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Abstract

Large scale object detection datasets are constantly in-

creasing their size in terms of the number of classes and an-

notations count. Yet, the number of object-level categories

annotated in detection datasets is an order of magnitude

smaller than image-level classification labels. State-of-the

art object detection models are trained in a supervised fash-

ion and this limits the number of object classes they can

detect. In this paper, we propose a novel weight transfer

network (WTN) to effectively and efficiently transfer knowl-

edge from classification network’s weights to detection net-

work’s weights to allow detection of novel classes without

box supervision. We first introduce input and feature nor-

malization schemes to curb the under-fitting during train-

ing of a vanilla WTN. We then propose autoencoder-WTN

(AE-WTN) which uses reconstruction loss to preserve clas-

sification network’s information over all classes in the tar-

get latent space to ensure generalization to novel classes.

Compared to vanilla WTN, AE-WTN obtains absolute per-

formance gains of 6% on two Open Images evaluation sets

with 500 seen and 57 novel classes respectively, and 25%
on a Visual Genome evaluation set with 200 novel classes.

1. Introduction

State-of-the-art object detectors [12, 34] are typically

trained with a large number of bounding box annotations.

Large-scale datasets such as COCO [26], Pascal VOC

[7] and OpenImages [22] provide a substantial amount of

bounding boxes, but the number of annotated object cat-

egories is often very limited. The reason is that scaling

the number of bounding boxes can be semi-automated, e.g.

[22], while increasing the number of classes requires sig-

nificant human labor. On the other hand, image-level labels

such as those available in classification datasets are much

easier to collect as they do not require costly bounding

box annotations. As a consequence, several works investi-

gated the training of object detectors in a weakly-supervised

regime, using only image-level labels. These methods lever-

age a variety of classes available in classification datasets

or image tags found in social networks [29] but neglect the

Figure 1. Our proposed detector has no access to box-level training

annotations for the object class represented by the red box, “Car-

bonara”. It learns to detect novel object classes by transferring

weight knowledge from large-scale pre-trained image classifica-

tion network.

spatial information available in object detection datasets.

In contrast, partial supervised methods [16] employ both

types of annotations. While existing methods [24, 33, 39,

40] that transfer knowledge from a classification network to

a detection network with partial supervision achieve higher

accuracy than weakly-supervised methods [3, 4, 24], they

incur a significant computational cost during training and

testing. The overhead comes either from joint training of

the two networks [24, 33], or from performing forward

passes of the classification network during testing [39, 40].

Furthermore, joint-training methods often require storage-

intensive, large-scale classification datasets to be present

while training the detection network.

To overcome these limitations, we propose a novel ap-

proach to transfer discriminative semantic knowledge from

classification to detection with a non-linear weight-transfer

network (WTN) [16]. Given a set of common classes anno-

tated for both tasks, we learn a function, the weight-transfer

network, that maps weights at the fully-connected layer of

the classification network to those of the object detection

network. Once trained, WTN is used to extend the number

of categories recognized by the object detector via transfer-

ring weights of unseen classes from the classification net-

work. This strategy is advantageous because it only adds

little computational and memory overheads to training and
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no burden to inference at all.

Compared to the vanilla weight-transfer network [16],

we introduce two key components to our model. First, we

insert normalization layers to account for the different am-

plitude of the classification weights. Secondly, we replace

the multilayer perceptron with an autoencoder. The latent

space of the autoencoder corresponds to the classification

weights of the object detector and therefore is trained with

object-level supervision. The reconstruction loss between

the input and output of the autoencoder is essential to retain

semantic information of all the classes while the detection

network’s classification loss facilitates the learning of a dis-

criminative embedding of the class weights.

Extensive experimentation on Open Images [22] and

Visual Genome [20] datasets demonstrates that the pro-

posed method significantly outperforms existing partially-

supervised detection approaches on challenging detection

tasks involving novel object classes. Moreover, due to the

auxiliary regularization effect brought by the reconstruction

loss of autoencoder WTN, our proposed method even recov-

ers the performance loss of existing WTN on seen classes.

Contributions. The contributions of this work are three-

fold: i) we address the under-fitting issue of WTN by in-

troducing input and feature normalization schemes. The

resulting model WTN+achieves improved detection per-

formance over the vanilla WTN; ii) we propose our main

model, autoencoder WTN, that better preserve semantic

knowledge of all object classes, while learning to generate

discriminative classification weights for the detection net-

work; iii) we verify the effectiveness of our method with

extensive evaluations using large-scale datasets with mil-

lions of images and several hundreds of object classes.

2. Related Works

Over the years, several convolutional network-based ob-

ject detection frameworks and architectures have been pro-

posed: R-CNN [10], Fast R-CNN [9], Faster R-CNN

[34], R-FCN [5], SSD [27], YOLO [32, 33], FPN [25].

They can be roughly categorized into single-shot detectors

[5, 27, 32, 33] which predict detection boxes from feature

maps directly, and two-shot detectors [9, 10, 34] which first

generate object proposals and then perform spatial extrac-

tion of feature maps based on the proposals for further pre-

dictions. These approaches have improved object detection

from an algorithmic perspective and in a fully supervised

setting. In this work, we adopt Faster R-CNN [34] because

its box-level classification head learns just a single set of

classification weights, resembling image-level classification

(source task) networks. This allows a smoother knowledge

transfer from classification to detection, compared to using

single-shot detection networks which learn multiple sets of

classification weights for different anchor boxes.

Object-levels annotations are time-consuming and te-

dious to collect, especially when the number of classes is

large. With a large number of classes, it is very challenging

to obtain accurate and complete annotations due to complex

overlapping meanings of classes. Thus, several approaches

attempt to scale up the number of object classes handled by

object detectors using image-level annotations. Transfer-

ring knowledge from image classification to object detec-

tion is an active research area tackling the lack of bounding

box annotations of the target datasets and/or object classes.

These knowledge transfer-based methods for scaling up ob-

ject detection can be divided into two categories: weakly-

supervised and partially-supervised approaches.

Weakly-supervised methods typically rely only on an

image-level classification dataset and leverage class agnos-

tic box proposals or prior object knowledge to build object

detectors. For example, Uijlings et al. [43] perform multiple

instances learning with knowledge transfer (source dataset

with bounding boxes) to produce boxes for the target train-

ing dataset. In [41], a weakly-supervised object detector is

trained on a weakly-labeled web dataset to generate pseudo

ground-truths for the target detection task. [37] combines

region-level semantic similarity and common-sense infor-

mation learned from some external knowledge bases to train

the detector with just image-level labels.

More closely related to our work are weight adapta-

tion methods [15, 39, 40] that fine-tune classification net-

works and learn detection-specific bias vectors to adapt

the networks for detection. These adaptation-based meth-

ods assume the classification power of the network is well-

preserved (e.g., using R-CNN [10]) when transferred to the

detection task. This restricts them from being effectively

applied to recent detection methods (e.g., Faster R-CNN

[34], feature pyramid network [25]) that significantly mod-

ify the backbone network structure. Whereas, our method

is not restricted by such constraints.

In general, classification weight-based knowledge trans-

fer [16] can be applied to any recent detection frameworks

[27, 33, 34]. On the other hand, partially supervised ap-

proaches employ weak labels, i.e. image-level annota-

tions, as well as bounding box-level annotations. For ex-

ample, YOLO-9000 [33] extend the detector’s class cover-

age by concurrently training on bounding box-level data and

image-level data, such that the image-level data contribute

only to classification loss. By decoupling the detection

network into two branches (positive-sensitive & semantic-

focused), R-FCN-3K [37] is able to scale detection up to

3000 classes despite being trained on limited bounding box

annotations for several object classes. In contrast to these,

we focus on large-scale object detection without having ac-

cess to additional data (classification) sources during the

training. A well-trained image classification network pos-

sesses sufficiently rich semantic knowledge about the large-
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scale dataset’s categories and the information is compressed

in weights of its classification layers. We argue that such

weights can effectively be exploited to help build an object

detector handling a large number of categories.

3. Weight Transfer Network

Preliminaries. We consider the setting of a classification

network CLN that handles object classes C, and a detec-

tion network DEN that handles object classes D. The num-

ber of categories handled by CLN is much greater than the

number of categories handled by DEN, i.e. |C| >> |D|.
The goal of our approach is to expand the number of cate-

gories handled by DEN through partial supervision, where

we transfer weight knowledge from CLN (source task) to

DEN (target task). We make use of the final fully-connected

(FC) layer weights of the CLN that has been pre-trained

on a large scale image classification dataset. The final FC

layer weights can be seen as a form of semantic embeddings

comprising rich knowledge about the object categories and

the complex class relationships. Furthermore, pre-trained

large-scale image classification networks are very accessi-

ble and many are shared publicly.

Classification knowledge from CLN is transferred to

DEN using a weight transfer network (WTN) through the

object categories shared (S) between the two tasks: S =
C ∩ D. WTN is a neural network that works as a class-

generic function T () used to transform per-class classifica-

tion weight vectors WC = [w1
C , w

2
C , ..., w

|C|
C ] from CLN to

DEN’s classification weights WD = [w1
D, w2

D, ..., w
|D|
D ] as

follows: WD = T (WC).
WTN is trained jointly with DEN on detection dataset

with classes D. The gradients of WTN’s network parame-

ters come from DEN’s box-level classification loss ℓcls. Be-

fore training WTN and DEN, we ‘freeze’ WC (taken from

pre-trained CLN). While S rely on WTN, for the DEN’s

categories which are not part of S (i.e., D \ S), we train

their weights as in conventional detection network. To ob-

tain DEN’s classification score predictions, we simply per-

form matrix multiplication between DEN’s box-level vi-

sual features and WTN’s predicted weights, just like how it

works for conventional classification weights. Convention-

ally, WTN is based on a two-layer multi-layer perceptron

(MLP) architecture.

Due to its class-genericness, WTN is able to carry out

effective inductive learning [6]. In other words, despite that

only classes S are seen by WTN and DEN during training,

during testing WTN (and the DEN model that incorporates

WTN) can work reasonably well with classes N of CLN

that are not shared with DEN, i.e. N = C \ S.

Normalizations. Large-scale classification datasets have

an unbalance class distribution, which has strong implica-

FC
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StdNorm

FC

GroupNorm

LeakyReLU
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WTN

WTN+

wd ∈ WDEN

wd ∈ WDEN

wc ∈ WCLN wc ∈ WCLN

Figure 2. Comparison between network architectures of WTN and

WTN+. The white rectangles correspond to layers with learnable

parameters.

tions in how the classification weights of CLN are trained.

E.g., in one large-scale CLN, we discover that the ‘highest-

norm’ class has a weight vector norm that is 28 times that of

the ‘lowest-norm’ class. Besides, a class-generic non-linear

WTN naturally cannot adapt and learn as well as (conven-

tional) class-specific linear classification weights, for loss

minimization. These pose challenges to the training and

optimization of WTN. Empirically, we found that training a

detection network (DEN) with existing WTN methods dete-

riorates the performance on D classes, compared to a con-

ventional DEN trained on the same labels but without WTN.

Thus, drawing from the recent findings in activations

normalization techniques [17, 44], we introduce a new vari-

ant of WTN, WTN+ that improves performance on D

classes and it is easier to optimize. The model architec-

tural differences between WTN and WTN+are illustrated

in Fig. 2. Standard normalization is applied to the input

weights WC to enable different input channels to contribute

comparably to the prediction of WD, in order to curb the

overdominance/underdominance of certain categories. Let

vj denote the weights of j-th feature/channel of WC , we

normalize vj by:
vj−µ(vj)
σ(vj)

, where µ(·) and σ(·) are the

mean and standard deviation functions respectively. Group

Normalization [44] layer, known for its strong optimization

benefits, is added to normalize intermediate features to en-

courage good gradient flows for easier network optimiza-

tion. These small but crucial modifications are the key to

training highly effective WTN.

4. Autoencoder Weight Transfer Network

During training, only the shared classes S contribute to

the gradients and losses of WTN. The novel object classes

N are unknown to and unconsidered by WTN. The lack of

knowledge of the entire class population of C limits WTN’s

capability to effectively model the good classification space
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Figure 3. The train and test phases of object detector (DEN) with

an Autoencoder-WTN (AE-WTN). Train phase: Before training

DEN, we extract CLN’s final FC layer’s weights WC , and discard

the earlier layers. Trained simultaneously with DEN, AE-WTN

learns to transform weights from CLN to DEN through the shared

classes S. The “other” detection classes (i.e., D \ S) are trained

normally as conventional classification weights. Only “other” and

S contribute to the detection loss ℓcls. AE-WTN uses a reconstruc-

tion loss ℓrec to reconstruct the weights for both S and N , from its

encoder’s outputs. Test phase (dashed polygon): CLN’s weights

of both the novel classes N and shared classes S can be adapted

offline for use in DEN through AE-WTN. With that, DEN is able

to detect novel classes N in addition to S and “other” classes.

originally attained by the pre-trained CLN for handling a

large number of categories. We hypothesize that by letting

WTN have a narrow view of the class population, its model-

ing capability (relating to N specifically) is severely under-

exploited and this compromises the performance of WTN

on classes N .

To this end, we introduce Autoencoder-WTN (AE-

WTN) – a novel WTN variant that attempts to preserve

knowledge on all of classes C contained in pre-trained WC ,

while learning a discriminative WTN function to achieve

good detection performance. AE-WTN is an autoencoder

with both encoder and decoder networks. AE-WTN is built

on top of WTN+. The encoder network shares the same

architecture as WTN+’s, while the decoder network (with

separate network layers/parameters) is the mirrored version

of the encoder. Following existing WTN, the encoder net-

work works as a function T () to predict WD given WC

as input. During training, gradients are propagated from

DEN’s loss to the encoder network. The network architec-

ture of AE-WTN and how it interacts with CLN and DEN

are illustrated in Fig. 3.

AE-WTN is trained with an additional autoencoder-

based training loss – reconstruction loss [11, 14] that forces

the decoder network to predict (or reconstruct) the original

inputs, from the output activations of the encoder network.

Let T () denote the encoder network and G() denote the de-

coder network, the reconstruction is predicted as follows:

ŵC = G(T (wC)); ∀wC ∈ WC . Here, we adopt smooth

L1 loss [9] as the reconstruction loss to minimize the differ-

ence between the predicted reconstructions and the original

inputs (WC):

ℓrec =

{

0.5(ŵC − wC)
2, if |ŵC − wC | < 1

|ŵC − wC | − 0.5, otherwise
(1)

Note that we apply reconstruction loss to all CLN classes

C (i.e., S ∩ N ), rather than just shared classes S. On the

other hand, the detection loss (box-level classification) only

cares about classes S and “other” detection classes. With

such formulation, we perform multi-task training based on

the following mixture of training losses (excluding Region

Proposal Network’s [34]: ℓcls + ℓbox + αℓrec, where ℓbox is

box regression loss and α is the loss scaling hyperparameter.

Reconstruction loss penalizes intermediate network acti-

vations which do poorly to reconstruct the original weights

WCLN. Since AE-WTN’s output WD (weights for DEN) is a

form of intermediate network activations, they are affected

by the reconstruction loss and are expected to retain origi-

nal class information greatly for reconstruction purpose. In

contrast, existing WTN (or even WTN+) is solely driven

by DEN’s classification loss (which may not be optimal for

model generalization) and is not compelled to retain more of

potentially useful class information. Reconstruction-based

information preservation has been shown to help neural net-

works achieve better local optima [23, 45] in supervised

learning. By complementing CLN’s classification loss with

a reconstruction loss, AE-WTN is able to learn a non-linear

mapping that achieves a good balance between class/class

discriminability and class information retainment. We find

that this has a regularization effect on AE-WTN and it helps

improve generalization performance on the fully-annotated

object categories (D ∩ S) seen during training. This obser-

vation is aligned with the findings of [23, 45] that super-

vised learning can be improved with autoencoders. While

we apply reconstruction loss to all classes including N
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(which do not have supervised annotations), [23, 45] apply

the loss to only input examples with supervised annotations.

Our work also resembles semi-supervised learning where

reconstruction loss (autoencoder) [31, 46] is used as an aux-

iliary loss to exploit unlabeled data (in this work, class N

are unlabeled) to improve model performance and general-

ization.

During the training of existing WTN, WC,N the weights

of novel classes N , contained in WC , is not utilized. And,

classes N do not contribute to the training. Deep neural net-

works are generally known to eliminate task-irrelevant in-

formation of the inputs through training [36, 42]. Thus, it is

likely that WTN learns to “dismiss” some class information

about classes N that is unimportant to classes S but is use-

ful for the detection of classes N . The reconstruction loss

of AE-WTN addresses such a shortcoming of existing WTN

by explicitly involving the novel object classes N . The rich

class information in WC,N (which is potentially beneficial

to AE-WTN’s test-performance on classes N ) is preserved

in the intermediate network activations of AE-WTN.

5. Experiments

5.1. Implementation Details

Training and evaluation sets for seen classes D. We

use the official training and validation dataset (referred to

as OI-500) [22] from Open Images V4 Challenge which

contains 500 object classes for training and evaluating DEN

on classes D. The object classes in Open Images dataset are

hierarchically organized and many classes are not mutually

exclusive. Open Images’ official evaluation metric [22],

a custom version of “Average Precision (AP) @ 0.5 IoU

threshold” or AP50 is used for evaluation on the validation

set provided. We use the same Open Images training set to

train baseline Faster RCNN and our WTN-based models

for fair comparisons on novel classes N .

Evaluation set for novel classes. N To evaluate DEN’s

performance on novel classes N , we employ two evaluation

datasets. The first evaluation set (OI-57) is a subset of

Open Images V4 complete/non-challenge dataset con-

taining 57 novel object classes and 31,061 images. The

second evaluation set (VG-200) is set as a subset of Visual

Genome [20] dataset containing 24,690 images spanning

200 high-frequency object classes which are novel to

DEN. We adopt the same AP50 metric for OI-57. Since

many object instances in Visual Genome dataset are not

annotated at all, we follow the practice of [2] by using

Average Recall/AR50@100 detections per image to gauge

the detection performance of DEN on this evaluation set.

Classification Network (CLN) (source). Prior to training

WTN and DEN, a pre-trained large-scale CLN model has

to be acquired. We use a publicly available ResNet-101

pre-trained on Open Images v2 [22] with 5000 object

classes. It is trained with multi-label (sigmoid) classi-

fication loss given the multi-label nature of the dataset.

Training resolution is 299 × 299. The model is trained

asynchronously with 50 GPU workers and batch size 32

for 620K training steps. Incoming features to the final

classification layer is 2048-dimensional.

Detection Network (DEN) (target). The DEN architecture

in this paper is a Faster R-CNN [34] with a backbone

integrating ResNet-50 [13] and Feature Pyramid Net-

work (FPN) [25]. ResNet-50 backbone is pre-trained

on ImageNet-1k [35] dataset, and its BN parameters are

frozen during training of DEN. The box-level head (for

box classification and regression) is a 2-layer multi-layer

perceptron (MLP) with a 2048-dimensional feature and

output channels. DEN is trained with mini batches of 8

images (2 images/GPU) for a total of 180K iterations. We

optimize the network using SGD with momentum of 0.9

and initial learning rate of 2 × 10−2. The network is regu-

larized with weight decay of 1× 10−4. We stick closely to

the original training loss functions of Faster R-CNN except

for the classification loss which we replace with sigmoid

binary cross-entropy, taking Open Images class hierarchy

and multilabel nature into account. The training class la-

bels are expanded [1] based on the hierarchy tree [22] given.

Weight Transfer Network (WTN). By default, WTN vari-

ants have input/feature/output channels of 2048. For Group

Normalization (GN) layer in WTN+and AE-WTN, we fol-

low the same “number of groups”/#groups hyperparame-

ter, which is set to 32 as found to be a good choice by

[44]. WTN networks are trained from scratch simultane-

ously with DEN using AdamW [28] using default hyperpa-

rameters and weight decay of 1× 10−4. For AE-WTN, α is

set to 20 throughout the experiments.

5.2. Comparison with related methods

To validate the effectiveness of our proposed AE-WTN

model, we experimentally compare it with existing weight

transfer-related methods described in the following. Note

that all these methods use the same Faster R-CNN detection

framework and a ResNet-50 backbone.

•Faster R-CNN: Vanilla Faster R-CNN [34] performs fully

supervised learning on seen classes. In contrast to WTN,

vanilla Faster R-CNN learns conventional classification

weights which are both linear and class-specific. To detect

novel classes, we employ the nearest-neighbor approach

(NN), taking the detections of nearest seen classes.

•LSDA [15]: LSDA adapts CLN’s weights for detection

task by learning additive class-specific biases. To make

predictions for a novel class during test-time, the biases of
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OI-500 OI-57 VG-200

(Seen) (Novel) (Novel)

Method AP50 AP50 AR50

Faster R-CNN [34] 59.55 - -

Faster R-CNN (NN) - 28.09 49.39

LSDA [15] 59.44 25.89 51.14

LSDA (Visual Transfer) [39] 59.44 26.43 53.03

ZSD [2] with CLN weights 47.37 34.63 38.04

ZSD [2] with fastText [18] 58.39 29.51 35.09

WTN [16] 52.87 34.94 41.91

WTN+

◮ default model 58.82 39.28 65.60

⊲ 5× weight decay 58.46 40.79 65.87

⊲ activity regularizer [30] 55.86 33.47 36.26

⊲ Dropout [38] 57.14 40.09 65.52

⊲ reduced capacity 58.80 37.81 63.16

AE-WTN 59.59 41.07 66.75

Table 1. Comparison with weight transfer-related methods on eval-

uation datasets – OI-500 (seen classes), OI-57 (novel classes), and

VG-200 (novel classes).

nearest classes are averaged and added to CLN’s weight

vector. The visual similarity transfer variant [39] is also

included.

•ZSD [2]: ZSD performs zero-shot detection through pre-

trained word embeddings. In a joint visual-word embedding

setting, the detector learns to output visual embeddings in

the words’ embedding space. Here, two kinds of embed-

dings are considered – CLN’s weights and fastText [18].

•WTN [16]: This corresponds to the standard (existing)

WTN model that makes use of neither normalization tech-

niques nor reconstruction loss.

•WTN+variants: Since the reconstruction loss of AE-

WTN can be seen as a regularizer, we compare it with sev-

eral WTN+variants regularized with increased weight de-

cay (5×) [21], activity regularizer (0.01) [30], Dropout (0.3)

[38] on intermediate activations, and reduced network ca-

pacity (halving the number of channels in hidden layer).

The results are given in Table 5.1. We use ResNet-50

as the backbone for the vanilla Faster RCNN detector, and

its AP50 on OI-500 is 59.55% which is mildly worse than

the 60.0% achieved by the state-of-the-art SE-ResNeXt-101

detector [1]. Overall, WTN methods outperform the non-

WTN methods by large margins on the novel classes (OI-

57 and VG-200), due to the powerful weight transfer func-

tion learned by WTN that can generalize to many classes.

Among the WTN methods, AE-WTN that incorporates all

the proposed improvements achieves the best results.

WTN and WTN+suffer from the weakened performance

on OI-500 (seen classes D) compared with the vanilla

Faster R-CNN detector that it is built upon. In other

words, switching to WTN from conventional classification

weights decreases performance on the seen classes. This

phenomenon has been observed by prior works [15, 19]

attempting to scale object detection with weak or partial

supervision. By integrating autoencoder into WTN (AE-

WTN), the seen-class detection performance can be recov-

ered. It is extremely challenging to train conventional WTN

from scratch. The reconstruction loss (which is more easily

optimized than detection loss) encourages AE-WTN to out-

put weights highly representative of original CLN weights,

thus providing a good initialization to attain better local op-

tima. Similar to prior works that find reduced supervised

training loss with autoencoder [23, 45], we find that the box-

level classification training loss ℓcls on seen classes attained

by AE-WTN (0.5572) is lower than that of WTN+(0.5754).

Moreover, the reconstruction loss explicitly involves

novel classes N during training and forces AE-WTN to pre-

serve rich class information of the novel classes in the latent

and output spaces. It also encourages visual features learned

by DEN to be more “generic” (less specific to classes D

in the detection dataset) in order to accommodate to the

many classes represented by AE-WTN. Therefore, the de-

tector equipped with AE-WTN shows improved (absolute)

performances of 1.8% and 1.1% over WTN+on OI-57 and

VG-200 respectively. Compared to other existing regular-

ization techniques applied to WTN+, AE-WTN performs

better across all datasets. This provides confirmation that

the advantages of the reconstruction loss cannot be simply

replicated by other regularizers that do not leverage the rich

class information contained in CLN’s weights.

Qualitative results. We provide in Fig. 5 some qualita-

tive results obtained by our proposed AE-WTN detector on

test images of Open Images [22] and Visual Genome [20]

datasets. Only the classes with the highest scores are shown,

and novel classes compete with seen classes for the same

bounding box. Remarkably, the detector can detect a vari-

ety of novel classes at greater confidence than seen classes,

despite not seeing them during training.

5.3. Analysis

Local neighborhood preservation. To better under-

stand the implications of the reconstruction loss on local

neighborhood preservation of AE-WTN, we compute the

overlapping count between nearest neighbors obtained

by CLN’s weights and the output weights of the WTN

model of interest (AE-WTN, WTN+, or WTN), varying

the number of neighbors (a standard hyperparameter of

nearest neighbor approach) for all methods. This study

is performed on 20 randomly-sampled classes and the

counts are averaged across those classes. Nearest neighbors

are among the 5,000 classes of CLN. The findings are

presented in Fig. 4. E.g., at 100 neighbours, AE-WTN’s

output weights and CLN’s weights have an average of

48.25 overlapping neighbours, while WTN+and WTN

have 38.0 and 31.95 overlapping neighbours respectively.

As shown, AE-WTN consistently reaches greater numbers
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Figure 4. The overlapping count (vertical axis) between CLN’s

nearest neighbors and the nearest neighbors obtained by the WTN

model of interest (AE-WTN, WTN+, or WTN), given varying

numbers of nearest neighbors (horizontal axis).

OI-500 OI-57 VG-200

WTN→WTN+ (Seen) (Novel) (Novel)

Input

Norm.

Group

Norm.
AP50 AP50 AR50

✗ ✗ 52.87 34.94 41.91

✓ ✗ 57.60 37.27 54.19

✗ ✓ 54.60 35.84 58.55

✓ ✓ 58.82 39.28 65.60

Table 2. Ablation study on WTN+architecture.

of overlapping neighbors (with CLN’s neighbors) than

WTN+and WTN do, indicating that AE-WTN can better

preserve the local neighborhood relationships of classes

than WTN+. Noticeably, the gap widens as the number of

nearest neighbors increases.

Normalizations in WTN+. We perform ablation study in

Table 2 to understand how the performance changes with

different normalization techniques. It is crucial to combine

the two normalizations of WTN+to obtain the best results

for both seen and novel classes. Furthermore, we observe

worse training losses with non-normalized WTN compared

with WTN+, implying that model under-fitting is the inher-

ent cause of WTN’s under-performance.

Choice of feature normalization. GN [44] is chosen over

the typical BatchNorm (BN) [17] because for WTN+, BN

is less robust towards novel-class inputs which do not have

detection annotations/loss [8]. We find that the post-ReLU

activation (L2) norms of WTN+with BN have an unusually

large variance for novel classes. It is 70× (or 7.117
0.104 ) that

of shared classes, despite allowing BN to normalize over

all classes in training. Such unstable activations are not en-

countered by the detection network during training. This

mean variance

shared cls. novel cls. shared cls. novel cls.

GN [44] 1.838 1.784 0.091 0.093

BN [17] 1.379 2.627 0.104 7.117

Table 3. Means and variances of post-ReLU activation norms.

Faster R-CNN WTN WTN+ AE-WTN

Time (ms) 365 371 379 401

Mem. (GB) 4.11 4.15 4.19 4.26

Table 4. Training time and memory usage.

causes WTN+’s predicted weights for novel classes to in-

teract poorly with image-region features at test time, result-

ing in unreliable class-score predictions. Table 3 shows the

L2 norm means & variances of using GN and BN.

Computational efficiency. Computational efficiency is a

major concern in the training and/or deployment of ob-

ject detectors, especially for large-scale detectors. In Ta-

ble 4, we show the per-iteration training time (in millisec-

onds/ms) and single-GPU memory usage of training with

different models. Overall, the WTN models add very lit-

tle computational costs on top of Faster R-CNN’s. Dur-

ing testing, all the weights can be transformed offline with

WTN/WTN+/AE-WTN to reach vanilla Faster R-CNN’s

efficiency.

6. Conclusion

Training large-scale object detectors is extremely

resource-demanding (e.g., data, computations). In this

work, we introduce an efficient and effective WTN ap-

proach to scale up object detection, and propose novel

methods to strongly push the limits of WTN through nor-

malization techniques and autoencoder-based reconstruc-

tion loss. The reconstruction loss adopted by AE-WTN ef-

fectively improves its capability to retain and exploit the

semantically-rich class information (of all classes) learned

by the pre-trained CLN. This leads to improved training of

DEN and better detection performances on both seen and

novel classes.
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