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Abstract

Head pose estimation aims at predicting an accurate

pose from an image. Current approaches rely on supervised

deep learning, which typically requires large amounts of la-

beled data. Manual or sensor-based annotations of head

poses are prone to errors. A solution is to generate syn-

thetic training data by rendering 3D face models. However,

the differences (domain gap) between rendered (source-

domain) and real-world (target-domain) images can cause

low performance. Advances in visual domain adaptation al-

low reducing the influence of domain differences using ad-

versarial neural networks, which match the feature spaces

between domains by enforcing domain-invariant features.

While previous work on visual domain adaptation gener-

ally assumes discrete and shared label spaces, these as-

sumptions are both invalid for pose estimation tasks. We are

the first to present domain adaptation for head pose estima-

tion with a focus on partially shared and continuous label

spaces. More precisely, we adapt the predominant weight-

ing approaches to continuous label spaces by applying a

weighted resampling of the source domain during training.

To evaluate our approach, we revise and extend existing

datasets resulting in a new benchmark for visual domain

adaption. Our experiments show that our method improves

the accuracy of head pose estimation for real-world images

despite using only labels from synthetic images.

1. Introduction

Knowing the pose of the human head in an image pro-

vides important information in human-computer interac-

tion. Head pose estimation (HPE) can be used to estimate

the focus of attention, a key indicator of human behavior.

Estimating attention can be useful in driver assistance sys-

tems or to analyze social interaction. Head pose informa-

tion can also be used to produce better face alignments for

pose-invariant face or expression recognition.

Figure 1. Exemplary continuous label space of two head pose

datasets [15, 10]: Synthetically rendered (red) and real-world

(blue). Note the difference in distribution shape and density. Im-

ages from source and target domain are shown on the left and right,

respectively. Our goal is to transfer knowledge from source to tar-

get domain in an unsupervised manner.

HPE is commonly formulated as a regression problem,

where the task is to predict the continuous orientation in

3D space (e.g., Euler angles). Deep learning approaches

have become the state of the art in head pose estimation out-

performing most traditional approaches. Producing enough

accurately labeled training data, required for deep learn-

ing, is a very challenging task. Recording real-world head

images with pose measurements comes with a number of

challenges. Measurements can be based on sensor data like

depth images [10], or inertial measurement unit (IMU) sen-

sors [3], which are both prone to sensor noise. The Biwi

dataset [10], a common benchmark for HPE, has an average

error of 1 degree [15]. Another approach based on man-

ually labeled keypoints yields similarly inaccurate results

due to unknown 3D model and camera parameters. Render-

ing synthetic face images provides inexpensive and virtually

unlimited quantities of accurately labeled data. However,

training solely on synthetic data (source) can cause poor

performance when testing on real-world data (target) due to
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mismatch or shift of underlying data distributions (domain

gap).

Recently, there has been great interest in visual domain

adaptation (DA) for deep learning [33], which tries to close

the domain gap by learning domain-invariant features. Typ-

ical DA scenarios are classification tasks with discrete and

shared label spaces, i.e. both target and source data share the

identical set of class labels. For regression problems with

continuous label spaces, this assumption of fully shared

(identical) label sets does not hold. As illustrated in Fig-

ure 1, the label distributions are not necessarily identical,

and the target labels only form a subset of the source label

set. It is therefore not possible to directly apply current DA

methods to HPE. Partial domain adaptation (PDA) tries to

resolve these issues for discrete label spaces by estimating

the differences between the label set distributions [6]. How-

ever, available PDA methods can not be applied directly to

HPE because they do not consider continuous label spaces.

To the best of our knowledge, neither DA nor PDA has been

applied to head pose estimation nor regression tasks.

Our goal is to improve performance for real-world HPE

using both labeled data from the synthetic source domain

and unlabeled data from the real-world target domain. To

exploit the advantages of synthetic image data for HPE

tasks, we extend the concept of partial adversarial domain

adaptation [6] to regression problems and continuous label

spaces. Our method considers the density and shape of la-

bel distributions between domains to counteract misalign-

ment of label spaces. Furthermore, we are able to simplify

the prevalent weighted loss functions by using a weighted

random sampler which provides a straightforward and more

efficient solution for partial domain adaptation. Finally, we

introduce a novel benchmark for PDA with continuous label

spaces by revising and extending available datasets.

While our research is motivated by accurate head pose

estimation, our contributions are threefold:

• We bring together the unconnected topics of head

pose estimation and adversarial domain adaptation and

compare current deep HPE methods in the context of

synthetic data and domain adaptation.

• State-of-the-art HPE results using our novel approach

for partial adversarial domain adaptation.

• A benchmark for PDA with continuous label spaces

as a novel challenge for the visual domain adaptation

community.

2. Related Work

In the following, we will first review recent deep

learning-based HPE methods and the use of synthetic data

for HPE and subsequently review related works for visual

domain adaptation methods focusing on (partial) adversar-

ial DA methods.

2.1. Deep Learningbased Head Pose Estimation

Vision-based head pose estimation can be categorized

into two approaches. One approach is to detect geomet-

ric facial features (e.g., landmarks) and use a reference 3D

head model to estimate the pose from these features. The

other approach is to use the complete facial appearance to

estimate the pose, either by a model of facial appearance or

directly learn the relation from image to pose. A survey on

classical methods is given in [23]. In this paper, we will

focus on deep learning-based head pose estimation directly

from a single monocular RGB image.

Anh et al. [1] were among the first to present a deep

learning-based approach for HPE. Using a convolutional

neural network (CNN), they directly regressed the head

pose information. Patacchiola and Cangelosi [25] eval-

uated different CNN architectures and adaptive gradient

methods for head pose estimation. Several networks have

been presented that perform multiple facial analysis tasks

[20, 27, 28, 7] like landmark localization, pose estimation,

gender recognition, and other tasks. For example, Chang

et al. [7] predicted facial keypoints and head pose jointly

using a ResNet architecture [16]. However, multi-analysis

approaches only coarsely evaluated pose estimation perfor-

mance. The performance difference between using facial

landmarks for pose estimation and direct regression was

investigated by Ruiz et al. [29]. They introduced a novel

loss function for deep HPE. In their experiments, they out-

performed landmark-based pose estimation approaches. In

contrast to our work, the aforementioned works do not use

synthetic training data. Ruiz et al. also train on a synthet-

ically expanded dataset by utilizing the 300W-LP dataset

[35]. However, 300W-LP includes augmentations of real

photographs (warped versions of these pictures) but does

not contain images of rendered 3D face models.

Using images of rendered 3D face models provides a so-

lution to obtain high amounts of accurately labeled data.

The synthetic face pose dataset SynHead was introduced by

Gu et al. [15]. In their work, they focused on improving

head pose prediction performance for temporal sequences

by using recurrent neural networks. They trained and eval-

uated their method on the SynHead dataset. Furthermore,

they reported the performance when a network trained with

synthetic data is fine-tuned on real-world data. In contrast,

we do not use any temporal information and perform single-

frame predictions. In addition, our goal is not to fine-tune

on real-world data but to use an unsupervised approach that

does not require any labels for the target domain. Due to

specific characteristics of the SynHead dataset, it is difficult

to use for HPE and DA benchmarking (see Section 4). Liu

et al. [22] created a synthetic head pose dataset to train a

CNN for HPE. They evaluated their model trained exclu-

sively on synthetic data on a real-world dataset. Assum-

ing that their synthetic data is close enough to real-world

10165



data, they did not apply any domain adaptation. To date,

their synthetic dataset is not publicly available. While both

works [15, 22] use synthetic training data, either no or only

supervised transfer learning (fine-tuning) is used to over-

come domain mismatch. This is different to our approach

where we explicitly tackle domain mismatch using partial

adversarial domain adaptation.

2.2. Partial Adversarial Domain Adaptation

In our review, we will focus on adversarial domain adap-

tation and more detailed on partial adversarial techniques

as these techniques form the basis of our method. The in-

terested reader is referred to two recent surveys [9, 33] that

extensively summarize the current state of the art of (deep)

visual domain adaption.

The seminal work of Ganin et al. [12, 13] introduced the

concept of a domain adversarial neural network (DANN).

DANN works by matching the distributions of features ex-

tracted from different domains by making them indistin-

guishable for a discriminative classifier (also called domain

adversary). One has to note the very similar concept of gen-

erative adversarial networks (GANs) described by Goodfel-

low et al. [14]. Besides, the applications of both methods

are quite different.

Numerous works build upon DANN to approach domain

adaptation [31, 32]. However, these works assume identical

label spaces, which means that for every sample of source

data there exists target data with the same label. In a real-

istic scenario, where large amounts of source data and only

unlabeled target data is available, this assumption is inade-

quate. Aligning the source and target feature distributions

(e.g., using DANN) will also align the label spaces, causing

negative transfer as target features are matched to unequal

source labels.

To overcome this problem, Cao et al. [6] proposed a par-

tial adversarial domain adaptation (PADA) network. PADA

mitigates the effect of mismatch between label spaces by

downweighting the data of source classes not expected in

the target labels. PADA is improved in follow up works

[5, 26] where additional domain adversaries are added for

every category in source label space. A similar concept was

proposed by Zhang et al. [34], where an additional domain

classifier is added to the network to identify source samples

from the outlier classes. Another approach was presented

by Chen et al. [8]. They propose to learn a class weighting

ratio to match the label distributions. While these methods

consider a partially shared label space, they all assume a

discrete label space. The task is always classification where

some classes do not exist in the target domain. In our case,

we cannot relate to fixed class labels but have continuous

labels of head poses which also do not allow category-wise

extensions [5, 26].

Interestingly, domain adaptation has not been used for

HPE at all. Despite the recent works in PDA, it is unclear

how to transfer these methods for HPE. Furthermore, we

could not find any regression task or dataset related to vi-

sual domain adaptation. In this work, we show the first

approach to apply PDA to HPE and introduce the novel

problem paradigm of continuous label spaces (regression)

to visual domain adaptation.

3. Method

In this section, we introduce our novel method for par-

tial domain adaptation for continuous label spaces. Our so-

lution and experiments are specifically developed to solve

our head pose estimation task, but might also be applied to

other regression tasks. Our method is inspired by previous

(partial) domain adversarial methods, which are based on

adversarial methods and we start by reintroducing the re-

quired notations and concepts. In the typical domain adap-

tation scenario, data is available from the source domain

Ds = {(xs
i , y

s
i )}

ns

i=1
, where ns is the number of data sam-

ples xs
i ∈ Xs and associated labels ysi ∈ Ys. For the target

domain Dt = {(x
t
i)}

nt

i=1
, only data is available. In classical

DA it is assumed that the source-domain label space Cs and

target-domain label space Ct are shared. In contrast to DA,

in PDA Ct is only a subset of Cs (Ct ⊂ Cs). Source data with

labels in Cs \ Ct are referred to as source outliers.

3.1. Partial Domain Adversarial Networks

In their simplest form DANN consist of three subnet-

works. The design is illustrated in Figure 2. In our case,

a domain discriminator D is trained to distinguish the

source domain from the target domain samples. The fea-

ture extractor F is trained to extract features that simul-

taneously minimize the task loss and further maximize the

discriminator loss in order to create features indistinguish-

able to D. The pose regressor R is trained to fulfill the

actual task (head pose estimation) leading to the following

functional [12]:

E(θD, θF , θR) = Ly(R(F (Xs)), Ys)

− λLd(D(F (Xs ∪Xt)), Ls ∪ Lt),
(1)

where Ly is the task loss (pose prediction error) and Ld is

the domain classification loss weighted by λ. λ is typically

increased from 0 to λmax during training. θ denotes param-

eters of D, F and R. Ls and Lt are labels describing the

domain origin. Ld is the cross-entropy loss and Ls and Lt

are ~1 and ~0, respectively.

The following minimax optimization will deliver saddle

points of Eq. (1) to learn the networks’ parameters θ̂ that

fulfill the domain adaptation goals:

(θ̂F , θ̂R) = argmin
θF ,θR

E(θF , θR, θ̂D)

θ̂D = argmax
θD

E(θ̂F , θ̂R, θD).
(2)
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Figure 2. Proposed architecture for domain-adapted head pose estimation: The feature extraction network F is trained to extract domain-

invariant features from source and target domain samples (xs

i , xs

t ) using domain-adversarial training. Domain feedback is provided by the

domain discriminator D. A pose regressor R estimates the head pose for samples from both domains. Pose estimates from target samples

ŷt

i are feed back to generate sampling weights Ws. Instead of sampling directly from the source data Xs a weighted random sampler

(WRS) selects source samples with similar labels to the estimated target labels. This enforces a similar label distribution of source and

target domain samples during training.

The minimax optimization can be solved iteratively sim-

ilar to GANs [14] or using a gradient reversal layer [12].

Different possible manifestations are unified and presented

as a general framework by Tzeng et al. [32].

The original DANN framework does not consider partial

domain adaptation. In PDA, the general goal is to reduce the

negative influence of source outliers during training. This is

usually done using a weighting scheme, to down-weight the

contribution of source outliers to the loss functions.

The average target label predictions Ŷt over all target

samples are commonly used to produce a class-dimensional

weight vector [5, 6, 26]. These class weights are then

used to weight the contribution of all losses calculated with

source data. That is, task loss and domain classification loss

of source samples are weighted down for classes that are

rarely predicted for target samples.

Similarly, Zhang et al. [34] use the output of the domain

discriminator as the likelihood of the sample coming from

the source distribution. They assume that high likelihoods

indicate samples from the source outliers, as no target sam-

ples should have similar features. Subsequently, they use

the domain discriminator predictions to generate weights

used during training with source samples.

We tried to produce weights with a discriminator [34].

However, we found that in our case, the domain discrimina-

tor output was insufficient to indicate source outliers. Fur-

thermore, we can not use class weights because our label

space is continuous.

3.2. Extension to Continuous Label Spaces

There is currently no partial domain adaptation tech-

nique for continuous label spaces. To avoid negative trans-

fer from source outliers we need to control the influence of

source outliers during training. Instead of using target label

predictions to generate source class weights [5, 6, 26], we

propose to use them to generate source sample weights.

First, we will describe a straightforward adaptation of

PADA-like [6] methods from class weighting to sample

weighting. Secondly, we will take some time to revise the

weighted loss scheme to a more efficient resampling proce-

dure, using a weighted random sampler. Thirdly, we will

introduce a new weighting scheme for balanced resampling

of the source data: Partial Adversarial Domain Adaptation

for COntinuous label spaces (PADACO).

PADA-like: To create weights for source samples, we

propose to measure the distance of target predictions to

source labels in label space. In our setting the label space

is R3 consisting of the three rotation angles pitch, yaw, and

roll. We compute the distance between rotations with the

mean squared error, which is also our task loss function Ly .

To obtain weights ws
i ∈ Ws for every source sample, we

adapt the minimum distance for every ysi to Ŷt. We use a

distance threshold t to exclude samples that are too far away

from the target predictions. The weights are calculated by:

ws
i =

{

0, if min
ŷt

i
∈Ŷt
Ly(ŷ

t
i , y

s
i ) ≥ t

t−min
ŷt

i
∈Ŷt
Ly(ŷ

t
i , y

s
i ), otherwise.

(3)

Equivalent to Cao et al. [6], we normalize the weights by

dividing with max(Ws). These weights are applied to the

loss functions to weight down the losses from source out-

liers [5, 6, 26, 34]. We will further refer to our adaptation

of weighting methods like PADA to continuous label spaces

as PADA-like.
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Weighted random sampler: Current methods for PDA

apply weights for every processed data sample to multiple

loss functions during training [5, 6, 26, 34]. Generally, Cs is

larger than Ct, leading to many (near) zero-weighted source

samples pushed through the network without any benefit.

The larger the source outlier space, the more time and en-

ergy is wasted. Therefore, we propose to use weights not

for weighting after the forward pass but for sample selec-

tion prior to the forward pass. Using a weighted random

sampler (WRS) depicted in Figure 2 we can select appro-

priate samples from Xs, resulting in a simpler and more

efficient training scheme. WRS uses source weights Ws as

probabilities of a multinomial probability distribution to re-

sample the data.

Another benefit of resampling compared to weighted

loss functions is the interplay with batch normalization

(batch norm) [18]. Batch norm has been found beneficial

for domain adaptation [11, 21]. In preliminary experiments

we found that domain-wise batch norm [11] provides a con-

siderable performance boost. Using weighted loss func-

tions however, will not change the mini-batch statistics, as

even zero-weighted samples are used in batch norm calcula-

tions. While batch means and standard deviations can also

be calculated with weights, these would have to be explic-

itly transferred to all batch norm layers. Furthermore, a

weighted batch norm is not available in any modern deep

learning framework. Using the weighted resampling strat-

egy lets us use the default batch norm method without any

changes. Lastly, this simple but effective change of weight-

ing to sampling strategy can be readily applied to other ex-

isting weight-based PDA methods.

PADACO: Using weights or resampling based on

weights reduces the influence of source outliers during

training. However, despite differences in their shape, we

found that source and target label distributions also differ in

density. In other words, the ratio of samples with the same

or similar labels can be imbalanced between source and tar-

get data. To avoid misalignment of label spaces, we need to

balance the contributions of source samples during training.

Therefore, we combine sample weights and consider the la-

bel space distribution densities in our PADACO method.

With the WRS approach, source data can be resampled

to account for data imbalance without much effort, but,

compared to PADA-like, the weighting (calculation of Ws)

needs to be adapted. Instead of calculating a weight for ev-

ery source sample, we propose to assign a fixed amount of

source samples to every target sample. Using nearest neigh-

bor search for every target label prediction on the source la-

bels, we can select the Nn nearest source samples for train-

ing. A balancing is already given when using this nearest

neighbor approach. As a result, every target sample is as-

signed to a fixed number Nn of source samples and the same

ratio (1:Nn) of similar labels from source and target is pro-

vided during training.

To compute sampling weights Ws for every source sam-

ple, we first initialize all weights with zero. We evaluate

the target dataset to obtain the current target label predic-

tions Ŷt and find Nn nearest source samples for every target

prediction. The weight of a source sample is incremented

by 1 for every time it is assigned to a target label predic-

tion. In other words, to account for multiple assignments to

the same source samples, we count the number of times a

source sample is found as a neighbor to a target sample to

form Ws. To create sampling probabilities for the sampler,

we divide the weights Ws by the sum of all weights.

For efficient nearest neighbor search even with many

data points, space partitioning (e.g., a k-d tree [2]) can be

used. As the search strategy is changed, we do not com-

pare all source labels to all target predictions as in Eq. (3),

but only search neighbors for all target predictions. This

strategy will also improve efficiency because the amount of

target samples nt is typically much smaller than ns.

During the development, we also examined other ideas.

We tried to apply additional thresholding to dismiss neigh-

bors too far away from target labels. However, we found

that this does not improve the results and only adds an addi-

tional parameter to the method. We also tried to iteratively

update the weights during training, to allow the weights to

change during adversarial training. While this approach can

converge in some cases, we found it to be highly unstable.

Despite these findings, we think that stabilizing iterative

weight updates is a promising direction for future work.

Our final training procedure is described in Algorithm 1.

Algorithm 1: Training procedure

Input: labeled source samples Xs, Ys

unlabeled target samples Xt

parameter λmax, Nn

Output: θ̂F , θ̂R
Stage-1:

θ̂F , θ̂R ← pre-train F and R on Xs with Ys

θ̂D ← random initialization

Stage-2:

Ŷt ← evaluate target data R(F (Xt))
Ws ← calculate weights using Nn, Ys, and Ŷt

while λ < λmax do
bs ← sample source batch with weighted sampling

from Xs using Ws

bt ← sample target batch from Xt

θ̂F , θ̂R ← train F and R with bs
θ̂F , θ̂D ← train F and D with bs and bt using

adversarial training [12]

λ← update λ according to a schedule
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4. SynHead++, SynBiwi+, Biwi+

For validating our method is is not possible to directly

utilize existing benchmarks due to reasons we will discuss

in this section. We therefore introduce three extensions1 to

existing datasets [10, 15]. Our goal is the provide source

and target datasets for the task of visual domain adaptation

with continuous label spaces (e.g., pose estimation).

As a real-world, target-domain dataset, we choose the

Biwi Kinect Head Pose Database (Biwi) [10] containing

24 sequences of 20 different subjects (14 men, 6 women,

4 people with glasses) recorded with a kinect sensor. Our

source-domain datasets are based on SynHead [15], a syn-

thetic head pose dataset of 10 rendered 3D head models

in various poses. The original SynHead already includes

smoothed head motion tracks of all 24 Biwi sequences.

However, SynHead was rendered using the Euler angles

provided by Biwi but with a different sequence of rota-

tion axes. This rotation order (dissimilar to the Biwi order)

causes that several SynHead images and Biwi images with

the same label show different head rotations. In extreme

cases, SynHead images show no part of the face at all.

An issue in current HPE research are inconsistent face

crops. As an essential pre-processing step, the crop of

the original image (based on a face bounding box) used

for further processing plays an important role in HPE per-

formance. Typically, comparing this step is neglected in

the HPE community, and different face detectors are used

throughout experiments.

To overcome these issues and to evaluate and compare

the tasks of partial and non-partial domain adaptation, we

extend and revise Biwi [10] and SynHead [15] to:

• SynBiwi+: A shared label space dataset (Ct = Cs)

• SynHead++: A subset label space dataset (Ct ⊂ Cs)

• Biwi+: A target test set for HPE and domain adapta-

tion tasks with SynBiwi+ and SynHead++

For all SynHead images with visible faces, we recom-

puted the intended Biwi angle representation leading to

SynHead+. We rotate available SynHead+ images to pro-

duce images with rotations as close as possible to the Biwi

dataset leading to SynBiwi+. For every image in the Biwi

dataset, SynBiwi+ has 10 corresponding images contain-

ing the 10 synthetic head models of SynHead. As we only

generate images by rotating original images, we do not get

perfect alignment. The mean average Euler angle error be-

tween Biwi and SynBiwi+ is 0.15°, which we think is suf-

ficient for the envisioned experiments. Finally, for partial

domain adaptation experiments where the source dataset

should be a proper superset of the target dataset, we cre-

1The labels and code to recreate the datasets are available at http:

//www.tnt.uni-hannover.de/project/headposeplus.

ate SynHead++ which is the union of SynHead+ and Syn-

Biwi+.

To further improve reproducibility, we provide bound-

ing boxes for the new datasets and the original Biwi dataset

which we then denote by a plus sign (Biwi+). We evaluated

three available face detectors [4, 17, 19] to produce bound-

ing boxes. However, all detectors fail for extreme head ro-

tations on both datasets. Further, multiple detections are

sometimes produced on ears or persons in the background.

Based on the detections of [19], we manually corrected all

bounding boxes and added missing boxes manually to the

datasets. Exemplary images of the datasets are shown in

Figure 1.

5. Experiments

In the following, we will analyze different levels of do-

main knowledge transfer used for head pose estimation. We

compare the traditional supervised methods to our new DA

and PDA experiments and further analyze the effects of dif-

ferent weighting schemes for PDA.

5.1. Implementation Details

For all our experiments, the feature extractor F is

ResNet18 as provided by PyTorch [24]. The domain dis-

criminator D is a fully connected (fc) layer network with

two layers (512 neurons each) connected as Input-fcLayer-

BatchNorm-LeakyReLU-fcLayer-Output. The regression

network R is an fc layer with 512 neurons and 3 output

values for estimation of Euler angles.

We add random backgrounds to all synthetic face im-

ages using randomly cropped images from the backgrounds

folder of the original dataset [15]. We do not use common

data augmentations such as random crops, flips or color ad-

justments. All images are cropped to the bounding boxes

described in Section 4 and rescaled to match the input of the

feature extractor F . Inspired by [11, 21], we process mini-

batches of source and target data separately. This forces

batch normalization to use different normalization statistics

for each domain during training. For all experiments, we

use stochastic gradient descent with momentum 0.9, Nes-

terov, a batch size of 200, and a learning rate schedule with

base learning rate 0.03 for D, F , and R. The learning rate is

slowly decreased after the first third of training. We set the

threshold for PADA-like to t = 3.5 and the number of near-

est neighbors for PADACO to Nn = 10. To analyze only

the impact of weight calculation methods, the PADA-like

experiment also uses the WRS.

To create baseline models (Stage-1, see Alg. 1), which

we will later use in Stage-2 of our training, we use the pre-

trained ResNet18 as F , and further train F for 20 epochs

with the dataset required for the following domain adapta-

tion experiments (SynBiwi+ or SynHead++). For valida-

tion, 3% of data is held out. Finally, we select the epoch
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Experiment Method Network Training set Test set MAE Pitch Yaw Roll

Intra domain

Anh [1] Custom CNN Biwi* Biwi* 2.93 3.4 2.8 2.6

Liu [22] Custom CNN Biwi⋄ Biwi⋄ 5.93 6.0 6.1 5.7

Ruiz [29] ResNet50 Biwi† Biwi† 3.23 3.39 3.29 3.00

Gu [15] VGG16 [30] Biwi† Biwi† 3.66 4.03 3.91 3.03

Inter domain
Ruiz [29] ResNet50 300W-LP [35] Biwi† 4.90 6.61 4.81 3.27

Liu [22] Custom CNN unavailable Biwi 3.73 4.3 4.5 2.4

Inter domain BaselineDA ResNet18 SynBiwi+ Biwi+ 4.58 4.99 4.85 3.89

Domain adaptation
DANN [12] ResNet18 SynBiwi+ Biwi+ 3.34 3.56 3.43 3.03

PADACO (proposed) ResNet18 SynBiwi+ Biwi+ 4.04 4.47 4.11 3.56

Inter domain BaselinePDA ResNet18 SynHead++ Biwi+ 4.53 4.97 4.61 3.97

Partial DA

DANN [12] ResNet18 SynHead++ Biwi+ 6.05 8.08 6.17 3.91

PADA-like ResNet18 SynHead++ Biwi+ 6.41 8.14 6.86 4.22

PADACO (proposed) ResNet18 SynHead++ Biwi+ 4.13 4.51 4.11 3.78

Table 1. Head pose estimation results on variants of the Biwi dataset. Biwi variants: *Random split (86% and 14% images), †Split by

sequence (16 and 8 sequences), ⋄ Split by subject (18 and 2 subjects). SynHead++, SynBiwi+ and Biwi+ are our novel benchmark datasets

for head pose estimation and domain adaptation. Experimental results are grouped in blocks describing the use of data from different

domains during training and testing. Our proposed method achieves the best results for the challenging task of partial domain adaptation.

with lowest validation error as a baseline starting point (see

Table 1) for the following domain adaptation experiments.

For DA and PDA experiments, during the first third of

the training, λ is set to 0 to train the discriminator. Then

λ is scheduled from 0 to λmax = 0.2. On reaching λmax

training is stopped after 5 epochs on SynHead++ (PDA ex-

periments) or 16 on SynBiwi+ (DA experiment).

5.2. Overview and Results

We conducted experiments for HPE in the settings of

domain adaptation and partial domain adaptation using the

proposed datasets. All results are sorted by experiment type

in Table 1. The experiment type describes the use of data

from different domains during training and testing. In the

intra-domain setting, only data from one domain is used.

Inter domain describes the setting where training and test-

ing data are from different domains, but no domain adapta-

tion techniques are applied. These techniques are evaluated

in the domain adaptation and partial DA experiments. The

domain adaptation experiments are our control experiments

where we synthetically enforce that source and target do-

main share a nearly identical label space. Contrarily, partial

DA experiments do not assume these constraints and can be

seen as a realistic scenario for real-world applications. In

the evaluation of partial DA, we will illustrate the effects of

using different source weighting schemes. We report intra-

and inter-domain results from the literature as a comparison

to the novel non-partial and partial DA results. Furthermore,

we trained two inter-domain baseline models on the pro-

posed datasets. The performance of head pose estimation

is usually measured with the mean absolute error (MAE)

of the Euler angles. We report MAE and absolute error for

every rotation angle (pitch, yaw, and roll) in degree.

Intra Domain Intra-domain results show the current state

of the art for monocular deep HPE methods trained and

evaluated on the Biwi dataset. Due to different training and

test set splits the results should not be compared to each

other but serve as an overview of possible intra-domain re-

sults.

Inter Domain and Baselines Inter-domain results are

more related to the domain adaptation task. Comparing the

inter-domain to the intra-domain results of Ruiz et al. [29],

we can conclude that there exists a domain mismatch be-

tween the source (training) and target (test) dataset. An ex-

ception is made by Liu et al. [22] as they outperform their

intra-domain results. One reason could be similar statistics

between the Biwi dataset and their synthetic training set,

which shares the same head pose ranges with Biwi [22].

Our inter-domain baselines outperform the inter-domain

method of Ruiz et al. [29] using a smaller network architec-

ture. Direct comparison of methods should be handled with

care due to differences in experimental setups.

Domain Adaptation To compare the differences between

the performance of methods on partially shared and iden-

tical label spaces, we evaluate DANN [12] and PADACO

on our shared label space dataset SynBiwi+. Based on

the BaselineDA model, we apply the DANN and PADACO

method with parameters as described in Section 5.1. DANN

yields impressive results for head pose estimation compared
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PADA-like

DANN

PADACO

Ground truth

Figure 3. Label space visualization after training with different weighting schemes: In addition to ground truth labels, for every PDA

experiment we show source labels Ys (red) and the predicted target labels Ŷt (blue). The 3D label space of rotations is visualized by 2D

projections on yaw/pitch and yaw/roll (angles in degree). The different distributions reveal the effects of applying the different weighting

schemes. DANN [12] expands Ŷt into Ys, PADA-like collapses Ŷt to the higher density regions of Ys and PADACO (proposed) keeps the

overall shape of Ŷt similar to the ground truth.

to methods trained on inter-domain data and even meth-

ods trained on Biwi (intra domain) directly. The improve-

ment of mean absolute error (MAE) is over 1° as can be

seen in Table 1. This result encourages the search for sim-

ilar performing PDA methods and further validates our as-

sumption that DA is a feasible approach for HPE. While

PADACO improves the result compared to the baseline by

12% (0.54°), it does not reach the performance of DANN.

However, in contrast to PADACO, DANN requires a prior

assumption on the label distribution. The partial domain

adaptation results will show that DANN fails if this assump-

tion does not hold.

Partial Domain Adaptation For PDA we evaluate

DANN, PADA-like, and PADACO. The results show the

expected, DANN fails to work in the case of non-identical

label spaces. Instead, the MAE is increased by nearly 1.5°.

Fig. 3 shows the distribution of label predictions after train-

ing. We can clearly see that DANN produces negative trans-

fer by aligning the label spaces. In our framework, DANN

is identical to setting all the weights Ws to 1.

Despite using a weighting procedure, the PADA-like ap-

proach produces worse results compared to DANN. Com-

paring to the ground truth in Figure 3, we can see a contrac-

tion. We believe this is caused by the imbalance of weighted

source and target samples as the higher density regions in

source label space attract the target samples during training.

Compared to the others, our novel approach PADACO

does not diverge and even decreases the error on the tar-

get domain by nearly 10%. The balanced resampling of

source samples seems to avoid negative transfer by avoid-

ing a matching of the target to the dissimilar source label

space distribution.

6. Conclusion

We proposed a novel unsupervised domain adaptation
technique to improve deep head pose estimation perfor-
mance. We extended recent works on partial domain adap-
tation to the previously neglected regression tasks where la-
bels are not discrete classes but reside in a continuous la-
bel space. Using a balanced resampling of source data and
partial adversarial domain adaptation, we lowered the head
pose estimation error by nearly 10%. Our approach can
be applied to other regression tasks such as hand or body
pose estimation to improve results when training on data
from another domain (e.g., synthetic data). With our re-
sults for partial domain adaption, a promising research di-
rection was established. We will try to extend our work in
further studies. In this regard, we are looking forward to
others proposing solutions using the novel domain adapta-
tion benchmark1 introduced in this paper.
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