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Abstract

Model-based human pose estimation is currently ap-

proached through two different paradigms. Optimization-

based methods fit a parametric body model to 2D obser-

vations in an iterative manner, leading to accurate image-

model alignments, but are often slow and sensitive to the

initialization. In contrast, regression-based methods, that

use a deep network to directly estimate the model param-

eters from pixels, tend to provide reasonable, but not pixel

accurate, results while requiring huge amounts of supervi-

sion. In this work, instead of investigating which approach

is better, our key insight is that the two paradigms can form

a strong collaboration. A reasonable, directly regressed es-

timate from the network can initialize the iterative optimiza-

tion making the fitting faster and more accurate. Similarly,

a pixel accurate fit from iterative optimization can act as

strong supervision for the network. This is the core of our

proposed approach SPIN (SMPL oPtimization IN the loop).

The deep network initializes an iterative optimization rou-

tine that fits the body model to 2D joints within the training

loop, and the fitted estimate is subsequently used to super-

vise the network. Our approach is self-improving by na-

ture, since better network estimates can lead the optimiza-

tion to better solutions, while more accurate optimization

fits provide better supervision for the network. We demon-

strate the effectiveness of our approach in different settings,

where 3D ground truth is scarce, or not available, and

we consistently outperform the state-of-the-art model-based

pose estimation approaches by significant margins. The

project website with videos, results, and code can be found

at https://seas.upenn.edu/˜nkolot/projects/spin.

1. Introduction

With the emergence of deep learning architectures, the

dilemma between regression-based and optimization-based

approaches for many computer vision problems has been

more relevant than ever. Should we regress the relative cam-
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Figure 1: Both optimization and regression approaches have suc-

cesses and failures, so this motivates our approach to build a tight

collaboration between the two.

era pose, or use bundle adjustment? Is it more appropriate

to regress the parameters of a face model, or fit the model to

facial landmarks? These types of questions are ubiquitous

within our community. Among others, 3D model-based hu-

man pose estimation has initiated similar discussions, since

both optimization-based [4, 18] and regression-based ap-

proaches [15, 24, 27] have had significant success recently.

However, one can argue that both paradigms have weak and

strong points (Figure 1). Based on this, in this work we ad-

vocate that instead of focusing on which paradigm is better,

if we aim to push the field forward, we need to consider

ways for collaboration between the two.

Although 3D model-based human pose is a very chal-

lenging and highly ambiguous problem, there have been

fundamental works that attempt to address it. Optimization-

based methods [4, 8, 18], are pretty well explored and un-

derstood. Given a parametric model of the human body,

e.g., SMPL [20], an iterative fitting approach attempts to es-

timate the body pose and shape that best explains 2D obser-

vations, most typically 2D joint locations. Since we explic-

itly optimize for the agreement of the model with image fea-
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Figure 2: Overview of the proposed approach. SPIN trains a deep network for 3D human pose and shape estimation through a tight col-

laboration between a regression-based and an iterative optimization-based approach. During training, the network predicts the parameters

Θreg of the SMPL parametric model [20]. Instead of using the ground truth 2D keypoints to apply a weak reprojection loss, we instead

propose to use our regressed estimate to initialize an iterative optimization routine that fits the model to 2D keypoints (SMPLify). This

procedure is done within the training loop. The optimized model parameters Θopt are used to explicitly supervise the output of the network

and supply it with privileged model-based supervision, that is beneficial compared to the weaker and typically ambiguous 2D reprojection

losses. This collaboration leads to a self-improving loop, since better fits help the network train better, while better initial estimates from

the network help the optimization routine converge to better fits.

tures, we typically get a good fit, but the optimization tends

to be very slow and is quite sensitive to the choice of the

initialization. On the other hand, recent deep learning ad-

vances have shifted the spotlight towards purely regression-

based methods, using deep networks to regress the param-

eters of the model directly from images [15, 24, 27]. In

theory, this is a very promising direction, since the deep

regressor can take all pixel values into consideration, in-

stead of relying only on a sparse set of 2D locations. Un-

fortunately, this type of one-shot prediction might lead to

mediocre image-model alignment, while at the same time a

large amount of data is necessary to properly train the net-

work. So naturally, there is a large list of arguments in favor

and against each method.

In this work, we advocate that instead of arguing over

one paradigm or the other we should embrace the strengths

and the weaknesses of each method and use them in a tight

collaboration during training. In our approach, a deep net-

work is used to regress the parameters of the SMPL para-

metric model [20]. These regressed values initialize the

iterative fitting routine that aligns the model to the image

given the 2D keypoints. Subsequently, the parameters of

the fitted model are used as supervision for the network,

closing the loop between the regression and the optimiza-

tion method. This is the core of our approach, SPIN, that

fits the model within the training loop, and uses it as a privi-

leged form of supervision for the neural network (Figure 2).

A critical characteristic of our proposed approach is that it

is self-improving by nature. In the early training stages, the

network will produce results close to the mean pose mean-

ing that the iterative fitting will be prone to make errors.

As more examples are provided to the network as supervi-

sion by the iterative fitting module, it will learn to produce

more meaningful shapes that will also lead the optimiza-

tion to more accurate model fits. Moreover, since the it-

erative fitting requires only 2D keypoints to fit the model,

our network can be trained even when no image with corre-

sponding 3D ground truth is available, since the 3D supervi-

sion will be provided by the optimization module. Finally,

and most crucially in terms of performance, our network is

trained with explicit 3D supervision, in the form of model

parameters and full shape instead of weaker 2D reprojection

errors as in previous works [15, 27]. This privileged form

of supervision turns out to be very important to improve the

regression performance. Our approach is benchmarked in

different settings and in a variety of indoor and in-the-wild

datasets and it outperforms state-of-the-art model-based ap-

proaches by a significant margin.

We summarize the contributions of our approach below:

• We present SPIN, a self-improving approach for

training a neural network for 3D human pose and

shape estimation, through the tight collaboration of a

regression- and an optimization-based method.

• Since the supervision is supplied by the iterative fitting

module, training is feasible even when no image with

3D ground truth is available for training.
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• The fitted model supplies our network with explicit

model-based supervision which is crucial to improve

performance compared to weaker 2D supervision (e.g.,

reprojection losses).

• We achieve state-of-the-art results in model-based 3D

pose and shape estimation across many benchmarks.

2. Related work

Recent works have made significant advances in the

frontier of skeleton-based 3D human pose estimation from

single images, with many approaches achieving impressive

results [21, 23, 29, 33, 35, 45]. Although this line of work

has boosted the interest for 3D human pose estimation, here

we will focus our review on model-based pose estimation.

Approaches in this category consider a parametric model of

the human body, like SMPL [20] or SCAPE [2], and the

goal is to estimate the full body 3D pose and shape.

Optimization-based methods: Optimization-based ap-

proaches used to be the leading paradigm for model-based

human pose estimation. Early work in the area [8, 31] at-

tempted to estimate the parameters of the SCAPE model

using silhouettes or keypoints and often there was some

manual user intervention needed. Recently, the first fully

automatic approach, SMPLify, was introduced by Bogo et

al. [4]. Using an off-the-shelf keypoint detector [28], SM-

PLify fits SMPL to 2D keypoint detections, using strong

priors to guide the optimization. Beyond SMPLify, differ-

ent updates to the standard pipeline have investigated in-

corporating in the fitting procedure, silhouette cues [18],

multiple views [10], or even handle multiple people [42].

More recently, works have demonstrated fits for more ex-

pressive models in the multi-view [14], as well as the single-

view setting [27, 41]. In this work, we exploit the particular

effectiveness of optimization-based approaches to produce

pixel-accurate fittings, but instead of using them to produce

good predictions at test time, our goal is to leverage them to

supply direct supervision for a neural network.

Regression-based methods: On the other end of the

spectrum, recent works rely exclusively on regression to ad-

dress the problem of 3D human pose and shape estimation.

In most cases, given a single RGB image, a deep network is

used to regress the model parameters. Considering the lack

of images with full 3D shape ground truth, the majority of

these works have focused on alternative supervision signals

to train the deep networks. Most of them rely heavily on

2D annotations including 2D keypoints, silhouettes, or parts

segmentation. This information can be used as input [37],

intermediate representation [24, 27], or as supervision, by

enforcing different reprojection losses [15, 24, 27, 34, 37].

Although these constraints are very useful, they are provid-

ing weak supervision for the network. Instead, we argue

that strong model-based supervision, i.e., direct supervision

on the model parameters and/or output mesh is crucial to

improve performance. Although this type of ground truth is

rarely available, we use a fitting routine in the training loop

to provide the strong supervision signal to train the network.

Iterative fitting meets direct regression: Ideas of us-

ing regression approaches to improve fitting and vice versa

have also been considered before in the literature. Early op-

timization methods required a good initial estimate which

could be obtained by a discriminative approach [31]. Lass-

ner et al. [18] used SMPLify to get good model fits, which

could be later used for regression tasks (e.g., part segmen-

tation or landmark detection). Rogez et al. [29] also em-

ployed 3D pose pseudo annotations for training. Pavlakos et

al. [27] used an initial prediction from their network to

initialize and anchor the SMPLify optimization routine.

Varol et al. [38] proposed an extension of SMPLify to fit

SMPL on the regressed volumetric representation of their

network. Although previous works have also considered

the benefits of these two approaches, in our work we pro-

pose a much tighter collaboration by incorporating the fit-

ting method within the training loop, in a self-improving

manner, to harness better supervision for the network.

To put our approach in a larger context, the idea of com-

bining direct regression networks with different optimiza-

tion routines has also emerged in different settings. Train-

ing a network jointly with a graphical model has been pro-

posed by Tompson et al. [36] in the context of 2D human

pose estimation. Similarly, for segmentation, it is popular

to use a CRF on top of the segmentation network [7], while,

unrolling the CRF optimization to train the network jointly

with the optimization has also been investigated [30, 44].

These ideas have also translated to 3D, where Paschali-

dou et al. [25] unrolls the MRF optimization to train it

jointly with a network for depth regression. Although we

draw inspiration from these works, our motivation is differ-

ent since instead of unrolling the optimization, or doing a

simple post-processing, we leverage the iterative fitting to

provide strong supervision to the network.

3. Technical approach

In the following, we describe the parametric human body

model, SMPL [20], and we define the basic notation. Then

we provide more details about the regression network and

the iterative optimization routine, based on SMPLify [4].

Finally, we describe our approach, SPIN, and give the nec-

essary implementation details.

3.1. SMPL model

The SMPL body model [20], provides a function

M(θ, β) that takes as input the pose parameters θ and the

shape parameters β, and returns the body mesh M ∈ R
N×3,

with N = 6890 vertices. Conveniently, the body joints X

of the model can be defined as a linear combination of the

2254



mesh vertices. A linear regressor W can be pre-trained for

this task, so for k joints of interest, we define the major body

joints X ∈ R
k×3 = WM .

3.2. Regression network

For the regression model, we use a deep neural network.

Our architecture has the same design with Kanazawa et

al. [15] with the only difference that we use the represen-

tation proposed by Zhou et al. [46] for the 3D rotations,

since we empirically observed faster convergence during

training. Let us now denote with f the function approxi-

mated by the neural network. A forward pass of a new im-

age provides the regressed prediction for the model param-

eters Θreg = {θreg, βreg} and the camera parameters Πreg .

These parameters allow us to estimate the 2D projection of

the joints Jreg = Πreg(Xreg). Our prediction allows us to

generate the mesh corresponding to the regressed parame-

ters, Mreg = M(θreg, βreg), as well as the joints and their

reprojection Jreg . In this setting, a common supervision is

provided using a reprojection loss on the joints:

L2D = ||Jreg − Jgt||, (1)

where Jgt are the ground truth 2D joints. However, in this

work, we argue that this supervisory signal is very weak and

puts an extra burden on the network, forcing it to search in

the parameter space for a valid pose that agrees with the

ground truth 2D locations.

3.3. Optimization routine

The iterative fitting routine follows the SMPLify work

by Bogo et al. [4]. We give a short introduction here, but

we also refer the reader to [4] for more details. SMPLify

tries to fit the SMPL model to a set of 2D keypoints using

an optimization-based approach. The objective function it

minimizes consists of a reprojection loss term and a num-

ber of pose and shape priors. More specifically, the total

objective is:

EJ(β, θ;K, Jest) + λθEθ(θ) + λaEa(θ) + λβEβ(β) (2)

where β and θ are the parameters of the SMPL model, Jest
the detected 2D joints and K the camera parameters. The

first term EJ(β, θ;K, Jest) is a penalty on the weighted

2D distance between Jest and the projected SMPL joints.

Eθ(θ) is a mixture of Gaussians pose prior trained with

shapes fitted on marker data, Ea(θ) is a pose prior penal-

izing unnatural rotations of elbows and knees, while Eβ(β)
is a quadratic penalty on the shape coefficients. We did not

include the interpenetration error term of [4], since it makes

fitting slower, while having little performance benefit.

The first step of SMPLify involves an optimization over

the camera translation and body orientation, while keeping

the model pose and shape fixed. After estimating the cam-

era translation, SMPLify attempts to minimize (2), using a

Deep
Regressor

Iterative
fitting

Initialize optimization

Supervise regression

Figure 3: SPIN builds a tight collaboration between an

optimization-based and a regression-based approach. A reason-

able regressed estimate from the network initializes properly the

optimization, thus leading to a better optimum. Similarly, a value

optimized by iterative fitting can act as supervision to better train

the network. The two procedures continue this collaboration form-

ing a self-improving loop.

4-stage fitting procedure. The 4-stage optimization is cru-

cial to avoid getting trapped in local minima because the

optimization is initialized from the mean pose. In contrast,

since our approach uses the network prediction to initial-

ize the optimization, we observed that a single optimization

stage, with a small number of iterations, is typically enough

to converge to a good fit. Also instead of estimating the ini-

tial translation using triangle similarity as in [4] we can also

use the predicted camera translation from the network. This

can be helpful in cases where the assumptions made in [4]

(e.g., person is always standing) are not valid.

Another modification aiming at faster runtime is that we

run SMPLify in batch mode. Instead of optimizing for each

image sequentially, the optimization runs in parallel. Al-

though SMPLify can have high latency that makes it un-

suitable for single-image inference, we can achieve high

throughput on a modern GPU by optimizing for several ex-

amples concurrently. Moreover, while SMPLify uses joints

Jest along with their detection confidences provided by

DeepCut [28], for our ground truth, we can only assume

that all joints have the same confidence. This can affect neg-

atively the fitting procedure, since typically there are small

annotation mistakes, e.g., annotating joints under occlusion,

or generally geometrically inconsistent annotations. To al-

leviate this problem, we combine the provided ground truth

2D joints for each person with the corresponding OpenPose

detections [5, 6, 32, 40]. This enables us to leverage the

confidence in each detection and avoid mistakes because of

high-confidence erroneous annotations.

3.4. SPIN

Our approach, SPIN, builds on the insight that the previ-

ous two paradigms can form a tight collaboration to train a

deep regressor for human pose and shape estimation (Fig-
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ure 3). During a typical training loop, an image is for-

warded through the network providing the regressed param-

eters Θreg . Instead of applying the typical 2D reprojection

losses right away, the regressed parameters are instead used

to initialize the optimization routine. This optimization is

usually very slow if we start from the mean pose as an initial

value. However, given a reasonable initial estimate, it can

be greatly accelerated. This enables us to employ the fitting

routine within the training loop. Let us now denote with

Θopt = {θopt, βopt} the set of model parameters produced

by the iterative fitting. These values are explicitly optimized

such that the produced shape Mopt = M(θopt, βopt) and

reprojected joints Jopt, align with the 2D keypoints. Given

these optimized values, we can directly supervise the net-

work function f on the parameter level:

L3D = ||Θreg −Θopt||, (3)

and/or the mesh level:

LM = ||Mreg −Mopt||. (4)

In practice, this has a very different effect than applying a

reprojection loss for the 2D joints. Instead of forcing the

network to identify a set of parameters that satisfy the joints

reprojection, we supply it directly with a parametric solu-

tion that corresponds to a feasible 3D shape. Intuitively, we

bypass the search of the network on the parameter space,

and we directly provide a privileged set of parameters Θopt

which tend to be very close to the actual optimal solution.

Another crucial characteristic of SPIN is that it is self-

improving by nature. A good initial network estimate Θreg

will lead the optimization to a better fit Θopt, while a good

fit from the iterative routine will provide even better super-

vision to the network. This makes running the routine in

the loop particularly important, since it enables the close

collaboration between the two components.

Moreover, since the optimization routine uses only 2D

joints for the fitting, and the network relies primarily on this

routine for the necessary model-based supervision, our ap-

proach is applicable even in cases where no image with cor-

responding 3D ground truth is available for training. This

resembles the unpaired setting of [15], where only 2D key-

point annotations are available, and an adversarial prior is

trained to penalize invalid poses/shapes. The benefit of our

approach in this setting is that instead of providing a yes/no

answer to the network as the discriminator does, we explic-

itly supervise it with a valid pose, which leads to better per-

formance empirically, as we demonstrate in our evaluation.

3.5. Implementation details

Here we discuss in more detail some further implemen-

tation details that were important for the training procedure.

Although SMPLify is quite accurate, for some cases we can

still get bad failures. These bad fits can make training unsta-

ble and potentially decrease performance. This motivated

us to use a criterion to reject supervision from these shapes.

Empirically, a simple thresholding based on the joint repro-

jection error worked very well in our case. For the images

with rejected fits, we only supervise the regression network

with a reprojection loss on the joints. Additionally, to avoid

training with improbable values for the shape parameters

(i.e., beyond ±3σ), when SMPLify returns shape values

outside this range, we only supervise the β parameters with

a simple L2 loss, i.e., pushing it close to the mean shape.

To improve and accelerate training, we also incorporated

a dictionary, such that for each image in our training set

we can keep track of the best fit we have seen for it over

all epochs. In practice, every time we compute a new op-

timized shape in the loop, we compare with the best fit we

have seen until that point in time and if the new fit is bet-

ter, we update the dictionary accordingly. To compare the

quality of the fits, we again use the reprojection error on

the joints. Our dictionary is initially populated with SM-

PLify fits, a process done offline before the training starts.

To initialize SMPLify for this process, we can start from the

mean pose, or use a more accurate pose, regressed from the

2D keypoints (e.g., using a network similar to Martinez et

al. [21]). For our empirical evaluation we focus on the sec-

ond strategy, but we also present similar results with the first

approach in the Sup.Mat. We run the SMPLify optimization

for a total of 50 iterations for each batch.

4. Empirical evaluation

4.1. Datasets

Here we give a quick description of the datasets we

use for training and evaluation. We report results on

Human3.6M [11], MPI-INF-3DHP [22], LSP [12], and

3DPW [39]. We train using the first three datasets (no

training data from 3DPW), while similarly to [15], we

also incorporate training data with 2D annotations from

other datasets, i.e., LSP-Extended [13], MPII [1], and

COCO [19]. For the different settings we investigate,

e.g., training with/without in the loop update, or training

with/without 3D ground truth), we train a single model per

setting and we use it to report results on all datasets, without

fine-tuning on each particular dataset. Moreover, we clar-

ify, that we always evaluate the network’s output. No ad-

ditional fitting-based post-processing is applied, as is done

for example in [9]. Also, since different datasets often use

different error metrics to report results, we use the metrics

that are more often met in the literature for each dataset. We

give a detailed definition of the various metrics in Sup.Mat.

Human3.6M: It is an indoor benchmark for 3D human pose

estimation. It includes multiple subjects performing actions

like Eating, Sitting and Walking. Following typical pro-
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Figure 4: Examples of SMPLify fits in our dictionary at the begin-

ning of training and at the end of training. Although SMPLify can

fail when starting from an inaccurate pose (second column), given

a good prediction from our network as initialization, the optimiza-

tion can converge to an accurate solution (third column).

tocols, e.g., [15], we use subjects S1, S5, S6, S7, S8 for

training and we evaluate on subjects S9 and S11.

MPI-INF-3DHP: It is a dataset captured with a multi-view

setup mostly in indoor environments. No markers are used

for the capture, so 3D pose data tend to be less accurate

compared to other datasets. We use the provided training

set (subjects S1 to S8) for training and we report results on

the test set of the dataset.

LSP: It is a standard dataset for 2D human pose estimation.

Here we employ the test set for evaluation, using the silhou-

ette/parts annotations from Lassner et al. [18].

3DPW: It is a very recent dataset, captured mostly in out-

door conditions, using IMU sensors to compute pose and

shape ground truth. We use this dataset only for evaluation

on its defined test set.

4.2. Quantitative evaluation

Ablative studies: First we evaluate the components of

our approach. We use in-the-wild datasets for this, since

they are much more challenging, compared to the indoor

Rec. Error

HMR [15] 81.3

Kanazawa et al. [16] 72.6

Arnab et al. [3] 72.2

Kolotouros et al. [17] 70.2

Ours - static fits 66.3

Ours - in the loop 59.2

Table 1: Evaluation on the 3DPW dataset. The numbers are mean

reconstruction errors in mm. The model-based supervision alone

(Ours - static fits) outperforms similar architectures trained on the

same ([15, 17]) or more data ([3, 16]). Incorporating the fitting in

the loop (Ours - in the loop) further improves performance.

FB Seg. Part Seg.

acc. f1 acc. f1

SMPLify oracle 92.17 0.88 88.82 0.67

SMPLify 91.89 0.88 87.71 0.64

SMPLify on [27] 92.17 0.88 88.24 0.64

HMR [15] 91.67 0.87 87.12 0.60

Ours - static fits 91.07 0.86 88.48 0.65

Ours - in the loop 91.83 0.87 89.41 0.68

Table 2: Evaluation on foreground-background and six-part seg-

mentation on the LSP test set. The numbers are accuracies and f1

scores. Using the model-based supervision without updating the

fits achieves very competitive results, while the incorporation of

the fitting in the loop propels our approach beyond the state-of-

the-art. The numbers for the first two rows are taken from [18].

benchmarks, where the models tend to overfit [11, 22].

On the new 3DPW dataset, we evaluate pose estimation.

In Table 1, we provide the results for two versions of our ap-

proach, one where the network is supervised only with the

initial dictionary fits, without running the optimization in

the loop (Ours - static fits), and a second where we run the

optimization in the loop, and the network can benefit from

the improved fits that the iterative fitting tends to produce

(Ours - in the loop). To put our results into perspective, we

also compare with four recent baselines ([3, 15, 16, 17]).

As we can see, the use of model supervision is enough to

improve performance over the other baselines. Unsurpris-

ingly, running the iterative fitting in the loop, we can further

improve the performance of the network, since it gradually

gets access to better and better fits.

The same comparison is performed for the LSP dataset.

In this case, we evaluate 3D shape implicitly through mesh

reprojection and evaluation of silhouette and part segmenta-

tion accuracy. The full results for this setting are presented

in Table 2. The trend here is similar to the 3DPW results.

Using a static set of fits and providing model-based super-

vision achieves very compelling results. However, it is the

incorporation of the optimization in the loop that propels

our approach beyond the state-of-the-art.

To better illustrate the degree of improvement for fits in
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Figure 5: Qualitative results from various datasets, LSP (rows 1-3), 3DPW (rows 4-5), H36M (rows 6-7) and MPI-INF-3DHP (row 8).
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Rec. Error

Lassner et al. [18] 93.9

SMPLify [4] 82.3

Pavlakos et al. [27] 75.9

HMR (unpaired) [15] 66.5

Ours (unpaired) 62.0

NBF [24] 59.9

HMR [15] 56.8

Ours 41.1

Table 3: Evaluation on the Human3.6M dataset. The numbers are

mean reconstruction errors in mm. We compare with approaches

that output a mesh of the human body. Approaches on the top part

require no image with 3D ground truth, while approaches on the

bottom part make use of 3D ground truth too. In both settings, our

approach outperforms the state-of-the-art by significant margins.

our dictionary, we provide some typical examples in Fig-

ure 4. As the training progresses, the fits improve signifi-

cantly, giving to the network access to better supervision.

Comparison with the state-of-the-art: For further

comparison with the state-of-the-art, we report results in ad-

ditional datasets for 3D human pose estimation. Based on

the different settings, proposed in the literature, we report

results both when we use 3D ground truth whenever it is

available (e.g., Human3.6M), and also when no image with

3D ground truth is available for training. Similarly to [15],

we call this setting “unpaired”, since images and 3D ground

truth do not come in pairs for training.

In Table 3, we present the results of our approach on Hu-

man3.6M against other approaches that also output a full

mesh of the human body (SMPL, in particular). Our ap-

proach outperforms the previous baselines when 3D ground

truth is not available for training (top of the table) and when

it is (bottom). We highlight that for the case that no 3D

ground truth is available (e.g., unpaired setting), our net-

work does not have access to poses from Human3.6M as

Kanazawa et al. [15], since our pose prior is trained only on

CMU data. Despite that, we still outperform [15].

Similarly, we also report results on the MPI-INF-3DHP

dataset, for the two settings (paired/unpaired supervision).

Again, we outperform [15], while being very competitive

against two approaches that do not use a parametric model

of the human body [22, 23].

Finally, Figure 5 includes qualitative results of our ap-

proach from the different datasets involved in our evalua-

tion, while Figure 6 includes some failure cases. A larger

variety of results can also be found in the Sup.Mat.

5. Summary

This work describes SPIN, an approach that proposes

a close collaboration between a regression method and an

optimization-based method to train a deep network for 3D

Absolute Rigid Alignment

PCK AUC MPJPE PCK AUC MPJPE

HMR (unpaired) [15] 59.6 27.9 169.5 77.1 40.7 113.2

Ours (unpaired) 66.8 30.2 124.8 87.0 48.5 80.4

Mehta et al. [22] 75.7 39.3 117.6 - - -

VNect [23] 76.6 40.4 124.7 83.9 47.3 98.0

HMR [15] 72.9 36.5 124.2 86.3 47.8 89.8

Ours 76.4 37.1 105.2 92.5 55.6 67.5

Table 4: Evaluation on the MPI-INF-3DHP dataset. The compar-

ison is under different metrics before (left) and after (right) rigid

alignment. Our approach outperforms the previous baselines. (For

PCK and AUC, higher is better, while for MPJPE, lower is better).

Image Result Image Result

Figure 6: Erroneous reconstructions of our network. Typical fail-

ure cases can be attributed to challenging poses, ordinal depth am-

biguities, viewpoints which are rare in the training set, as well as

confusion due to the existence of multiple people in the scene.

human pose and shape estimation. Our approach uses the

network to provide an initial estimate to the optimization

routine, which then fits the model in the loop and provides

model-based supervision for the training of the network.

Thus, the optimization-module and regression-module form

a self-improving cycle since they can both benefit through

their tight collaboration. Moreover, the privileged model-

based supervision is valuable to improve the training of our

network, which is also demonstrated by the empirical re-

sults, where our approach outperforms previous approaches

by large margins. Simultaneously, since the fitting routine

requires only 2D keypoints to fit the model, we can train

our deep network even in the absence of 3D annotations.

Future work could consider extending this approach to cap-

ture multiple people [42, 43], or incorporate more expres-

sive models of the human body [14, 26].
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