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Abstract

Weakly supervised object detection (WSOD), where a de-

tector is trained with only image-level annotations, is at-

tracting more and more attention. As a method to obtain a

well-performing detector, the detector and the instance la-

bels are updated iteratively. In this study, for more efficient

iterative updating, we focus on the instance labeling prob-

lem, a problem of which label should be annotated to each

region based on the last localization result. Instead of sim-

ply labeling the top-scoring region and its highly overlap-

ping regions as positive and others as negative, we propose

more effective instance labeling methods as follows. First,

to solve the problem that regions covering only some parts

of the object tend to be labeled as positive, we find regions

covering the whole object focusing on the context classifica-

tion loss. Second, considering the situation where the other

objects contained in the image can be labeled as negative,

we impose a spatial restriction on regions labeled as neg-

ative. Using these instance labeling methods, we train the

detector on the PASCAL VOC 2007 and 2012 and obtain

significantly improved results compared with other state-of-

the-art approaches.

1. Introduction

Object detectors trained on large-scale datasets with

instance-level annotations (i.e., strongly supervised object

detectors) have made significant progress [7, 13, 14] with

the recent development of convolutional neural networks

(CNNs), but such detailed large-scale datasets are time-

consuming and labor-intensive to collect accurately. On the

other hand, image-level labels that indicate the presence of

an object can be acquired easily and in large amounts be-

cause such labels take less time to annotate manually or can

be collected using an image search on the Internet. In order

to take advantage of readily available image-level annota-

tions, in this study, we focus on the problem of training a

detector with only image-level annotations; that is, weakly

supervised object detection (WSOD).

As a method to obtain a well-performing detector with

only image-level annotations, both a detector and instance

labels are updated iteratively. Conventional methods in-

clude an alternating iterative strategy [3, 9, 12, 18]. A detec-

tor is trained on instance labels initialized based on a sim-

ple rule (e.g., supposing the object is at the center of the

image [18]), and the instance labels are updated using the

trained detector, over and over again. Although the ini-

tial instance labels are rough and the detector trained on

the initial labels has low performance, the detector and the

instance labels are refined step by step through the alter-

nate optimization. In a recent method [20], for end-to-end

iterative update of detectors and instance labels, multiple

instance classifiers (object detectors) have been employed.

Each instance classifier is trained using the last instance

classifier’s localization result as supervisions. The method

can reduce the training time by optimizing multiple instance

classifiers end-to-end, and achieves good performance.

In order to obtain efficient iterative update, we focus

on an instance labeling problem, a problem of which la-

bel should be annotated to each region based on the last

localization result. The instance labeling method employed

by one of the state-of-the-art methods [20] is rather sim-

ple; the most confident region and its highly overlapping

regions are labeled as positive, and other regions are la-

beled as negative or background. For more effective in-

stance labeling, we propose two methods: Context-Aware

Positive (CAP) labeling and Spatially Restricted Negative

(SRN) labeling. CAP labeling is aimed at solving the prob-

lem that the most discriminative parts of the object (e.g.,

faces in the person class) tend to be detected rather than

the whole object. We find that the classification loss of the

context of the region (i.e., the outside of the region) differs

depending on whether the region covers the whole object or

not. Utilizing this characteristic, we replace the incomplete

detected region with a region covering the whole object. In

addition to CAP labeling, we develop SRN labeling to con-

sider the negative labeling; that is, which region should be

annotated as background. When an image has multiple ob-

jects of the same class, even though one object is labeled as

positive, the other objects can be labeled as negative. SRN

labeling solves this problem by imposing a spatial restric-

tion on negative labeling. We show a comparison with the

baseline labeling in Figure 1.
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Figure 1. Comparison of (a) baseline instance labeling and (b) our instance labeling. In the localization result, only the top-scoring region is

shown (red box). Red/blue boxes in the instance labeling denote regions labeled as positive/negative. Our labeling method can label regions

covering the whole object as positive focusing on the context classification loss and avoid labeling other objects as negative introducing a

spatial restriction.

In order to verify the efficacy of our method, we con-

ducted experiments on the PASCAL VOC 2007 and 2012

datasets [6]. The obtained mean Average Precision (mAP)

scores are 47.6% and 43.4% respectively, which surpasses

other state-of-the-art methods.

In summary, the contributions of this paper are as fol-

lows:

• We improve the WSOD method from the viewpoint of

instance labeling.

• We propose two methods for instance labeling. The

first method is aimed at finding a region covering the

whole object based on the context classification loss.

The second can avoid labeling objects as negative by

imposing a spatial restriction.

• Experiments on the PASCAL VOC 2007 and 2012

datasets demonstrate that our method can achieve bet-

ter performance than other state-of-the-art approaches.

2. Related works

WSOD is a task where a detector is trained with only

image-level annotations. Methods for WSOD can be

roughly divided into three approaches: the alternating ap-

proach, end-to-end approach, and transferring approach.

2.1. Alternating approach

A conventional method to train a detector with only

image-level annotations is an alternating approach [3, 9, 12,

18]. Song et al. [18] initialized instance labels supposing

the object is at the center of the image and trained the de-

tector. The initial instance labels are rough, because the

location information of the object is unavailable, and the

detector trained on the initial labels has low performance.

By updating the detector and the instance labels alternately,

the detector and the instance labels are refined step by step.

Based on the alternating approach, other methods were

developed to detect objects more accurately. Li et al. [12]

trained a classifier using entire images, and then selected

confident class-specific region proposals using a mask-out

strategy. Cinbis et al. [3] developed a multi-fold learning

method to solve the problem that alternating approaches are

easily trapped in local optima. Jie et al. [9] developed a self-

taught learning method to select more reliable seed posi-

tive proposals. Our instance labeling method can be applied

to these alternating approaches, but alternating approaches,

which split the training process between the optimizing de-

tector and updating instance labels, tend to get stuck in lo-

cal optima and are time-consuming. Therefore, we apply

our instance labeling method to an end-to-end iterative ap-

proach described below.

2.2. End­to­end approach

Bilen et al. [2] proposed a weakly supervised deep de-

tection network (WSDDN) with two streams: a classifica-

tion stream and a detection stream. The outputs of these

two streams are combined and used to score each region.

Kantorov et al. [10] extended WSDDN to consider contex-

tual information. Diba et al. [5] and Wei et al. [24] used

semantic segmentation based on class activation map [29]

to discover region proposals that tightly cover the object.

Tang et al. [21] developed high-quality region proposals by

exploiting the low-level information in CNN.

An end-to-end approach (online instance classifier re-

finement, OICR) that takes advantage of alternating ap-

proaches was proposed by Tang et al. [20]. OICR takes

WSDDN as the initial instance localization method and has

multiple instance classifiers (object detectors). The first

instance classifier is trained on the instance-level supervi-

sions labeled by WSDDN, and the second instance classi-

fier is trained using the localization result of the first in-
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stance classifier as supervisions. Similar to alternating ap-

proaches, the instance classifiers and the instance labels are

refined iteratively. Because OICR takes less time to train

and has higher performance than alternating approaches, re-

cent methods [21, 24] employ OICR as a baseline. We also

apply our instance labeling method to OICR.

2.3. Transferring approach

The location information obtained by the above WSOD

method can be transferred to a supervised object detector.

Shen et al. [16] proposed a generative adversarial learning

paradigm. They introduced a discriminator and trained a

one-stage detector similar to SSD [13] so that the discrimi-

nator cannot distinguish the detector and OICR [20] model.

The trained one-stage detector achieves faster detection.

Zhang et al. [28] proposed pseudo labeling methods named

pseudo ground-truth excavation and pseudo ground-truth

adaptation. Using these methods, they generated pseudo

ground truth boxes from localization result of OICR [20]

and trained a faster R-CNN [15] model. Zhang et al. [26]

proposed a zigzag learning strategy, in which they devel-

oped a criterion (the Energy Accumulation Score) to au-

tomatically measure and rank localization difficulty. As

the localization result of WSOD is unreliable, at first they

used easy images to localize and added difficult images pro-

gressively. Instead of only using the top-scoring regions

as pseudo ground truth, supervised object detectors can be

trained more effectively with these transferring approaches.

We can obtain a further performance improvement combin-

ing transferring approaches and our localization result.

3. Method

A goal of WSOD is to train a detector with only image-

level annotations. As a typical method to obtain a well-

performing detector, both the detector and instance labels

are updated iteratively. In order to train a detector itera-

tively, we have to solve the problem of which label should

be annotated to each region based on the last localization

result. In this study, we focus on this problem; that is, the

instance labeling problem.

Among iteratively updating methods, we employ the

OICR [20] as a baseline. We first introduce OICR shortly.

OICR OICR includes two modules, multiple instance clas-

sification and instance refinement. In particular, an end-to-

end WSOD method named WSDDN [2] is employed as a

multiple instance classification module. WSDDN includes

two streams that calculate region-wise scores in a differ-

ent way based on CNN features pooled by Spatial Pyramid

Pooling (SPP) [8], a classification stream, and a detection

stream. The classification stream conducts a softmax oper-

ation on each region proposal for classification. The detec-

tion stream conducts a softmax operation on each class in

order to estimate which region is most valuable for classi-

fication. Both output scores are combined by an element-

wise product and defined as each region’s detection score.

Suppose an input image is X , the image label vector

is Y = [y1, ..., yC ], and its region proposals by Selective

Search [23] are {r1, r2, ..., rJ}, where C denotes the num-

ber of image classes, yc = 1 or 0 denotes the image with

or without object c, and J denotes the number of the region

proposals. Through WSDDN, we obtain the initial proposal

score matrix x0 ∈ R
C×J , where each element x0

cj denotes

region rj’s score for class c. When WSDDN is trained, the

image score φc is obtained by the sum over all proposals,

φc =
∑J

j=1 x
0
cj , and the following multi class cross entropy

is minimized,

Lb = −

C
∑

c=1

{yc log φc + (1− yc) log(1− φc)}. (1)

By utilizing WSDDN as an initial localization network,

multiple instance classifiers are trained progressively to re-

fine the localization result and obtain a well-performing de-

tector. Here, let K be a number of instance classifiers and

xk ∈ R
(C+1)×J be an output proposal score of the kth in-

stance classifier. Different from x0, xk(k ∈ {1, ...,K}) has

the {C+1}th dimension for background. To train the multi-

ple instance classifiers progressively, the ground truth label

yk ∈ R
(C+1)×J for the kth instance classifier is made from

the last instance classifier’s output xk−1. Based on yk, each

instance classifier is trained to minimize the following loss:

Lk
r = −

1

J

J
∑

j=1

C+1
∑

c=1

ykcj log x
k
cj . (2)

In OICR, instance labeling is a problem of how to gen-

erate an instance label yk from the last localization result

xk−1. Suppose an image X has class label c, they first se-

lect proposal rjc with the highest score,

jc = argmax
j

xk−1
cj , (3)

and inspired by the fact that highly overlapped regions

should have the same label, they formulate the following

labeling algorithm,

ykcj =

{

1 if IoU(rj , rjc) > It

0 otherwise
, (4)

where IoU is a function of calculating Intersection over

Union (IoU) between two regions and It is a threshold.

When multiple classes satisfy IoU(rj , rjc) > It, y
k
cj whose

c = argmaxc′ IoU(rj , rjc′ ) is 1 and the others are 0. If a

region is not assigned any object classes, that is, ykcj is 0 for

all c ∈ {1, ..., C}, the region is labeled as background,

yk(C+1)j = 1. (5)
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However, the label generated from the last localization re-

sult is unreliable, especially at the beginning of the train-

ing. This results in the instability of the training. To solve

this problem, the loss function in Eq. (2) is changed to the

weighted version as follows,

wk
j = xk−1

cjc
, (6)

Lk
r = −

1

J

J
∑

j=1

C+1
∑

c=1

wk
j y

k
cj log x

k
cj . (7)

When an image has multiple classes, in Eq. (6), c =
argmaxc′ IoU(rj , rjc′ ). At the beginning of the training or

for a difficult image to localize, the weight wk
j takes a low

value and the contribution to the training becomes small.

Problem The simple instance labeling method described

above has two problems. First, the most discriminative part

of the object tends to be detected rather than the whole ob-

ject. If rjc does not highly overlap the whole object, the

progressive update is trapped in the local optima. Second,

the simple instance labeling does not take into account cases

where an image contains multiple objects of the same class.

Even though one object is correctly labeled as positive,

other objects can be incorrectly labeled as background. To

solve these problems, we propose more effective instance

labeling methods named CAP labeling and SRN labeling.

3.1. CAP Labeling

We propose CAP labeling to avoid the problem that the

most discriminative part of the object tends to be detected

rather than the whole object. We introduce a network that

judges whether a region covers the whole object or not, and

when we generate the instance labels, the top-scoring region

is selected from regions covering the whole object.

In some previous methods [1, 12], mask-out strategy is

used to find the whole object. If a mask-out image by a

region drops the classification confidence, that region can

be considered discriminative. However, we experimentally

find that the mask-out by regions covering only some parts

of the object can drop the classification confidence. Such a

mask-out method is improper for discovery of regions cov-

ering the whole object.

In order to judge whether a region covers the whole

object or not more properly, we focus on the research of

Tanaka et al. [19], who deal with a problem of classification

with noisy labels, where a classifier is trained with noisy la-

beled images. Here, noisy labeled images mean incorrectly

labeled images (e.g., a dog image labeled as a cat). Accord-

ing to them, when a classifier is trained on noisy labeled

images, the training loss differs depending on whether the

data is noisy or clean. The loss tends to decrease for clean

images and is hard to decrease for noisy labeled images.

We find that this characteristic can be used to judge

whether a region covers the whole object or not. We fo-

cus not on the inside of the region but on the outside of the

region. We call the outside of the region as the context of

that region. Taking an image containing a cat as an exam-

ple; when a region covers the whole cat, no cat exists in

the context of the region. On the other hand, when a region

does not cover the whole cat, some parts of the cat are in

the context. If we label the contexts of all regions as a cat,

these are noisy labeled images: when a region covers the

whole cat, the context of that region is noisy and otherwise

clean. By training a classifier using this data, classification

loss differs depending on whether a region covers the whole

cat or not.

As a simple method to train a classifier based on the

context, the inside of the region is filled with the mean

pixel value before the image is input into a CNN. How-

ever, this method requires CNN forwarding for each re-

gion and is time-consuming. To achieve low computational

cost, we perform mask-out to the CNN feature. The CNN

feature corresponding to the inside of the region is filled

with zero values. Then the feature after mask-out is pooled

with global average pooling (GAP) and input to a fully con-

nected (FC) layer.

Let the output of the classifier with CNN feature mask-

out be p ∈ R
C×J , where each element pcj denotes a prob-

ability for class c of rj’s context. The classifier is trained

to minimize the standard multi class cross entropy loss with

the image-level label Y,

Lcontext = −
1

J

J
∑

j=1

C
∑

c=1

{yc log pcj+(1−yc) log(1−pcj)}.

(8)

If a region covers the whole object, the training loss of the

context is high after training because the context of the re-

gion is noisy. In other words, the class probability pcj ,

whose class c is contained by the image (yc = 1), is low.

On the other hand, if a region does not cover the whole ob-

ject, the class probability of the context, which is clean, is

high.

When we conduct instance labeling, the top-scoring re-

gion is selected from regions whose context class probabil-

ities are low,

jc = argmax
j

xk−1
cj s.t. pcj < Pt, (9)

where Pt is a threshold. Then following the OICR method,

highly overlapping regions are labeled as positive based on

Eq. (4).

Even though a region is covering the whole object, the

training loss of the context can decrease in some cases; for

example, when the context is closely related to the object

(e.g., an aeroplane and sky) or when two or more objects
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Figure 2. Overview of our method. We label each region as positive or negative based on the last localization result, and the next instance

classifier is trained on these instance labels. To label regions covering the whole object as positive, we discover such regions focusing on

the context classification loss. In addition, we employ a spatial restriction to avoid labeling the other objects as negative. Although this

image shows only the first instance classifier, the second and subsequent instance classifiers are trained in the same way.

are in an image. To solve this problem, we introduce Xiao

et al.’s [25] saliency map. Following the previous WSOD

method of Wei et al. [24], we define areas whose saliency

is higher than 0.06 as foreground and others as background.

When the classifier is trained based on Eq. (8), background

areas are filled with the mean pixel value before it is input

to the classifier. When the class probability is calculated for

Eq. (9), we divide foreground segments to each independent

segment, select the foreground segment that has the highest

IoU between the segment and the box, and fill the other

areas with the mean pixel value. As a result, the object on

which the box is focusing is visible and the other objects are

hidden.

3.2. SRN Labeling

In CAP labeling, we label regions highly overlapped by

rjc as positive. If a region is not assigned any object class,

that is, ykcj is 0 for all c ∈ {1, ..., C}, the region is labeled

as background, yk(C+1)j = 1. This labeling has a problem:

when an image has multiple objects of a specific class, even

though one object is correctly labeled as positive, the other

objects are labeled as background.

To solve this problem, we propose SRN labeling. This

method is inspired by the fact that at a distant area from the

object other objects may exist. In SRN labeling, we put a

spatial restriction on regions that are trained as background

by modifying the weight in Eq. (6) as follows,

wk
j =

{

xk−1
cjc

if IoU(rj , rjc) > it

0 otherwise
, (10)

where it is a threshold that is lower than It.

Originally, wk
j is aimed at restricting the contribution of

unreliable labels, such as those generated at the beginning

of the training. SRN labeling is the spatial version of this:

we regard labels at remote areas as unreliable.

3.3. Overall architecture

The overall architecture is shown in Figure 2. When

training, we first train the context classifier according to the

loss in Eq. (8) and calculate the context class probability

pcj . Then we train the WSDDN and the multiple instance

classifiers to minimize the following loss,

LOICR = Lb +

K
∑

k=1

Lk
r . (11)

For the test, we ignore the context classifier and the WS-

DDN and take an average of multiple instance classifiers’

output to obtain the final detection results.

4. Experiments

We conducted experiments to verify the performance of

our proposed method.

4.1. Datasets and metrics

To evaluate our method, we use the PASCAL VOC

2007 and 2012 datasets [6], which are standard bench-

marks for WSOD. These datasets have 9,962 and 22,531

images, respectively, with 20 classes and are divided into

train, val, and test sets. We select trainval images (5,011

for 2007 and 11,540 for 2012) to train our model with

image-level annotations. We employ two metrics to eval-

uate our method: mean Average Precision (mAP) and Cor-
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Table 1. Average precision (%) on PASCAL VOC 2007 and 2012 test datasets.

method aero bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv mAP

- VOC 2007

OICR [20] 58.0 62.4 31.1 19.4 13.0 65.1 62.2 28.4 24.8 44.7 30.6 25.3 37.8 65.5 15.7 24.1 41.7 46.9 64.3 62.6 41.2

SGWSOD [11] 48.4 61.5 33.3 30.0 15.3 72.4 62.4 59.1 10.9 42.3 34.3 53.1 48.4 65.0 20.5 16.6 40.6 46.5 54.6 55.1 43.5

TS2C [24] 59.3 57.5 43.7 27.3 13.5 63.9 61.7 59.9 24.1 46.9 36.7 45.6 39.9 62.6 10.3 23.6 41.7 52.4 58.7 56.6 44.3

WSRPN [21] 57.9 70.5 37.8 5.7 21.0 66.1 69.2 59.4 3.4 57.1 57.3 35.2 64.2 68.6 32.8 28.6 50.8 49.5 41.1 30.0 45.3

Ours 61.5 64.8 43.7 26.4 17.1 67.4 62.4 67.8 25.4 51.0 33.7 47.6 51.2 65.2 19.3 24.4 44.6 54.1 65.6 59.5 47.6

- VOC 2012

OICR [20] - - - - - - - - - - - - - - - - - - - - 37.9

SGWSOD [11] 51.7 61.0 32.3 20.4 24.8 59.9 45.2 62.2 13.7 45.1 13.6 51.0 51.2 64.9 22.1 21.2 39.9 19.1 44.3 49.1 39.6

TS2C [24] 67.4 57.0 37.7 23.7 15.2 56.9 49.1 64.8 15.1 39.4 19.3 48.4 44.5 67.2 2.1 23.3 35.1 40.2 46.6 45.8 40.0

WSRPN [21] - - - - - - - - - - - - - - - - - - - - 40.8

Ours 70.2 61.3 43.8 28.9 23.5 54.0 52.1 55.2 19.1 51.0 15.6 52.6 56.6 68.9 22.0 21.7 43.6 37.0 34.8 56.3 43.4

Table 2. CorLoc (%) on PASCAL VOC 2007 and 2012 trainval datasets.

method aero bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv mean

- VOC 2007

OICR [20] 81.7 80.4 48.7 49.5 32.8 81.7 85.4 40.1 40.6 79.5 35.7 33.7 60.5 88.8 21.8 57.9 76.3 59.9 75.3 81.4 60.6

TS2C [24] 84.2 74.1 61.3 52.1 32.1 76.7 82.9 66.6 42.3 70.6 39.5 57.0 61.2 88.4 9.3 54.6 72.2 60.0 65.0 70.3 61.0

SGWSOD [11] 71.0 76.5 54.9 49.7 54.1 78.0 87.4 68.8 32.4 75.2 29.5 58.0 67.3 84.5 41.5 49.0 78.1 60.3 62.8 78.9 62.9

WSRPN [21] 77.5 81.2 55.3 19.7 44.3 80.2 86.6 69.5 10.1 87.7 68.4 52.1 84.4 91.6 57.4 63.4 77.3 58.1 57.0 53.8 63.8

Teh et al. [22] 84.0 64.6 70.0 62.4 25.8 80.7 73.9 71.5 35.7 81.6 46.5 71.3 79.1 78.8 56.7 34.3 69.8 56.7 77.0 72.7 64.6

Ours 85.5 79.6 68.1 55.1 33.6 83.5 83.1 78.5 42.7 79.8 37.8 61.5 74.4 88.6 32.6 55.7 77.9 63.7 78.4 74.1 66.7

- VOC 2012

OICR [20] - - - - - - - - - - - - - - - - - - - - 62.1

SGWSOD [11] 70.4 79.3 54.1 44.9 56.8 89.8 72.3 69.2 41.0 67.3 32.3 61.1 72.0 85.0 43.9 56.4 77.8 42.6 64.0 77.6 62.9

TS2C [24] 79.1 83.9 64.6 50.6 37.8 87.4 74.0 74.1 40.4 80.6 42.6 53.6 66.5 88.8 18.8 54.9 80.4 60.4 70.7 79.3 64.4

WSRPN [21] - - - - - - - - - - - - - - - - - - - - 64.9

Ours 86.5 82.1 67.2 58.7 48.9 80.5 75.6 62.3 46.0 81.9 40.0 64.2 82.4 88.2 44.2 53.5 78.1 54.7 56.7 82.9 66.7

rect Localization (CorLoc). The mAP is used to test the

detection performance of our model on the test dataset, and

CorLoc measures the localization accuracy on the trainval

dataset. Both metrics are based on the same IoU threshold

between the predicted bounding boxes and ground truths,

i.e., IoU > 0.5.

4.2. Implementation

Our model is built on the VGG16 [17] model. For the

context classifier, a CNN feature is obtained replacing the

last pooling layer and the fully connected layers with an

additional convolutional layer of size 3 × 3, stride 1, pad

1 with 1024 units following Zhou et al. [29]. The feature

corresponding inside of the bounding box is mask-out by

zero, and the feature after mask-out is pooled by GAP fol-

lowed by a FC layer. For WSDDN [2] and multiple instance

classifiers [20], the CNN features of VGG16 are pooled by

the SPP layer extracting the feature corresponding to the in-

side of the bounding box. During training, we first train the

context classifier for 10K iterations (VOC 2007) or 20K it-

erations (VOC 2012) with the learning rate 0.001. Then we

train the WSDDN and the multiple instance classifiers for

70K iterations. The learning rate is linearly increased from

0 to 0.001 for the first 10K iterations and fixed to 0.001 and

0.0001 for the following 30K iterations and the last 30K

iterations, respectively. The weight of the model is initial-

ized with the one pretrained on the ImageNet [4] dataset

at the beginning of each training step. Newly added layers

are initialized using Gaussian distributions with means of 0

and standard deviations of 0.01. Biases are initialized to 0.

The momentum is set to 0.9 and the weight decay is set to

0.0005.

As a region proposal method, we employ Selective

Search [23], which generates about 2,000 proposals for each

image. For data augmentation, we use five scales {480, 576,

688, 864, 1200} resizing the shorter side to one of these

scales, and cap the longer side to 2000 with horizontal flips

for both training and testing. We set the number of instance

classifiers K to 3, and the mean output of these instance

classifiers is used during testing. Other parameters It, Pt,

and it are set to 0.5, 0.5, and 0.1 respectively.
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Figure 3. Examples of detection results using our method and the

baseline (OICR [20]). Red boxes denote the detection result of our

method; green boxes denote the detection result of the baseline.

4.3. Comparisons with the state­of­the­arts

We compared our proposed method with previous meth-

ods based on a single VGG16 model. The mAP result on

VOC 2007 is shown in Table 1. This result shows that

our method outperforms the other methods. In particular,

our method outperforms OICR [20] by 6.4%, which is the

baseline of our method. This improvement is obtained by

discovering regions covering the whole object and being

aware of multiple objects. Although OICR has a problem

that only discriminative parts of cat and dog tend to be de-

tected, our method solves this problem, as shown by the

gains of cat and dog (39.4% and 22.3% respectively). In

addition, TS2C [24] and WSRPN [21] also employ OICR

as the baseline, but our method outperforms these meth-

ods. Examples of the detection results on the test dataset

are shown in Figure 3. This result shows our method can

effectively reduce false positive compared with OICR. The

mAP result on VOC 2012 is also shown in Table 1. The

score of our method is higher than that of WSRPN [21],

which is another state-of-the-art method. Table 2 shows the

CorLoc result on VOC 2007 and 2012. Our method outper-

forms each previous state-of-the-art method.

Using our localization result, we train a Fast R-CNN [7]

(FRCNN) detector. The result is shown in Table 3. The first

to third methods employ the predicted top-scoring region

as the pseudo ground truth; the fourth to the sixth methods

focus on how to train a FRCNN detector effectively using

the localization result. Following the former methods, we

train a FRCNN detector using the top-scoring region by our

method, whose result is shown as Ours + FRCNN. In addi-

tion, we apply Pseudo Ground-truth Excavation (PGE) [28],

Table 3. mAP (%) on PASCAL VOC 2007 and 2012 test dataset

by training FRCNN detectors.

method VOC 2007 VOC 2012

OICR-Ens + FRCNN [20] 47.0 42.5

TS2C + FRCNN [24] 48.0 44.4

WSRPN-Ens + FRCNN [21] 50.4 45.7

ZLDN (WSDDN + FRCNN) [26] 47.6 42.9

ML-LocNet (WSDDN + FRCNN) [27] 49.7 43.6

PGE (OICR + FRCNN) [28] 51.7 47.3

Ours + FRCNN 51.4 48.1

PGE (Ours + FRCNN) 52.1 47.9

Table 4. Effect of each labeling method to mAP (%) on PASCAL

VOC 2007.

method mAP CorLoc

baseline (OICR [20]) 41.2 60.6

CAP labeling 45.6 66.6

SRN labeling 45.1 63.4

CAP and SRN labeling 47.6 66.7

which is a previous state-of-the-art method for mining more

accurate and tighter boxes instead of only one top-scoring

box. As shown in Table 3, our method obtains the highest

score when combined with PGE for VOC 2007, and outper-

forms the previous methods with and without PGE for VOC

2012.

4.4. Ablation experiments

We conduct extensive ablation experiments to analyze

our method. All ablation experiments are conducted on the

VOC 2007 dataset.

Contribution of each labeling Our method is composed

of CAP labeling and SRN labeling. We investigate how

much each method contributes to the improvement and

show the results in Table 4. Each method can improve the

performance, and we can obtain even greater improvement

by combining both labeling methods.

Context classification CAP labeling is based on the hy-

pothesis that the context classification loss differs depend-

ing on how much of the object is covered by the region.

Here, to verify the hypothesis, we visualize the training loss

curve.

In order to divide regions according to the coverage of

the object, we define the following sets,

Si = {(c, rj) | 0.2(i−1) ≤ coverage(c, rj) ≤ 0.2i, yc = 1},
(12)

where i ∈ {1, 2, 3, 4, 5} and coverage(c, rj) is a function

calculating how much of the ground truth box of the class c

object is covered by the region rj . The context classifier is

trained to minimize the loss Eq. (8). To investigate the rela-

6070



Figure 4. Loss curve with different coverage of the object while

training on the PASCAL VOC 2007 dataset. Through the training

process, losses with low coverage decrease, while losses with high

coverage do not decrease.

tionship between the coverage of the object and the training

loss, we define the following loss,

Li
context = −

1

|Si|

∑

c,rj∈Si

log pcj . (13)

As we consider only the classes contained by the image,

log(1− pcj) is not calculated. Note that the objective func-

tion is loss Eq. (8) and Li
context is only used for visualiza-

tion.

The change of each Li
context during the training process

is shown in Figure 4. The training loss of the boxes covering

only some parts of the object (L1
context, L

2
context) decrease

through the training process. On the other hand, the loss of

the boxes covering most of the object (L5
context) does not

decrease. This result shows that the context classification

loss can be used to find boxes covering the whole object.

Context classification and simple mask-out In some pre-

vious methods [1, 12], a classifier is trained with image-

level annotations, and regions whose mask-out drops the

classification confidence are defined as the object. We refer

to such methods as simple mask-out. Here, we compare our

context classification and the simple mask-out approach.

To perform the simple mask-out, we first train a standard

classifier, which has the same architecture as the context

classifier except for the mask-out. Let an input image be X ,

the image label vector be Y = [y1, ..., yC ], and the class

probability be p = [p1, ..., pC ]. The classifier is trained to

minimize the following classification loss,

Lsimple = −
C
∑

c=1

{yc log pc + (1− yc) log(1− pc)}. (14)

After training, we mask-out the CNN feature corresponding

to each region rj in the same way as context classification

and obtain the probability pcj . In Bazzani et al. [1] and

Li et al. [12], mask-out is performed on the input image,

but it requires forwarding for each region and is very time-

Figure 5. Discovery result of regions covering the whole object by

each method.

Table 5. Comparison between our method and our method whose

context classification is replaced with the simple mask-out when

using the PASCAL VOC 2007 dataset.

method mAP CorLoc

simple mask-out 47.1 64.9

context classification 47.6 66.7

consuming. For the same CNN forwarding time, we mask-

out not the input image but the CNN feature.

To compare context classification and simple mask-out,

we show regions whose pcj or pcj are lower than the thresh-

old Pt in Figure 5. Although with simple mask-out, the

confidence of the classifier decreases when some parts of

the object are covered, the confidence of our context clas-

sifier drops only when the whole object is covered. As a

result, we can obtain regions covering the whole object.

We train our model by replacing context classification

with simple mask-out (Table 5). In both metrics, CorLoc

and mAP, the method using context classification achieves

better performance. This result demonstrates the effective-

ness of our context classification.

5. Conclusions
In this study, we address weakly supervised object de-

tection. As a typical method to train a detector with image-

level annotations, the detector and the instance-level labels

are updated iteratively. In order to achieve more efficient

iterative updating, we focus on the instance labeling prob-

lem, a problem of which label should be annotated to each

bounding box based on the last localization result. We im-

prove instance labeling in two ways. First, we label boxes

covering the whole object as positive, being aware that the

context classification loss differs according to the coverage

of the object. Second, we introduce a spatial restriction to

avoid labeling other objects as negative. Experiments show

that our method achieves significant improvement.

Acknowledgement A part of this research was supported

by JST-CREST (JPMJCR1686) and the Grants-in-Aid for

Scientific Research (19K22863).

6071



References

[1] Loris Bazzani, Alessandra Bergamo, Dragomir Anguelov,

and Lorenzo Torresani. Self-taught object localization with

deep networks. In WACV, 2016. 4, 8

[2] Hakan Bilen and Andrea Vedaldi. Weakly supervised deep

detection networks. In CVPR, 2016. 2, 3, 6

[3] Ramazan Gokberk Cinbis, Jakob Verbeek, and Cordelia

Schmid. Weakly supervised object localization with multi-

fold multiple instance learning. In TPAMI, 2017. 1, 2

[4] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,

and Li Fei-Fei. ImageNet: A large-scale hierarchical image

database. In CVPR, 2009. 6

[5] Ali Diba, Vivek Sharma, Ali Pazandeh, Hamed Pirsiavash,

and Luc Van Gool. Weakly supervised cascaded convolu-

tional networks. In CVPR, 2017. 2

[6] Mark Everingham, SM Ali Eslami, Luc Van Gool, Christo-

pher KI Williams, John Winn, and Andrew Zisserman. The

pascal visual object classes challenge: A retrospective. IJCV,

111(1):98–136, 2015. 2, 5

[7] Ross Girshick. Fast R-CNN. In CVPR, 2015. 1, 7

[8] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.

Spatial pyramid pooling in deep convolutional networks for

visual recognition. In TPAMI, volume 37, pages 1904–1916,

2015. 3

[9] Zequn Jie, Yunchao Wei, Xiaojie Jin, Jiashi Feng, and Wei

Liu. Deep self-taught learning for weakly supervised object

localization. In CVPR, 2017. 1, 2

[10] Vadim Kantorov, Maxime Oquab, Minsu Cho, and Ivan

Laptev. Contextlocnet: Context-aware deep network mod-

els for weakly supervised localization. In ECCV, 2016. 2

[11] Baisheng Lai and Xiaojin Gong. Saliency guided end-to-end

learning for weakly supervised object detection. In IJCAI,

2017. 6

[12] Dong Li, Jia-Bin Huang, Yali Li, Shengjin Wang, and Ming-

Hsuan Yang. Weakly supervised object localization with pro-

gressive domain adaptation. In CVPR, 2016. 1, 2, 4, 8

[13] Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian

Szegedy, Scott Reed, Cheng-Yang Fu, and Alexander C

Berg. SSD: Single shot multibox detector. In ECCV, 2016.

1, 3

[14] Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali

Farhadi. You only look once: Unified, real-time object de-

tection. In CVPR, 2016. 1

[15] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun.

Faster r-cnn: Towards real-time object detection with region

proposal networks. In NIPS, 2015. 3

[16] Yunhan Shen, Rongrong Ji, Shengchuan Zhang, Wangmeng

Zuo, and Yan Wang. Generative adversarial learning towards

fast weakly supervised detection. In CVPR, 2018. 3

[17] Karen Simonyan and Andrew Zisserman. Very deep convo-

lutional networks for large-scale image recognition. ICLR,

2015. 6

[18] Hyun Oh Song, Ross Girshick, Stefanie Jegelka, Julien

Mairal, Zaid Harchaoui, and Trevor Darrell. On learning to

localize objects with minimal supervision. In ICML, 2014.

1, 2

[19] Daiki Tanaka, Daiki Ikami, Toshihiko Yamasaki, and Kiy-

oharu Aizawa. Joint optimization framework for learning

with noisy labels. In CVPR, 2018. 4

[20] Peng Tang, Xinggang Wang, Xiang Bai, and Wenyu Liu.

Multiple instance detection network with online instance

classifier refinement. In CVPR, 2017. 1, 2, 3, 6, 7

[21] Peng Tang, Xinggang Wang, Angtian Wang, Yongluan Yan,

Wenyu Liu, Junzhou Huang, and Alan Yuille. Weakly su-

pervised region proposal network and object detection. In

ECCV, 2018. 2, 3, 6, 7

[22] Eu Wern Teh, Mrigank Rochan, and Yang Wang. Atten-

tion networks for weakly supervised object localization. In

BMVC, 2016. 6

[23] Jasper RR Uijlings, Koen EA Van De Sande, Theo Gev-

ers, and Arnold WM Smeulders. Selective search for object

recognition. In IJCV, volume 104, pages 154–171, 2013. 3,

6

[24] Yunchao Wei, Zhiqiang Shen, Bowen Cheng, Honghui Shi,

Jinjun Xiong, Jiashi Feng, and Thomas Huang. TS2C:

tight box mining with surrounding segmentation context for

weakly supervised object detection. In ECCV, 2018. 2, 3, 5,

6, 7

[25] Huaxin Xiao, Jiashi Feng, Yunchao Wei, Maojun Zhang, and

Shuicheng Yan. Deep salient object detection with dense

connections and distraction diagnosis. In TMM, volume 20,

pages 3239–3251, 2018. 5

[26] Xiaopeng Zhang, Jiashi Feng, Hongkai Xiong, and Qi Tian.

Zigzag learning for weakly supervised object detection. In

CVPR, 2018. 3, 7

[27] Xiaopeng Zhang, Yang Yang, and Jiashi Feng. ML-LocNet:

Improving object localization with multi-view learning net-

work. In ECCV, 2018. 7

[28] Yongqiang Zhang, Yancheng Bai, Mingli Ding, Yongqiang

Li, and Bernard Ghanem. W2F: A weakly-supervised to

fully-supervised framework for object detection. In CVPR,

2018. 3, 7

[29] Bolei Zhou, Aditya Khosla, Agata Lapedriza, Aude Oliva,

and Antonio Torralba. Learning deep features for discrimi-

native localization. In CVPR, 2016. 2, 6

6072


