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Abstract

Artists rarely paint in a single style throughout their ca-

reer. More often they change styles or develop variations of

it. In addition, artworks in different styles and even within

one style depict real content differently: while Picasso’s

Blue Period displays a vase in a blueish tone but as a whole,

his Cubist works deconstruct the object. To produce artis-

tically convincing stylizations, style transfer models must

be able to reflect these changes and variations. Recently

many works have aimed to improve the style transfer task,

but neglected to address the described observations. We

present a novel approach which captures particularities of

style and the variations within and separates style and con-

tent. This is achieved by introducing two novel losses: a

fixpoint triplet style loss to learn subtle variations within one

style or between different styles and a disentanglement loss

to ensure that the stylization is not conditioned on the real

input photo. In addition the paper proposes various evalu-

ation methods to measure the importance of both losses on

the validity, quality and variability of final stylizations. We

provide qualitative results to demonstrate the performance

of our approach.

1. Introduction

Style transfer models synthesize a real image in the style

of a given artwork. To achieve a convincing stylization, mod-

els must preserve the content of the real image and closely

resemble the chosen artistic style. This raises the following

questions: “what does it mean to maintain the content” and

“what characteristics define style”.

Artworks show different renderings of content: While some

styles disregard content, such as Jackson Pollock’s Abstract

Expressionism or Wassily Kandinsky’s highly abstract style,

others display content but alter it in a specific manner. The

modern paintings of Marc Chagall or Henri Rousseau trans-

form reality into staged almost dream like scenes. These

observations lead to the conclusion that a more in-depth

study of the relation between artistic style and content is re-

quired to obtain a better image stylization. However, there is

†compvis.github.io/content-style-disentangled-ST/

Figure 1. Stylization examples generated by our network. Paul

Cezanne (top), Vincent van Gogh (middle) and Paul Gauguin and

Ernst Ludwig Kirchner (bottom). Full sized images can be found

in the supplementary material and on our project page†.

no tool which measures the degree to which an artist altered

content. Indeed this would require original content photos

which display the exact content an artist has painted in a spe-

cific artwork. Let us assume the converse scenario: imagine

we do have a set of photos and a simple way to approximate
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the artist’s stylization. Then we are given a collection of

content-stylization-pairs, which can be used to solve the con-

tent alteration problem described above (and if we disregard

the fact that the stylization is still only approximated and not

yet optimized). Thus, if we stylize the same content photo in

two different styles, the results should reflect the differences

in style while displaying the same content. On the contrary

if we use the same style but different content images, we

should obtain stylizations in the same style but with different

content. The latter constraint warrants an independence of

style from content. We formulate this objective as a fixpoint

disentanglement loss.

Recently there has been a great interest in the task of style

transfer; existing works produce stylized images by extract-

ing style features from a single artwork [7, 13, 28, 18, 10,

4, 31] or a collection of images [24, 33]. Although these

approaches reproduce a given style, they lack sensitivity to

subtle variations in style and a comprehensive understanding

of style. Instead of learning all possible variations of a style,

previous models only learn visual clues most dominant in

the style and ignore the rest of the style manifold. How-

ever, artists rarely maintain a single style throughout their

career, but more often change styles or develop variations

of it. While still working in an Impressionist style, Monet’s

later works display a more loose and expressive brushstroke

compared to earlier paintings due to declining health. To

capture these small variations in style, we need a framework

able to simulate this. We thus propose a novel method which

learns the particular style of an artist as a single entity and

adjusts the stylization to the particular example of style by

introducing style similarities and discrepancies within a sin-

gle style. This is achieved by stylizing the same content with

two similar style samples and forcing stylizations which dis-

play identical content to still lie apart in the style space. We

address this objective by introducing a fixpoint triplet style

loss.

We propose the first approach which extracts style from a

group of examples of the same overall style but with subtle

variations therein, while still providing fine control over the

stylization. We make the following contributions: (i) we

propose two novel losses, namely a fixpoint disentanglement

loss and a fixpoint triplet style loss to allow for a finer styl-

ization of images and a better coverage of style distributions.

(ii) Moreover we provide an approach to disentangle style

and content of an artwork resulting in artistically compelling

stylizations and a better content preservation as shown in the

experiments section. (iii) Our model also provides a smooth

style space and thus allows to interpolate within one style

and across different styles. We also produce smooth video

stylizations with our method; examples can be found on our

project page.

2. Related Work

Style transfer Style transfer methods generate new im-

ages in the style of a specific artist by rendering an input

content image utilizing style information extracted from an

image of a real artwork. Gatys et al. [7] first proposed a

neural style transfer to encode the style of an image using

the pairwise correlation matrix between feature activations

of a pretrained Convolutional Neural Network (CNN). Given

a single content image and a single reference style image the

stylization is then produced by an iterative optimization pro-

cedure which matches the style representation of a content

image to a style image. Selim et al. [26] further extended

the neural style transfer method [7] and applied it to portraits

of faces. To enable faster stylization, other research works

used neural networks [13, 10, 18, 30, 17] which approxi-

mated the slow iterative algorithm of [7]. To model multiple

artistic styles within a single model Dumoulin et al. [4] pro-

posed a conditional instance normalization, which enables

to synthesize interpolations between different styles. [8, 12]

introduced additional control over the results of stylization

by altering color, scale and stroke size. [16] introduced a

content transformation module between the encoder and de-

coder to achieve a content-and-style-aware stylization. They

used similar content in photos and style to further learn an

object-specific stylization.

Most of existing style transfer approaches extract style repre-

sentations from a single artwork [7, 13, 28, 18, 10, 4, 17, 31]

and treat each artwork as an independent style example. To

the best of our knowledge, only [24, 33] learn style from a

collection of related style examples. However, they cannot

model multiple styles simultaneously, lack flexibility and

do not have control over the stylization process. In contrast,

our approach utilizes the rich information which is given in

a group of very similar style samples taken from an image

collection of one style, combines multiple styles in the same

network and provides a more fine-grained control over the

stylization process.

Latent space in generative models Learning an inter-

pretable latent space representation has been a prevalent

focus of deep learning research, especially in the field of gen-

erative models[3, 21, 1]. In recent years conditional image

synthesis received much attention [11, 21]. Other research

presents more theoretical approaches such as [20, 3] or state-

of-the-art approaches, which show good results for image

synthesis of natural images [2] and human faces[14, 15] but

require immense computation power. Recently a lot of works

have focused on the disentanglement of object shape and

appearance [6, 19, 5].

3. Approach

Our initial task can be described as follows: given a

collection of artworks (y, s) ∼ Y, where y is an art image
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Figure 2. The training iteration is performed on a pair of content images with content representations c1, c2 and a pair of style images having

style representations s1, s2. In a next step, image pairs are fed into the content encoder Ec and style encoder Es respectively. Now we

generate all possible pairs of content and style representations using the decoder D. The resulting images are fed into the style encoder Es

one more time to compute the LFPT−style on two triplets that share c2|s1 by comparing the style representations of generated images with

the styles c1|s1, c2|s1, c1|s2, c2|s2 to the styles s1, s2 of the input style images. The resulting images are given to the discriminator D to

compute a conditional adversarial loss Ladv and to Ec to compute the discrepancy LFP−content between the stylizations c2|s2, c1|c1 and

the original c1, c2. Both depicted encoders Es are shared as well as both encoders Ec.

and s is a style class label, and a collection of photos

x ∼ X, we want to learn a transformation G : X −→ Y .

To measure how well the mapping G approximates the

distribution Y, we introduce a discriminator D whose task

it is to distinguish between a real sample y ∈ Y and a

generated sample G(x) for x ∈ X. In our framework, this

task is equivalent to learning an arbitrary mapping from the

photo domain to the domain of artworks.

On its own this approach induces no constraints on the

original content preservation and therefore can make the

original content of the photo unrecognizable. To prevent this

we force the generated image to be similar to the stylized

image in the pixel domain, namely by minimizing the L2

distance ‖G(x)− x‖2.

As stated before, we want our image to be conditioned on

the query style image G(x|y) allowing for finer style control.

This requires a conditioning of the generated image on the

input style image y. We propose to condition the output

using the style encoder Es by extracting style Es(y) from

the style image y and then condition the generative network

on this style vector.

Works on unsupervised and supervised domain

translation[33, 11, 22] have shown that the task of

image-to-image translation can be solved by exploiting the

encoder-decoder architectures. We define our generator

as a combination of three networks: content encoder Ec,

decoder D and style encoder Es. The former two are fully

convolutional feed-forward neural networks responsible for

the task of image generation, while the latter network infers

a style vector Es(y) from the image y. The conditioning of

the generator network is performed by substituting the offset

and scale parameters of the instance normalization layers

[29] of the decoder D. The decision which losses should be

minimized depends on our defined goals. First, we aim to

generate artistically convincing stylizations by preserving

the style class of the given painting. Hence, we formulate

the conditional adversarial loss as follows:

Ladv := E
(y,s)∼Y

[log(D(y|s))]+

E
x∼X

(y,s)∼Y

[log (1−D (D(Ec(x), Es(y))|s))]
(1)

Second, the stylization obtained from a style image (y, s)
and the input content image x should resemble the input

content image x. Thus we enforce a reconstruction loss

between the input content image x and stylization result:

Lpixel := E
x∼X

(y,s)∼Y

[‖(D(Ec(x), Es(y)))− x‖22]. (2)

We do not, however, aim for a simple pixel-level similar-

ity to the input content photo. Indeed such a loss is adversely

to the style transfer task, because many artists tend to al-

ter color and shape severely, thus a pixel-level loss might

obstruct the stylization task. Considering this, we let the

content encoder Ec to determine which features are relevant

for content preservation and which can be neglected. This is

achieved by using a fixpoint content loss:

LFP−content := E
x∼X

(y,s)∼Y

[‖Ec((D(Ec(x), Es(y))))− Ec(x)‖
2
2].

(3)

Although these losses are sufficient to obtain convincing

stylizations for one particular artist, they are not suitable to

train a model capable to incorporate stylizations for multiple

artists within a single network. Our ablations in Tab.2 show

that these losses do not support the model to be susceptible
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to subtle style changes in the query style images, even if

examples were taken from the same style.

Another issue is that if the model is only trained with these

three losses, it inadvertently conditions the stylization on the

input content. To overcome this, we introduce two additional

losses which are novel to the task of style transfer: a fixpoint

triplet style loss and fixpoint disentanglement loss.

3.1. Fixpoint Triplet Loss

If the objective is a weighted combination of the three

losses 1, 2 and 3 defined above, we immediately observe

that the style encoder Es is only driven by the conditional

adversarial loss Ladv. This loss is minimized by learning

to partition the domain of values of (Es) into distinctive

regions. Thus, we are not able to force the encoder to learn a

smooth space of a style representation displaying continuous

transitions between different styles and pronounced transi-

tions within a single style. To alleviate this we introduce a

fixpoint triplet loss:

LFP−style := E
x∼X

(y,s)∼Y

[‖Es(s)− Es(D(Ec(x), Es(s)))‖
2
],

(4)

which is similar to LFP−content defined in 3. The loss

forces the network to preserve input style. However it shows

a similar behavior as described above when visually very dif-

ferent examples of the same style (y1, s), (y2, s) ∼ Y are

mapped onto the same point, namely Es(y1) ≡ Es(y2);
resulting in identical stylizations D(Ec(x), Es(y1)) ≡
D(Ec(x), Es(y2)).
This reasoning could be formalized as follows: first, we

want the stylization to be similar to the input style ex-

ample in the style space. Secondly, a stylization ob-

tained by a different style must also be distant in the

style representation space. This resembles a triplet loss

widely used in metric learning [25, 9]. In our case, for

the style examples (y1, s1), (y2, s2) ∼ Y and content

photo x ∼ X, the anchor is the encoded style Es(y1),
the positive sample is Es(D(Ec(x), Es(y1))), the negative

Es(D(Ec(x), Es(y2))) respectively. For a margin r we de-

fine a fixpoint triplet loss for a style:

LFPT−style := E
x∼X

(y1,s1),(y2,s2)∼Y

max
(
0,

r + ‖Es(y1)− Es(D(Ec(x), Es(y1)))‖
2
−

‖Es(y1)− Es(D(Ec(x), Es(y2)))‖
2
)
.

(5)

3.2. Disentanglement Loss

The content within an image can be indicative for the style.

For instance particular pieces of clothing may hint at the time

and style of the painting. Thus, the content and style are

entangled. The generated stylizations are also conditionally

dependent on the content target of the photo and not only

on the style target. To separate both characteristics, it is

necessary to make the target style independent from the

target content. This could be achieved by minimizing the

following loss:

E[‖Es(D(Ec(x1), Es(y)))− Es(D(Ec(x2), Es(y)))‖
2].
(6)

However, this loss is too strict and obstructs a successful

training of the model. Therefore we soften the constraint:

instead of minimizing it we simply bind it from the top using

the fixpoint style loss LFP−style. This loss is minimized

by decreasing the LFPT−style loss. Hence, we also mini-

mize 6. In summary: for an input style sample (y, s) ∼ Y

and two random photos x1, x2 ∼ X we define the fixpoint

disentanglement loss LFPD:

LFPD = E
x1,x2∼X

(y,s)∼Y

max
(
0,

‖Es(D(Ec(x1), Es(y)))− Es(D(Ec(x2), Es(y)))‖
2
−

‖Es(D(Ec(x1), Es(y)))− Es(y)‖
2
)
.

(7)

The LFPD penalizes the model for perturbations which are

too large in the style representation: if given the style vector

s = Es(y), then the style discrepancy of two stylizations is

larger than the discrepancy between stylization and original

style.

The main difference to the fixpoint triplet loss is that the latter

prevents different stylizations from collapsing into the same

style, while the fixpoint disentanglement loss alleviates the

influence of the content image on the resulting stylization.

3.3. Training and Model Architecture

We summarize all aforementioned losses given the loss

weights λadv, λpixel, λFP−content, λFPT−style, λFPD

to generate the compound loss L∗. We use it as the final

objective for the discriminator-generator minimax game:

min
G

max
D

L∗. The detailed model architecture and training

step descriptions are provided in the supplementary material.

4. Experiments

4.1. Stylization Assessment

The quality of stylized images and thus the representation

of artistic style can be measured in several ways. We assess

the performance with four different methods, in 1:

Expert preference rate We first stylize various photos in

the style of one artist using different methods listed in Tab.1.

In a second step we cut out patches of the same size from all

stylized images and create a batch. We then show different

patches to experts from art history and have them select the

patch which best represents the style of the respective artist.
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Figure 3. Interpolation between given style samples of Paul Cezanne (column 2) and Vincent van Gogh (column 6). Magnified regions show

that our method mimics not only colors but also contours and textures specific to the style. Video interpolations are provided on our project

page.

We then measure how frequently each approach is preferred.

Expert deception rate. An identical approach as described

in the previous experiment is taken for expert deception rate.

Again we show a group of patches, which have been cropped

from the stylized images, to art historians. However this

time we add a patch from a real artwork by an artist; we

compute the number of times art historians identify a patch

to be from a real artwork instead of a stylized image.

Non-expert deception rate. The same evaluation as de-

scribed for the expert deception rate is performed with non-

experts that have no prior training in art history.

Deception rate. This approach for assessing the quality of

a stylized image was introduced by [24]: a stylized image

is presented to a network, which was trained on artist clas-

sification. Given a stylized image, the deception rate is the

frequency that a pretrained network predicts the artist used

for stylization correctly.

The experiment is performed on patches and not full-size

images for the following reason: content images are pho-

tos from the Places365 dataset[32]. Almost every image

contains details which unambiguously refer to our time, i.e.

a car, a train, sneakers or a cell phone. Thus humans can

easily identify images as not being authentic paintings when

spotting these objects. By cropping out patches from the

stylized images we significantly mitigate this effect.

We run all experiments for ten different artists and sum-

marize the averaged results in Tab.1. From the table we can

conclude that our model significantly outperforms the state-

of-the-art AST model [24]. Also note that the art history

expert deception rate is higher than the non-expert deception

rate since the latter group partially consists of computer vi-

Table 1. Measuring on image patches how compelling a stylization

is (higher is better). The preference rate measures how often art

historians prefer a particular stylization technique over others. De-

ception rates indicate how often stylized patches deceive the viewer,

experts and non-experts respectively. Scores are averaged over 10
different styles. A Wikiart-test gives accuracy on real artworks

from the test set.

Method Deception Non-Expert Expert Expert

rate deception rate deception rate preference rate

CycleGan 0.130 0.025 0.032 0.012

WCT [18] 0.023 0.035 0.002 0.011

AdaIn 0.061 0.032 0.022 0.021

Johnson et al. 0.080 0.016 0.003 0.014

PatchBased 0.063 0.135 0.010 0.030

Gatys et al. 0.251 0.094 0.069 0.148

AST [24] 0.450 0.050 0.122 0.329

Ours 0.562 0.182 0.240 0.486

Wikiart test 0.626 0.497 0.599 -

Photos 0.003 - - -

sion students - therefore they were better at spotting artifacts

typical for generative models. The supplementary material

provides additional details on the evaluations.

4.2. Disentanglement of Style and Content

We introduce the fixpoint disentanglement loss to disen-

tangle style and content. In order to measure the entangle-

ment, we propose the following two experiments.

Style discrepancy. Our model is able to preserve fine style

details independent of changes in the content target photo.

To validate this we first measure the average style variation

in real artworks for a selected style, which is represented

by a collection of artworks S. For measuring, we take a

pretrained network used for artist classification Ẽs [24] and
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Figure 4. Which patch is taken from a real painting and which from

a stylized image? Each row contains a few real patches. Styles (top

to bottom): Cezanne, Gauguin, Morisot, van Gogh, Monet. The

solution can be found on the last page.

extract activations of the first fully connected layer from a

real artwork s ∈ S, denoted by Ẽfc
s (s). Eventually this

allows us to approximate a distribution of style variation for

a style S with

{‖Ẽfc
s (s1)− Ẽfc

s (s2)‖2 | s1, s2 ∈ S}. (8)

Then we measure the variation in style for our stylized image

given distinctive input photos x1, x2 and a fixed style sample

s :

{‖Ẽfc
s (D(Ec(x1), Es(s)))− Ẽfc

s (D(Ec(x2), Es(s)))‖2 |

s ∈ S, x1, x2 ∈ X}.
(9)

In a final step we compute the same distribution 9 but for a

model trained without the disentanglement loss.

The three distributions are summarized in Fig. 5 by visualiz-

ing their probability density function depicted in red, blue

and green respectively. The plot indicates that the model

with disentanglement loss produces stylizations which rep-

resent a selected style better than the model where the loss

is missing. In addition we observe that different content af-

fects stylization results for one style less than style variations

within a collection of paintings by an artist. show that

Content discrepancy. In the second experiment we estab-

lish how much a change of style influences content preserva-

tion. The content similarity is formulated as a L2 distance in

the feature space of the first fully connected layer denoted by

Ẽfc
c (·) of the VGG16 network[27]; the network is pretrained

on the ImageNet dataset[23].

First we require a baseline distribution representing subtle

Figure 5. Impact of content on style: we take two different content

images, stylize them using the same style example and measure

euclidean distance of Ẽfc
s (·) activations (see Sec.4.2). The experi-

ment is repeated for all content pairs and different style examples to

obtain a style distance distribution. This experiment is performed

for a model with (blue) and without (green) disentanglement loss.

As a reference we compute the distribution between activations of

different artworks (red).

changes in content. Therefore we measure the content sim-

ilarity between nearest neighbors in the Ẽfc
c (·) space and

plot the distribution. Let Ci denote a dataset of ImageNet

photos of class i. Then the baseline distribution of content

similarity between nearest neighbors from the ImageNet set

in the Ẽfc
c (·) space is:

{‖Ẽfc
c (x)− Ẽfc

c (NN(x))‖2 | x ∈ Ci∀i} (10)

where NN(x) denotes the nearest neighbor of sample x in

the Ẽfc
c (·) space among all the ImageNet samples of the

same class.

We now evaluate a change of content in images stylized with

different art styles. For two style datasets S1,S2 we estimate

the distribution:

{‖Ẽfc
c (D(Ec(x1), Es(s)))− Ẽfc

c (D(Ec(x2), Es(s)))‖2 |

s1 ∈ S1, s2 ∈ S2 x ∈ Ci∀i}.
(11)

We estimate an identical distribution as defined above for

images stylized by a model without the fixpoint disentan-

glement loss. The probability density functions for all three

distributions are plotted in Fig. 7.

This experiment indicates that a change of stylized images

introduces less perturbation to the content than distance to

the nearest neighbor in the same class.

Qualitative experiments. We provide qualitative results of

our approach in Fig.3, 4 and 6. Fig.3 shows that our model

captures subtle variations between two styles. In addition

our approach learns finer artistic properties (i.e. variations in

brushwork) (see Fig.4), reduces the number of artifacts and

artificial structures and disentangles style and content (see

Fig.6).
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Figure 6. Stylized results from different models (from left to right): ours (in red), AST, Gatys et al. and CycleGAN. We provide style and

content images in row one and two to allow a qualitative judgment of stylizations. The figure highlights improvements in quality for images

obtained by our model. Images show less artificial structures (as seen in images of Picasso or Kirchner), contain no artifacts in homogeneous

regions (see Cezanne) and most importantly highlight the successful disentanglement of style and content. This can be seen in the stylized

example of Monet. In comparison the AST model produced ’flowers’, which are common in similar landscape paintings of the artist but not

present in the content image. Results are best seen on screen and zoomed in. Full sized images are provided in the supplementary.

4.3. Distribution Divergence

Next we study how well our method covers the variability

of the style distribution it aims to replicate. We compute the

Kullback-Leibler divergence DKL between the true style dis-

tribution and the style distribution of images we have stylized

to measure how well our model represents the distribution

of style it aims to represent.

We use a network Ẽs trained to classify the style of paint-

ings to obtain the style distribution as approximated by the

activations of the first fully connected layer, namely Ẽfc
s .

The true style distribution P
art
s is approximated by the Ẽfc

s

activations on real artworks. Next we extract activations Ẽfc
s

of the stylized images to approximate P
stylized
s and com-

pute the divergence between the style distribution of real

artworks and the style distribution of the stylized images

DKL(P
stylized
s ‖ P

art
s ). We repeat this process for a model

trained without the fixpoint triplet style loss LFPT−style (4)

to compute DKL(P
no LFPT−style
s ‖ P

art
s ). Tab.2 summa-

rizes the style divergences.

Now we visualize style distributions for different styl-

ization approaches. First we fix two artists and train one

model with LFPT−style loss and one without.Then we styl-

ize an identical set of content images using both models

and compute the activations of the network Ẽfc
s [24]. As a

reference we compute the distribution of style for the real

artworks for the two selected artists. Next, we run a PCA

on these activations and visualize projections on the first
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Figure 7. Disentanglement of content across different styles. The

same content image is stylized using two different style examples;

the difference in content of two stylzations is computed as L2

norm between activations of the first FC-layer of the VGG-16

network[27]. All distances are accumulated and presented as a

distribution(blue). The experiment is performed for the model

with(blue) and without(green) disentanglement. Additionally, we

compute the content distance from a photo to its nearest neighbor

as a reference(red). See Sec.4.2 for further explanation.

Table 2. The deception rate indicates how close an obtained styliza-

tion is to the target style (higher is better). Classification accuracy

shows how much content of an input photo is left after stylization

(higher is better). Style divergence shows a divergence between the

style distribution obtained by stylization and true style distribution

(lower is better).

Method Deception Classification True style

rate accuracy divergence

AST [24] 0.45 0.09 1.12

Ours w/o LFPT−style 0.45 0.16 1.14

Ours w/o LFPD 0.52 0.08 0.32

Ours 0.562 0.17 0.21

principal component as a probability density function (see

Fig.8). We observe that the model utilizing LFPT−style can

better match the target distribution of real artworks then the

model without this loss.

4.4. Ablations

To summarize the influence of the proposed losses on the

final model we use three metrics: deception rate, style diver-

gence and classification accuracy. The latter corresponds to

the classification accuracy of the VGG-16 network on the

ImageNet stylized images.

We take the AST [24] model as a baseline, because it is

trained to extract style from a collection of images. The abla-

tion results are summarized in Tab. 2. They indicate that the

LFPT−style is crucial to incorporate style in its entirety. The

LFPD on the other hand is mostly responsible for a better

content preservation but also improves the performance of

the stylization task.

Figure 8. Projection of style features on the first principal compo-

nent of the PCA decomposition. Style features are computed for

real artworks (red), stylized images (blue) and images stylized by a

model without the fixpoint triplet style loss (green). The stylized

examples and artworks are taken from two artists only, hence the

bimodal distribution. Evidently the model utilizing a fixpoint triplet

style loss can approximate the distribution of style features of real

artworks better.

5. Conclusion

Although previous works concentrated on improving the

stylization task, they lack a formal investigation of the ques-

tions How much variation do we find within one style or

between different styles? and What is the relation between

style and content? – both are relevant to understand style.

This paper presents a novel style transfer approach, which

is able to capture subtle variations of style while also being

able to distinguish different styles and disentangle content

and style. We achieve the former by introducing a fixpoint

triplet loss to the trained network. We further demonstrated

that the introduction of a disentanglement loss makes styl-

ization independent to changes in content. We studied the

influence of content and style on final stylizations by mea-

suring the preservation of content and representation of style

in stylized images. Our approach offers control over the

stylization process and enables art historians to study, for

example, stylistic developments of an artist in detail.
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Solution to Fig. 4:

Cezanne: fake, real, fake, real, real, fake

Gauguin: fake, real, fake, fake, real, real

Morisot: fake, fake, real, fake, fake, real

van Gogh: fake, real, fake, fake, real, real

Monet: fake, real, real, fake, real, fake
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