5 with large γ. See Fig. 6 for visual-

ization of BSR with various values of γ. The performance

is insensitive to the value of γ unless it is too small.

We conducted experiments on t ∈ { 1

4
, 1

3
, 1

2
, 2

3
, 3

4
} to

verify trends of the learning according to t. The network

trained with t = 0.5 shows better performance than the

others. For the other values, the network is easily over-

regularized and the performance rapidly drops after the

learning rate decay.

5.3. Qualitative Results

We compare the qualitative results of the base network,

the proposed method, and ground-truth as shown in Fig. 7.

We found that the proposed method detects objects with less

confidence but correctly, compared to the base network due

to BSR. As shown in top left example in Fig. 7, the proba-

bilities of two chairs that are detected by the base network

are decreased while the chair between them is only detected

by our method.

6. Conclusion

In this paper, we have addressed unsupervised domain

adaption for one-stage object detection. We enable self-

training for object detection by reducing the adverse effects

of inaccurate pseudo-labels. Proposed weak self-training

(WST) effectively reduces false negatives and false posi-

tives by masking the gradients of hard negative examples

and utilizing SRRS as a criterion for pseudo-labeling. We

have also present adversarial background score regulariza-

tion (BSR) to reduce the domain shifts by enhancing dis-

crimination between foregrounds and backgrounds of the

target data.
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