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Abstract

In this paper we introduce ViSiL, a Video Similarity

Learning architecture that considers fine-grained Spatio-

Temporal relations between pairs of videos – such relations

are typically lost in previous video retrieval approaches that

embed the whole frame or even the whole video into a vec-

tor descriptor before the similarity estimation. By contrast,

our Convolutional Neural Network (CNN)-based approach

is trained to calculate video-to-video similarity from refined

frame-to-frame similarity matrices, so as to consider both

intra- and inter-frame relations. In the proposed method,

pairwise frame similarity is estimated by applying Tensor

Dot (TD) followed by Chamfer Similarity (CS) on regional

CNN frame features - this avoids feature aggregation before

the similarity calculation between frames. Subsequently,

the similarity matrix between all video frames is fed to a

four-layer CNN, and then summarized using Chamfer Sim-

ilarity (CS) into a video-to-video similarity score – this

avoids feature aggregation before the similarity calculation

between videos and captures the temporal similarity pat-

terns between matching frame sequences. We train the pro-

posed network using a triplet loss scheme and evaluate it on

five public benchmark datasets on four different video re-

trieval problems where we demonstrate large improvements

in comparison to the state of the art. The implementation of

ViSiL is publicly available1.

1. Introduction

Due to the popularity of Internet-based video sharing ser-

vices, the volume of video content on the Web has reached

unprecedented scales. For instance, YouTube reports al-

most two billion users and more than one billion hours of

video viewed per day2. As a result, content-based video

retrieval, which is an essential component in applications

such as video filtering, recommendation, copyright protec-

1https://github.com/MKLab-ITI/visil
2https://www.youtube.com/yt/about/press/, accessed 21 March 2019

Figure 1. Depiction of the frame-to-frame similarity matrix and the

CNN output of the ViSiL approach for two video pair examples:

relevant videos that contain footage from the same incident (top),

unrelated videos with spurious visual similarities (bottom).

tion and verification, becomes increasingly challenging.

In this paper, we address the problem of similarity esti-

mation between pairs of videos, an issue that is central to

several video retrieval systems. A straightforward approach

to this is to aggregate/pool frame-level features into a sin-

gle video-level representation on which subsequently one

can calculate a similarity measure. Such video-level rep-

resentations include global vectors [35, 11, 21], hash codes

[30, 23, 31] and Bag-of-Words (BoW) [5, 20, 22]. However,

this disregards the spatial and the temporal structure of the

visual similarity, as aggregation of features is influenced by

clutter and irrelevant content. Other approaches attempt to

take into account the temporal sequence of frames in the

similarity computation, e.g., by using Dynamic Program-

ming [7, 24], Temporal Networks [32, 17] and Temporal

Hough Voting [8, 16]. Another line of research considers

spatio-temporal video representation and matching based

on Recurrent Neural Networks (RNN) [10, 14] or in the

Fourier domain [28, 26, 2]. Such approaches may achieve

high performance in certain tasks such as video alignment

or copy detection, but not in more general retrieval tasks.

A promising direction is exploiting better the spatial and
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temporal structure of videos in the similarity calculation

[8, 16, 17]. However, recent approaches either focused

on the spatial processing of frames and completely disre-

garded temporal information [11, 21], or considered global

frame representations (essentially discarding spatial infor-

mation) and then considered the temporal alignment among

such frame representations [7, 2]. In this paper, we pro-

pose ViSiL, a video similarity learning network that consid-

ers both the spatial (intra-frame) and temporal (inter-frame)

structure of the visual similarity. We first introduce a frame-

to-frame similarity that employs Tensor Dot (TD) product

and Chamfer Similarity (CS) on region-level frame Convo-

lutional Neural Network (CNN) features weighted with an

attention mechanism. This leads to a frame-to-frame simi-

larity function that takes into consideration region-to-region

pairwise similarities, instead of calculating the similarity of

frame-level embeddings where the regional details are lost.

Then, we calculate the matrix with the similarity scores be-

tween each pair of frames between the two videos and use

it as input to a four-layer CNN, that is followed by a Cham-

fer Similarity (i.e., a mean-max filter) at its final layer. By

doing so, we learn the temporal structure of the frame-level

similarity of relevant videos, such as the presence of diag-

onal structures in Figure 1, and suppress spurious pairwise

frame similarities that might occur.

We evaluate ViSiL on several video retrieval problems,

namely Near-Duplicate Video Retrieval (NDVR), Fine-

grained Incident and Event-based Video Retrieval (FIVR,

EVR), and Action Video Retrieval (AVR) using public

benchmark datasets, where in all cases, often by a large

margin, it outperforms the state-of-the-art.

2. Related Work

Video retrieval approaches can be roughly classified into

three categories [25], namely, methods that calculate simi-

larity using global video representations, methods that ac-

count for similarities between individual video frames and

methods that employ spatio-temporal video representations.

Methods in the first category extract a global video vec-

tor and use dot product or Euclidean distance to compute

similarity between videos. Goa et al. [11] extracted a video

imprint for the entire video based on a feature alignment

procedure that exploits the temporal correlations and re-

moves feature redundancies across frames. Kordopatis et al.

created visual codebooks for features extracted from inter-

mediate CNN layers [20] and employed Deep Metric Learn-

ing (DML) to train a network using a triplet loss scheme to

learn an embedding that minimizes the distance between re-

lated videos and maximizes it between irrelevant ones [21].

A popular direction is the generation of a hash code for the

entire video combined with Hamming distance. Liong et al.

[23] employed a CNN architecture to learn binary codes for

the entire video and trained it end-to-end based on the pair-

wise distance of the generated codes and video class labels.

Song et al. [31] built a self-supervised video hashing sys-

tem, able to capture the temporal relation between frames

using an encoder-decoder scheme. These methods are typi-

cally outperformed by the ones of the other two categories.

Methods in the second category typically extract frame-

level features to apply frame-to-frame similarity calcula-

tion and then aggregate them into video-level similarities.

Tan et al. [32] proposed a graph-based Temporal Network

(TN) structure generated through keypoint frame matching,

which is used for the detection of the longest shared path

between two compared videos. Several recent works have

employed modifications of this approach for the problem of

partial-copy detection, combining it with global CNN fea-

tures [17] and a CNN+RNN architecture [14]. Additionally,

other approaches employ Temporal Hough Voting [8, 16]

to align matched frames by means of a temporal Hough

transform. These are often outperformed by TN in sev-

eral related problems. Another popular solution is based

on Dynamic Programming (DP) [7, 24]. Such works calcu-

late the similarity matrix between all frame pairs, and then

extract the diagonal blocks with the largest similarity. To

increase flexibility, they also allow limited horizontal and

vertical movements. Chou et al. [7] and Liu et al. [24]

combined DP with BoW matching to measure frame sim-

ilarities. However, the proposed solutions are not capable

of capturing a large variety of temporal similarity patterns

due to their rigid aggregation approach. By contrast, ViSiL,

which belongs to this category of methods, learns the simi-

larity patterns in the CNN subnet that operates on the simi-

larity matrix between the frame pairs.

Methods in the third category extract spatio-temporal

representations based on frame-level features and use them

to calculate video similarity. A popular direction is to use

the Fourier transform in a way that accounts for the tem-

poral structure of video similarity. Revaud et al. [28]

proposed the Circulant Temporal Encoding (CTE) that en-

codes the frame features in a spatio-temporal representa-

tion with Fourier transform and thus compares videos in

the frequency domain. Poullot et al. [26] introduced the

Temporal Matching Kernel (TMK) that encodes sequences

of frames with periodic kernels that take into account the

frame descriptor and timestamp. Baraldi et al. [2] built

a deep learning layer component based on TMK and set

up a training process to learn the feature transform coef-

ficients using a triplet loss that takes into account both the

video similarity score and the temporal alignment. How-

ever, the previous methods rely on global frame representa-

tions, which disregard the spatial structure of similarity. Fi-

nally, Feng et al. [10] developed an approach based on cross

gated bilinear matching for video re-localization. They em-

ployed C3D features [34] and built a multi-layer recurrent

architecture that matches videos through attention weight-
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Figure 2. Overview of the training scheme of the proposed architecture. A triplet of an anchor, positive and negative videos is provided to

a CNN to extract regional features that are PCA whitened and weighted based on an attention mechanism. Then the Tensor Dot product is

calculated for the anchor-positive and anchor-negative pairs followed by Chamfer Similarity to generate frame-to-frame similarity matrices.

The output matrices are passed to a CNN to capture temporal relations between videos and calculate video-to-video similarity by applying

Chamfer Similarity on the output. The network is trained with the triplet loss function. The double arrows indicate shared weights.

ing and factorized bilinear matching to locate related video

parts. However, even though this approach performs well

on video matching problems, it was found to be inapplica-

ble for video retrieval tasks as will be shown in Section 6.

3. Preliminaries

Tensor Dot (TD): Having two tensors A 2 RN 1 � N 2 � K

and B 2 RK � M 1 � M 2 , their TD (also known as tensor con-

traction) is given by summing the two tensors over specific

axes. Following the notation in [36], TD of two tensors is

C = A � ( i;j ) B (1)

where C 2 RN 1 � N 2 � M 1 � M 2 is the TD of the tensors, and i
and j indicate the axes over which the tensors are summed.

In the given example i and j can only be 3 and 1 respec-

tively, since they are the only ones of the same size (K ).

Chamfer Similarity (CS): This is the similarity counter-

part of Chamfer Distance [3]. Considering two sets of items

x and y with total number of N and M items respectively

and their similarity matrix S 2 RN � M , CS is calculated as

the average similarity of the most similar item in set y for

each item in set x. This is formulated in Equation 2.

CS(x; y) =
1
N

NX

i =1

max
j 2 [1;M ]

S(i; j ) (2)

Note that CS is not symmetric, i.e. CS(x; y) 6= CS(y; x),

however, that a symmetric variant SCS can be defined as,

SCS(x; y) = ( CS(x; y) + CS(y; x))=2.

4. ViSiL description

Figure 2 illustrates the proposed approach. We first ex-

tract features from the intermediate convolution layers of a

CNN architecture by applying region pooling on the fea-

ture maps. These are further PCA-whitened and weighted

based on an attention mechanism (section 4.1). Addition-

ally, a similarity function based on TD and CS is devised

to accurately compute the similarity between frames (sec-

tion 4.2). A similarity matrix comprising all pairwise frame

similarities is then fed to a CNN to train a video-level simi-

larity model (section 4.3). This is trained with a triplet loss

scheme (section 4.4) based on selected and automatically

generated triplets from a training dataset (section 4.5).

4.1. Feature extraction

Given an input video frame, we apply Regional Maxi-

mum Activation of Convolution (R-MAC) [33] on the acti-

vations of the intermediate convolutional layers [20] given

a specific granularity level L N ; N 2 f 1; 2; 3; :::g. Given

a CNN architecture with a total number of K convolu-

tional layers, this process generates K feature maps M k 2
RN � N � Ck (k = 1 ; :::; K ), where Ck is the number of chan-

nels of the kth convolution layer. All extracted feature

maps have the same resolution (N � N ) and are concate-

nated into a frame representation M 2 RN � N � C , where

C = C1 + ::: + CK . We also apply `2-normalization on

the channel axis of the feature maps, before and after con-

catenation. This feature extraction process is denoted as

LN -iMAC. The extracted frame features retain the spatial

information of frames at different granularities. We then
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