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Abstract

Despite the remarkable success of generative adversar-

ial networks, their performance seems less impressive for

diverse training sets, requiring learning of discontinuous

mapping functions. Though multi-mode prior or multi-

generator models have been proposed to alleviate this prob-

lem, such approaches may fail depending on the empiri-

cally chosen initial mode components. In contrast to such

bottom-up approaches, we present GAN-Tree, which fol-

lows a hierarchical divisive strategy to address such dis-

continuous multi-modal data. Devoid of any assumption

on the number of modes, GAN-Tree utilizes a novel mode-

splitting algorithm to effectively split the parent mode to

semantically cohesive children modes, facilitating unsuper-

vised clustering. Further, it also enables incremental addi-

tion of new data modes to an already trained GAN-Tree, by

updating only a single branch of the tree structure. As com-

pared to prior approaches, the proposed framework offers

a higher degree of flexibility in choosing a large variety of

mutually exclusive and exhaustive tree nodes called GAN-

Set. Extensive experiments on synthetic and natural image

datasets including ImageNet demonstrate the superiority of

GAN-Tree against the prior state-of-the-art.

1. Introduction

Generative models have gained enormous attention in re-

cent years as an emerging field of research to understand

and represent the vast amount of data surrounding us. The

primary objective behind such models is to effectively cap-

ture the underlying data distribution from a set of given

samples. The task becomes more challenging for complex

high-dimensional target samples such as image and text.

Well-known techniques like Generative Adversarial Net-

work (GAN) [14] and Variational Autoencoder (VAE) [23]

realize it by defining a mapping from a predefined latent

prior to the high-dimensional target distribution.
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Figure 1: Illustration of an ideal mapping (green plot, a non-invertible

mapping of a disconnected uniform distribution to a uni-modal Gaussian),

and its invertible approximation (dotted plot) learned by a neural network.

The approximate mapping (X → Z) introduces a discontinuity in the

latent-space (top), whose inverse (Z → X) when used for generation from

a uni-modal prior (bottom) reveals implausible samples (in purple).

Despite the success of GAN, the potential of such a

framework has certain limitations. GAN is trained to look

for the best possible approximate Pg(X) of the target data

distribution Pd(X) within the boundaries restricted by the

choice of latent variable setting (i.e. the dimension of latent

embedding and the type of prior distribution) and the com-

putational capacity of the generator network (characterized

by its architecture and parameter size). Such a limitation

is more prominent in the presence of highly diverse intra-

class and inter-class variations, where the given target data

spans a highly sparse non-linear manifold. This indicates

that the underlying data distribution Pd(X) would consti-

tute multiple, sparsely spread, low-density regions. Consid-

ering enough capacity of the generator architecture (Univer-

sal Approximation Theorem [19]), GAN guarantees conver-

gence to the true data distribution. However, the validity of

the theorem does not hold for mapping functions involv-

ing discontinuities (Fig. 1), as exhibited by natural image or

text datasets. Furthermore, various regularizations [7, 32]

imposed in the training objective inevitably restrict the gen-

erator to exploit its full potential.

A reasonable solution to address the above limitations

could be to realize multi-modal prior in place of the single-

mode distribution in the general GAN framework. Several

recent approaches explored this direction by explicitly en-
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forcing the generator to capture diverse multi-modal target

distribution [15, 21]. The prime challenge encountered by

such approaches is attributed to the choice of the number of

modes to be considered for a given set of fully-unlabelled

data samples. To better analyze the challenging scenario,

let us consider an extreme case, where a very high number

of modes is chosen in the beginning without any knowledge

of the inherent number of categories present in a dataset.

In such a case, the corresponding generative model would

deliver a higher inception score [4] as a result of dedicated

prior modes for individual sub-categories or even sample

level hierarchy. This is a clear manifestation of overfitting

in generative modeling as such a model would generate re-

duced or a negligible amount of novel samples as compared

to a single-mode GAN. Intuitively, the ability to interpo-

late between two samples in the latent embedding space

[38, 30] demonstrates continuity and generalizability of a

generative model. However, such an interpolation is pos-

sible only within a pair of samples belonging to the same

mode specifically in the case of multi-modal latent distri-

bution. It reveals a clear trade-off between the two schools

of thoughts, that is, multi-modal latent distribution has the

potential to model a better estimate of Pd(X) as compared

to a single-mode counterpart, but at a cost of reduced gen-

eralizability depending on the choice of mode selection.

This also highlights the inherent trade-off between quality

(multi-modal GAN) and diversity (single-mode GAN) of a

generative model [29] specifically in the absence of a con-

crete definition of natural data distribution.

An ideal generative framework addressing the above

concerns must have the following important traits:

• The framework should allow enough flexibility in the

design choice of the number of modes to be considered

for the latent variable distribution.

• Flexibility in generation of novel samples depend-

ing on varied preferences of quality versus diversity

according to the intended application in focus (such

as unsupervised clustering, hierarchical classification,

nearest neighbor retrieval, etc.).

• Flexibility to adapt to a similar but different class of

additional data samples introduced later in absence of

the initial data samples (incremental learning setting).

In this work, we propose a novel generative modeling

framework, which is flexible enough to address the quality-

diversity trade-off in a given multi-modal data distribution.

We introduce GAN-Tree, a hierarchical generative model-

ing framework consisting of multiple GANs organized in a

specific order similar to a binary-tree structure. In contrast

to the bottom-up approach incorporated by recent multi-

modal GAN [35, 21, 15], we follow a top-down hierarchi-

cal divisive clustering procedure. First, the root node of

the GAN-Tree is trained using a single-mode latent distri-

bution on the full target set aiming maximum level of gen-

eralizability. Following this, an unsupervised splitting al-

gorithm is incorporated to cluster the target set samples ac-

cessed by the parent node into two different clusters based

on the most discriminative semantic feature difference. Af-

ter obtaining a clear cluster of target samples, a bi-modal

generative training procedure is realized to enable the gen-

eration of plausible novel samples from the predefined chil-

dren latent distributions. To demonstrate the flexibility of

GAN-Tree, we define GAN-Set, a set of mutually exclusive

and exhaustive tree-nodes which can be utilized together

with the corresponding prior distribution to generate sam-

ples with the desired level of quality vs diversity. Note that

the leaf nodes would realize improved quality with reduced

diversity whereas the nodes closer to the root would yield a

reciprocal effect.

The hierarchical top-down framework opens up interest-

ing future upgradation possibilities, which is highly chal-

lenging to realize in general GAN settings. One of them be-

ing incremental GAN-Tree, denoted as iGAN-Tree. It sup-

ports incremental generative modeling in a much efficient

manner, as only a certain branch of the full GAN-Tree has to

be updated to effectively model distribution of a new input

set. Additionally, the top-down setup results in an unsuper-

vised clustering of the underlying class-labels as a byprod-

uct, which can be further utilized to develop a classification

model with implicit hierarchical categorization.

2. Related work

Commonly, most of the generative approaches realize

the data distribution as a mapping from a predefined prior

distribution [14]. BEGAN [5] proposed an autoencoder

based GAN, which adversarially minimizes an energy func-

tion [37] derived from Wasserstein distance [2]. Later,

several deficiencies in this approach have been explored,

such as mode-collapse [33], unstable generator conver-

gence [26, 1], etc. Recently, several approaches propose to

use an inference network [7, 24], E : X → Z , or minimize

the joint distribution P (X ,Z) [10, 12] to regularize the gen-

erator from mode-collapse. Although these approaches ef-

fectively address mode-collapse, they suffer from the limi-

tations of modeling disconnected multi-modal data [21], us-

ing single-mode prior and the capacity of single generator

transformation as discussed in Section 1.

To effectively address multi-modal data, two different

approaches have been explored in recent works viz. a)

multi-generator model and b) single generator with multi-

mode prior. Works such as [13, 18, 21] propose to utilize

multiple generators to account for the discontinuous multi-

modal natural distribution. These approaches use a mode-

classifier network either separately [18] or embedded with a

discriminator [13] to enforce learning of mutually exclusive

and exhaustive data modes dedicated to individual generator

network. Chen et al. [8] proposed Info-GAN, which aims to
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Figure 2: Illustration of the hierarchical structure of GAN-Tree (part A) and

unsupervised clustering of data samples D in a hierarchical fashion (part

B). Composition of a single GN at the root level shows how the networks

are used in an ALI [12] framework inside a GNode.

exploit the semantic latent source of variations by maximiz-

ing the mutual information between the generated image

and the latent code. Gurumurthy et al. [15] proposed to uti-

lize a Gaussian mixture prior with a fixed number of com-

ponents in a single generator network. These approaches

used a fixed number of Gaussian components and hence do

not offer much flexibility on the scale of quality versus di-

versity required by the end task in focus. Inspired by boost-

ing algorithms, AdaGAN [35] proposes an iterative proce-

dure, which incrementally addresses uncovered data modes

by introducing new GAN components using the sample re-

weighting technique.

3. Approach

In this section, we provide a detailed outline of the con-

struction scheme and training algorithm of GAN-Tree (Sec-

tion 3.1-3.3). Further, we discuss the inference methods for

fetching a GAN-Set from a trained GAN-Tree for generation

(Section 3.4). We also elaborate on the procedure to incre-

mentally extend a previously trained GAN-Tree using new

data samples from a different category (Section 3.5).

3.1. Formalization of GAN-Tree

A GAN-Tree is a full binary tree where each node in-

dexed with i, GN(i) (GNode), represents an individual GAN

framework. The root node is represented as GN(0) with

the corresponding children nodes as GN(1) and GN(2) (see

Fig. 2). Here we give a brief overview of a general GAN-

Tree framework. Given a set of target samples D = (xi)
n
i=1

drawn from a true data distribution Pd, the objective is to

Algorithm 1 GAN-Tree Construction/Training Algorithm

1: input: GAN-Tree tree

2: node← createRoot(tree)

3: Train E
(0)
pre, G(0) and D(0) with GAN Training procedure with

Unimodal prior P(0)
z =N (0, I)

4: while CanFurtherSplit(tree) do

5: S← LeafNodes(tree)

6: i← argminj∈S

1

|D(j)|
∑

x∈D(j) p
(j)
g (x)

7: Initialize E(i) with params of E(par(i))

8: Initialize G(l) and G(r) with params of G(i)

9: Initialize D(l) and D(r) with params of D(i)

10: P(l)
z ← N (

kσ

2
√
d
1, I), P(r)

z ← N (− kσ

2
√
d
1, I)

11: ModeSplitProcedure (GN(i))

12: π(l) ← |D
(l)|

|D(i)| , π
(r) ← |D

(r)|
|D(i)|

13: BiModalGAN-Training(GN(i))

optimize the parameters of the mapping G : Z → X , such

that the distribution of generated samples G(z) ∼ Pg ap-

proximates the target distribution Pd upon randomly drawn

latent vectors z ∼ Pz . Recent generative approaches [7]

propose to simultaneously train an inference mapping, E :
X → Z to avoid mode-collapse. In this paper, we have used

Adversarially Learned Inference (ALI) [12] framework as

the basic GAN formulation for each node of GAN-Tree.

However, one can employ any other GAN framework for

training the individual GAN-Tree nodes, if it satisfies the

specific requirement of having an inference mapping.

Root node (GN (0)). Assuming D(0) as the set of com-

plete target samples, the root node GN (0) is first trained

using a single-mode latent prior distribution z ∼ P
(0)
z . As

shown in Fig. 2; E
(0)
pre, G(0) and D(0) are the encoder, gen-

erator and discriminator network respectively for the root

node with index-0; which are trained to generate samples,

x ∼ P
(0)
g approximating P

(0)
d . Here, P

(0)
d is the true target

distribution whose samples are given as x ∈ D(0). After

obtaining the best approximate P
(0)
g , the next objective is to

improve the approximation by considering the multi-modal

latent distribution in the succeeding hierarchy of GAN-Tree.

Children nodes (GN (l) and GN (r)). Without any choice

of the initial number of modes, we plan to split each GN-

ode into two children nodes (see Fig. 2). In a general set-

ting, assuming p as the parent node index with the corre-

sponding two children nodes indexed as l and r, we define

l = left(p), r = right(p), p = par(l) and p = par(r) for

simplifying further discussions. Considering the example

shown in Fig. 2, with the parent index p = 0, the indices

of left and right child would be l = 1 and r = 2 respec-

tively. A novel binary Mode-splitting procedure (Section

3.2) is incorporated, which, without using the label infor-
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mation, effectively exploits the most discriminative seman-

tic difference at the latent Z space to realize a clear binary

clustering of the input target samples. We obtain cluster-set

D(l) and D(r) by applying Mode-splitting on the parent-set

D(p) such that D(p) = D(l) ∪ D(r). Note that, a single en-

coder E(p) network is shared by both the child nodes GN (l)

and GN (r) as it is also utilized as a routing network, which

can route a given target sample x from the root-node to one

of the leaf-nodes by traversing through different levels of

the full GAN-Tree. The bi-modal latent distribution at the

output of the common encoder E(p) is defined as z ∼ P
(l)
z

and z ∼ P
(r)
z for the left and right child-node respectively.

After the simultaneous training of GN (l) and GN (r) us-

ing a Bi-Modal Generative Adversarial Training (BiMGAT)

procedure (Section 3.3), we obtain an improved approxi-

mation (P
(p)
g ) of the true distribution (P

(p)
d ) as P

(p)
g =

π(l)P
(l)
g + π(r)P

(r)
g . Here, the generated distributions P

(l)
g

and P
(r)
g are modelled as G(l)(z ∼ P

(l)
z ) and G(r)(z ∼

P
(r)
z ) respectively (Algo. 1). Similarly, one can split the

tree further to effectively capture the inherent number of

modes associated with the true data distribution Pd.

Node Selection for split and stopping-criteria. A natural

question then arises of how to decide which node to split

first out of all the leaf nodes present at a certain state of

GAN-Tree? For making this decision, we choose the leaf

node which gives minimum mean likelihood over the data

samples labeled for it (lines 5-6, Algo. 1). Also, the stop-

ping criteria on the splitting of GAN-Tree has to be defined

carefully to avoid overfitting to the given target data sam-

ples. For this, we make use of a robust IRC-based stopping

criteria [16] over the embedding space Z , preferred against

standard AIC and BIC metrics. However, one may use a

fixed number of modes as a stopping criteria and extend the

training from that point as and when required.

3.2. Mode-Split procedure

The mode-split algorithm is treated as a basis of the top-

down divisive clustering idea, which is incorporated to con-

struct the hierarchical GAN-Tree by performing binary split

of individual GAN-Tree nodes. The splitting algorithm must

be efficient enough to successfully exploit the highly dis-

criminative semantic characteristics in a fully-unsupervised

manner. To realize this, we first define P
(l)
z = N (µ(l),Σ(l))

and P
(r)
z = N (µ(r),Σ(r)) as the fixed normal prior dis-

tributions (non-trainable) for the left and right children re-

spectively. A clear separation between these two priors is

achieved by setting the distance between the mean vectors

as kσ with Σ(l) = Σ(r) = σ2Id; where Id is a d × d iden-

tity matrix. Assuming i as the parent node index, D(i) is the

cluster of target samples modeled by GN (i). Put differently,

the objective of the mode-split algorithm is to form two mu-

tually exclusive and exhaustive target data clusters D(l) and

Algorithm 2 Mode Split Procedure

1: input: GN with index i, left and right child l and r

2: Initialize unassigned bag Bu with D(i), assigned bag Ba with

φ, and cluster label map L with φ

3: while |Bu| 6= 0 do

4: for n0 iterations do

5: Sample minibatch xu of m data samples

{x(1)
u , x

(2)
u , ..., x

(m)
u } from Bu.

6: Sample minibatch xa of m data samples

{x(1)
a , x

(2)
a , ..., x

(m)
a } from Ba.

7: for j from 1 to m do

8: z
(j)
a ← E(i)(x

(j)
a ); z

(j)
u ← E(i)(x

(j)
u )

9: cj = L(x
(j)
a ) (assigned cluster label)

10: tj = argmaxk∈{l,r} p(k|z(j)u ) (temp. label)

11: L(a)
recon ← 1

m

∑m

j=1

∥

∥

∥
x
(j)
a −G(cj)(z

(j)
a )

∥

∥

∥

2

2

12: L(u)
recon ← 1

m

∑m

j=1

∥

∥

∥
x
(j)
u −G(tj)(z

(j)
u )

∥

∥

∥

2

2

13: L(a)
nll ← 1

m

∑m

j=1−log(p
(cj)
z (z

(j)
a ))

14: L(u)
nll ← 1

m

∑m

j=1−log(p
(tj)
z (z

(j)
u ))

15: Lsplit ← L(a)
recon + L(u)

recon + L(a)
nll + L

(u)
nll

16: Update parameters ΘE(i) , ΘG(l) , ΘG(r)

by optimizing Lsplit using Adam

17: for x ∈ Bu do

18: if maxk∈{l,r} p
(k)
z (E(i)(x)) > γ0 then

19: Move x from Bu to Ba

20: L(x)← argmaxk∈{l,r} p(k|E(i)(x))

D(r), by utilizing the likelihood of the latent representations

to the predefined priors P
(l)
z and P

(r)
z .

To effectively realize mode-splitting (Algo. 2), we define

two different bags; a) assigned bag Ba and b) unassigned

bag Bu. Ba holds the semantic characteristics of individ-

ual modes in the form of representative high confidence la-

beled target samples. Here, the assigned labeled samples

are a subset of the parent target samples, x ∈ D(i), with

the corresponding hard assigned cluster-id obtained using

the likelihood to the predefined priors (line 11, Algo. 2)

in the transformed encoded space. We refer it as a hard-

assignment as we do not update the cluster label of these

samples once they are moved from Bu to the assigned bag,

Ba. This effectively tackles mode-collapse in the later iter-

ations of the mode-spilt procedure. For the samples in Bu,

a temporary cluster label is assigned depending on the prior

with maximum likelihood (line 12, Algo. 2) to aggressively

move them towards one of the binary modes (lines 19-22,

Algo. 2). Finally, the algorithm converges when all the sam-

ples in Bu are moved to Ba. The algorithm involves simul-

taneous update of three different network parameters (line

18, Algo. 2) using a final loss function Lsplit consisting of:

• the likelihood maximization term Lnll for samples in

both Ba and Bu (lines 15-16) encouraging exploitation

of a binary discriminative semantic characteristic, and
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• the semantic preserving reconstruction loss Lrecon

computed using the corresponding generator i.e. G(l)

and G(r) (lines 13-14). This is used as a regulariza-

tion to hold the semantic uniqueness of the individual

samples avoiding mode-collapse.

3.3. BiModal Generative Adversarial Training

The mode-split algorithm does not ensure matching of

the generated distribution G(l)(z ∼ P
(l)
z ) and G(r)(z ∼

P
(r)
z ) with the expected target distribution P

(l)
d and P

(r)
d

without explicit attention. Therefore to enable generation

of plausible samples from the randomly drawn prior latent

vectors, a generative adversarial framework is incorporated

simultaneously for both left and right children. In ALI [12]

setting, the loss function involves optimization of the com-

mon encoder along with both the generators in an adversar-

ial fashion; utilizing two separate discriminators, which are

trained to distinguish E(p)(x ∈ D(l)) and E(p)(x ∈ D(r))

from z ∼ P
(l)
z and z ∼ P

(r)
z respectively.

3.4. GAN­Set: Generation and Inference

To utilize a generative model spanning the entire data

distribution Pd, an end-user can select any combination of

nodes from a fully trained GAN-Tree (i.e. GAN-Set) such

that the data distribution they model is exhaustive and mu-

tually exclusive. However, to generate only a subset of the

full data distribution, one may choose a mutually exclusive,

but non-exhaustive set - Partial GAN-Set.

For a use case where extreme preference is given to di-

versity in terms of the number of novel samples over quality

of the generated samples, selecting a singleton set - {root}
would be an apt choice. However, in a contrasting use case,

one may select all the leaf nodes as a Terminal GAN-Set to

have the best quality in the generated samples, albeit losing

the novelty in generated samples. The most practical tasks

will involve use cases where a GAN-Set is constructed as a

combination of both intermediate nodes and leaf nodes.

A GAN-Set can also be used to perform clustering and la-

bel assignment for new data samples in a fully unsupervised

setting. We provide a formal procedure AssignLabel in the

supplementary document for performing the clustering of

the data samples using a GAN-Tree.

How does GAN-Tree differ from previous works?

AdaGAN - Sequential learning approach adopted by [35]

requires a fully-trained model on the previously addressed

mode before addressing the subsequent undiscovered sam-

ples. As it does not enforce any constraints on the amount

of data to be modeled by a single generator network, it

mostly converges to more number of modes than that ac-

tually present in the data. In contrast, GAN-Tree models a

mutually exclusive and exhaustive set at each splitting of a

parent node by simultaneously training child generator net-

works. Another major disadvantage of AdaGAN is that it

highly focuses on quality rather than diversity (caused by

the over-mode division), which inevitably restricts the latent

space interpolation ability of the final generative model.

DMGAN - Khayatkhoei et al. [21] proposed a disconnected

manifold learning generative model using a multi-generator

approach. They proposed to start with an overestimate of

the initial number of mode components, ng , than the actual

number of modes in the data distribution nr. As discussed

before, we do not consider the existence of a definite value

for the number of actual modes nr as considered by DM-

GAN, especially for diverse natural image datasets like CI-

FAR and ImageNet. In a practical scenario, one can not

decide the initial value of ng without any clue on the num-

ber of classes present in the dataset. DMGAN will fail for

cases where ng < nr as discussed by the authors. Also

note that unlike GAN-Tree, DMGAN is not suitable for in-

cremental future expansion. This clearly demonstrates the

superior flexibility of GAN-Tree against DMGAN as a result

of the adopted top-down divisive strategy.

3.5. Incremental GAN-Tree: iGANTree

We advance the idea of GAN-Tree to iGAN-Tree, wherein

we propose a novel mechanism to extend an already trained

GAN-Tree T to also model samples from a set D′ of new

data samples. An outline of the entire procedure is provided

across Algorithms 3 and 4. To understand the mechanism,

we start with the following assumptions from the algorithm.

On termination of this procedure over T , we expect to have

a single leaf node which solely models the distribution of

samples from D′; and other intermediate nodes which are

the ancestors of this new node, should model a mixture dis-

tribution which also includes samples from D′.

To achieve this, we first find out the right level of hi-

erarchy and position to insert this new leaf node using a

seek procedure (lines 2-8 in Algo. 4). Here p
(l)
x (x) =

p
(l)
z (E(l)(x)) and similarly for r, in lines 5-6. Let’s say

the seek procedure stops at node index i. We now introduce

Algorithm 3 Incremental Node Training

1: input: Node Index c, New Data Sample set D′

2: gset = CreateTerminalGanSet(GN par(c))

3: Populate an empty bag Ba of assigned samples with all sam-

ples from D′

4: Generate |D′| · |gset| samples from P(gset)
g and add them to

Ba; assign cluster labels based on the corresponding ancestor

among the child nodes of GN par(c) to L
5: Run Mode Split Procedure on GN (par(c)) training only

E(par(c)) and G(c) over samples from Ba

6: Run BiModalGAN-Training over GN(par(c)) training only

E(par(c)), G(c) and D(c)

7: Re-evaluate π(left(par(c))) and π(right(par(c)))
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Algorithm 4 Incremental GAN-Tree Training

1: input: GAN-Tree T , New Data Sample set D′

2: i← index(root(T ))

3: while i is NOT a leaf node do

4: l← left(i); r ← right(i)

5: if Avg(p
(l)
x (D′)) ≥ p

(l)
z (µ(l) + dσ0) then i← l

6: else if Avg(p
(r)
x (D′)) ≥ p

(r)
z (µ(r) + dσ0) then i← r

7: else break

8: Here, i is the current node index

9: j ← NewId() (new parent index)

10: k ← NewId() (new child index)

11: par(k)← j; par(j)← par(i); par(i)← j

12: if i = index(root(T )) then

13: root(T )← j; left(j)← i; right(j)← k

14: else if i was the left child of its previous parent then

15: left(par(j))← j; left(j)← i; right(j)← k

16: else

17: right(par(j))← j; left(j)← k; right(j)← i

18: Create networks G(k), D(k) with random initialization

19: Train E(j), G(k) and D(k) with Lrecon and Ladv

20: E(par(j)) ← copy(E(par(i)))

21: G(j) ← copy(G(i)); D(j) ← copy(D(i)); i← par(i)

22: while GN(i) is not root(T ) do

23: IncrementalNodeTrain(i); i← par(i)
end while

24: Train GN(i) with GAN Training Procedure on D’ and gener-

ated samples from Terminal GAN-Set.

2 new nodes GN(j) and GN(k) in the tree and perform re-

assignment (lines 11-17 in Algo. 4). The new child node

GN(k) models only the new data samples; and the new par-

ent node GN(j) models a mixture of P
(i)
g and P

(k)
g . This

brings us to the question, how do we learn the new distribu-

tion modeled by GN(par(i)) and its ancestors? To solve this,

we follow a bottom-up training approach from GN(par(i))

to GN(root(T )), incrementally training each node on the

branch with samples from D’ to maintain the hierarchical

property of the GAN-Tree (lines 22-24, Algo. 4).

Now, the problem reduces down to retraining the parent

E(p) and the child G(c) and D(c) networks at each node in

the selected branch, such that (i) E(p) correctly routes the

generated data samples x to the proper child node and (ii)

the samples from D′ are modeled by the new distribution P ′
g

at all the ancestor nodes of GN(k), remembering the sam-

ples from distribution Pg at the same time. Moreover, we

make no assumption of having the data samples D on which

the GAN-Tree was trained previously. To solve the problem

of training the node GN(i′), we make use of terminal GAN-

Set of the sub GAN-Tree rooted at GN(i′) to generate sam-

ples for retraining the node. A thorough procedure of how

each node is trained incrementally is illustrated in Algo. 3.

Also, note that we use the mean likelihood measure to de-

cide which of the two child nodes has the potential to model

GN[0](0)

GN[0](1) GN[0](2)

GN[1](0)

GN[0](1) GN[1](2)

GN[1](n1) GN[0](2)

GN[2](0)

GN[0](1) GN[2](2)

GN[2](n2) GN[1](2)

GN[1](n1) GN[0](2)

GN[2](0)

GN[0](1) GN[2](2)

GN[1](2)

GN[1](n1) GN[0](2)

GN[3](0)

GN[3](n3)

Insert node-n1
at GN[0](2)

Insert node-n2
at GN[1](2)

Insert node-n3
at GN[2](0)

GN[2](n2)

A B

C D

Figure 3: Snapshots of the different versions of incrementally obtained

GAN-Tree. Here A is the pretrained GAN-Tree over which Algo. 4 is run to

obtain B, and subsequently C and D. Each transition highlights the branch

which is updated in gray, with the new child node in red, the new parent

node in orange, while the rest of the nodes stay intact. In B, nodes labeled

with red are the ones which are updated. Similarly, in C and D, the updated

nodes are labeled with green and purple respectively. It is illustrated that

just by incrementally adding a new branch by updating nodes from its pre-

vious version, it exploits the full persistence of the GAN-Tree and provides

all the versions of root nodes - GN[0:4](0).

the new samples. We select the child whose mean vector has

the minimum average Mahalanobis distance (dσ) from the

embeddings of the samples of D’. This idea can also be im-

plemented to have a full persistency over the structure [11]

(further details in Supplementary).

4. Experiments

In this section, we discuss a thorough evaluation of GAN-

Tree against baselines and prior approaches. We decide not

to use any improved learning techniques (as proposed by

SNGAN [27] and SAGAN [36]) for the proposed GAN-

Tree framework to have a fair comparison against the prior

art [21, 13, 18] targeting multi-modal distribution.

GAN-Tree is a multi-generator framework, which can

work on a multitude of basic GAN formalizations (like

AAE [25], ALI [12], RFGAN [3] etc.) at the individual

node level. However, in most of the experiments we use

ALI [12] except for CIFAR, where both ALI [12] and RF-

GAN [3] are used to demonstrate generalizability of GAN-

Tree over varied GAN formalizations. Also note that we

freeze parameter update of lower layers of encoder and dis-

criminator; and higher layers of the generator (close to data

generation layer) in a systematic fashion, as we go deeper

in the GAN-Tree hierarchical separation pipeline. Such a

parameter sharing strategy helps us to remove overfitting at

an individual node level close to the terminal leaf-nodes.

We employ modifications to the commonly used DC-

GAN [30] architecture for generator, discriminator and

encoder networks while working on image datasets i.e.
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Figure 4: Part A: Illustration of the GAN-Tree training procedure over MNIST+Fashion-MNIST dataset. Part B: Effectiveness of our mode-split procedure

(with bagging) against the baseline deep-clustering technique (without bagging) on MNIST root node. Our approach divides the digits into two groups in a

much cleaner way (at iter=11k). Part C: We evaluate the GAN-Tree and iGAN-Tree algorithms against the prior incremental training method AdaGAN [35].

We train up to 13 generators and evaluate their mean JS Divergence score (taken over 5 repetitions). Part D: Incremental GAN-Tree training procedure (i)

Base GAN-Tree, trained over digits 0-4 (ii) GAN-Tree after addition of digit 5, with dσ0 = 4 (iii) GAN-Tree after addition of digit 5, with dσ0 = 9.
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Figure 5: Illustration of the GAN-Tree progression over the toy dataset.

MNIST (32×32), CIFAR-10 (32×32) and Face-Bed

(64×64)). However, unlike in DCGAN, we use batch nor-

malization [20] with Leaky ReLU non-linearity inline with

the prior multi-generator works [18]. While training GAN-

Tree on Imagenet [31], we follow the generator architec-

ture used by SNGAN [27] for a generation resolution of

128×128 with RFGAN [3] formalization. For both mode-

split and BiModal-GAN training we employ Adam opti-

mizer [22] with a learning rate of 0.001.

Effectiveness of the proposed mode-split algorithm. To

verify the effectiveness of the proposed mode-split algo-

rithm, we perform an ablation analysis against a base-

line deep-clustering [34] technique on the 10-class MNIST

dataset. Performance of GAN-Tree highly depends on the

initial binary split performed at the root node, as an error in

cluster assignment at this stage may lead to multiple-modes

for a single image category across both the child tree hier-

archy. Fig. 4B clearly shows the superiority of mode-split

procedure when applied at the MNIST root node.

Evaluation on Toy dataset. We construct a synthetic

dataset by sampling 2D points from a mixture of nine dis-

connected Gaussian distributions with distinct means and

Table 1: Comparison of inter-class variation (JSD) for MNIST (×10
−2)

and Face-Bed (×10
−4); and FID score on Face-Bed inline with [21].

Model #Gen JSD MNIST JSD Face-Bed FID Face-Bed

DMWGAN [21] 20 0.21± 0.05 0.42± 0.23 7.58± 0.10
DMWGAN-PL [21] 20 0.08± 0.03 0.11± 0.06 7.30± 0.12
Ours GAN-Set 5 0.08± 0.02 0.10± 0.06 7.20± 0.11
Ours GAN-Set 10 0.06± 0.02 0.09± 0.04 7.00± 0.10

covariance parameters. The complete GAN-Tree training

procedure over this dataset is illustrated in Fig. 5. As ob-

served, the distribution modeled at each pair of child nodes

validates the mutually exclusive and exhaustive nature of

child nodes for the corresponding parent.

Evaluation on MNIST. We show an extensive compari-

son of GAN-Tree against DMWGAN-PL [21] across vari-

ous qualitative metrics on MNIST dataset. Table 1 shows

the quantitative comparison of inter-class variation against

previous state-of-the-art approaches. It highlights the supe-

riority of the proposed GAN-Tree framework.

Evaluation on compositional-MNIST. As proposed by

Che et al. [7], the compositional-MNIST dataset consists

of 3 random digits at 3 different quadrants of a full 64×64

resolution template, resulting in a data distribution of 1000

unique modes. Following this, a pre-trained MNIST classi-

fier is used for recognizing digits from the generated sam-

ples, to compute the number of modes covered while gen-

erating from all of the 1000 variants. Table 2 highlights the

superiority of GAN-Tree against MAD-GAN [13].

iGAN-Tree on MNIST. We show a qualitative analysis of

the generations of a trained GAN-Tree after incrementally

adding data samples under different settings. We first train a

GAN-Tree for 5 modes on MNIST digits 0-4. We then train

it incrementally with samples of the digit 5 and show how

the modified structure of the GAN-Tree looks like. Fig. 4D

shows a detailed illustration for this experiment.
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Figure 6: Generation results on RGB image datasets A: FaceBed, B: CIFAR-10, C: ImageNet. The root node generations of FaceBed show a few implausible

generations, which are reduced with further splits. The left child of the root node generates faces, while the right child generates beds. Further splitting

the face node, we see that one child node generates images with darker background or darker hair colour, while the other generates images with lighter

background or lighter hair colour. Similar trends are observed in the splits of Bed Node in Part A, and also in child nodes of CIFAR-10 and ImageNet.

Table 2: Comparison of GAN-Tree against state-of-the-art GAN ap-

proaches on compositional-MNIST dataset inline with [13].

Methods KL Div.↓ Modes covered ↑

WGAN [1] 0.25 1000

MAD-GAN [13] 0.074 1000

GAN-Set (root) 0.16 980

GAN-Set (5 G-Nodes) 0.10 1000

GAN-Set (10 G-Nodes) 0.072 1000

GAN-Tree on MNIST+F-MNIST and Face-Bed. We

perform the divisive GAN-Tree training procedure on two

mixed datasets. For MNIST+Fashion-MNIST, we combine

20K images from both the datasets individually. Similarly,

following [21], we combine Face-Bed to demonstrate the

effectiveness of GAN-Tree to model diverse multi-modal

data supported on a disconnected manifold (as highlighted

by Table 1). The hierarchical generations for MNIST+F-

MNIST and the mixed Face-Bed datasets are shown in

Fig. 4A and Fig. 6A respectively.

On CIFAR-10 and ImageNet. In Table 3, we report

the inception score [32] and FID [17] obtained by GAN-

Tree against prior works on both CIFAR-10 and Ima-

geNet dataset. We separately implement the prior multi-

modal approaches, a) GMVAE [9] b) ClusterGAN [28], and

also the prior multi-generator works, a) MADGAN [13]

b) DMWGAN-PL [21] with a fixed number of genera-

tors. Additionally, to demonstrate the generalizability of

the proposed framework with varied GAN formalizations

at the individual node-level, we implement GAN-Tree with

ALI [12], RFGAN [3], and BigGAN [6] as the basic GAN

setup. Note that, we utilize the design characteristics of Big-

GAN without accessing the class-label information, along

with RFGAN’s encoder for both CIFAR-10 and ImageNet.

In Table 3, all the approaches targeting ImageNet dataset

use modified ResNet-50 architecture, where the total num-

ber of parameter varies depending on the number of gen-

erators (considering the hierarchical weight sharing strat-

egy) as reported under the #Param column. While com-

Table 3: Inception (IS) and FID scores on CIFAR-10 and Imagenet dataset

computed on 5K with varied number of generators.

Method #Gen
CIFAR-10 ImageNet

IS ↑ FID ↓ IS ↑ FID ↓ #Param

GMVAE [9] 1 6.89 39.2 - - -

ClusterGAN [28] 1 7.02 37.1 - - -

RFGAN [3] (root-node) 1 6.87 38.0 20.01 46.4 50M

BigGAN (w/o label) 1 7.19 36.7 20.89 42.5 50M

MADGAN [13] 10 7.33 35.1 20.92 38.3 205M

DMWGAN-PL [21] 10 7.41 33.1 21.57 37.8 205M

Ours GAN-Set (ALI) 3 7.42 32.5 - - -

Ours GAN-Set (ALI) 5 7.63 28.2 - - -

Ours GAN-Set (RFGAN) 3 7.60 28.3 21.97 34.0 65M

Ours GAN-Set (RFGAN) 5 7.91 27.8 24.84 29.4 105M

Ours GAN-Set (BigGAN) 3 8.12 25.2 22.38 31.2 130M

Ours GAN-Set (BigGAN) 5 8.60 21.9 25.93 27.1 210M

paring generation performance, one needs access to a se-

lected GAN-Set instead of the entire GAN-Tree. In Ta-

ble 3, the performance of GAN-Set (RFGAN) with 3 gen-

erators (i.e. GAN-Tree with total 5 generators) is superior

to DMWGAN-PL [21] and MADGAN [13], each with 10

generators. This clearly shows the superior computational

efficiency of GAN-Tree against prior multi-generator works.

An exemplar set of generated images with the first root node

split is presented in Fig. 6B and 6C.

5. Conclusion

GAN-Tree is an effective framework to address natural

data distribution without any assumption on the inherent

number of modes in the given data. Its hierarchical tree

structure gives enough flexibility by providing GAN-Sets of

varied quality-vs-diversity trade-off. This also makes GAN-

Tree a suitable candidate for incremental generative model-

ing. Further investigation on the limitations and advantages

of such a framework will be explored in the future.
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