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Abstract

We present a new end-to-end generative adversarial net-

work (GAN) for single image motion deblurring, named

DeblurGAN-v2, which considerably boosts state-of-the-art

deblurring efficiency, quality, and flexibility. DeblurGAN-

v2 is based on a relativistic conditional GAN with a double-

scale discriminator. For the first time, we introduce the

Feature Pyramid Network into deblurring, as a core build-

ing block in the generator of DeblurGAN-v2. It can flexi-

bly work with a wide range of backbones, to navigate the

balance between performance and efficiency. The plug-

in of sophisticated backbones (e.g., Inception-ResNet-v2)

can lead to solid state-of-the-art deblurring. Meanwhile,

with light-weight backbones (e.g., MobileNet and its vari-

ants), DeblurGAN-v2 reaches 10-100 times faster than the

nearest competitors, while maintaining close to state-of-

the-art results, implying the option of real-time video de-

blurring. We demonstrate that DeblurGAN-v2 obtains very

competitive performance on several popular benchmarks,

in terms of deblurring quality (both objective and subjec-

tive), as well as efficiency. Besides, we show the archi-

tecture to be effective for general image restoration tasks

too. Our codes, models and data are available at: https:

//github.com/KupynOrest/DeblurGANv2.

1. Introduction

This paper focuses on the challenging setting of single-

image blind motion deblurring. Motion blurs are commonly

found from photos taken by hand-held cameras, or low-

frame-rate videos containing moving objects. Blurs de-

grade the human perceptual quality, and challenge subse-

quent computer vision analytics. The real-world blurs typi-

cally have unknown and spatially varying blur kernels, and

are further complicated by noise and other artifacts.

The recent prosperity of deep learning has led to sig-

nificant progress in the image restoration field [48, 28].

Specifically, generative adversarial networks (GANs) [9]
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Figure 1: The SSIM-FLOPs trade-off plot on the GoPro

dataset. Compared to three state-of-the-art competitors

(in blue): DeblurGAN [21], DeepDeblur [33] and Scale-

Recurrent Network (SRN) [45], DeblurGAN-v2 models

(with different backbones, in red) are shown to achieve su-

perior or comparable quality, and are much more efficient.

often yield sharper and more plausible textures than clas-

sical feed-forward encoders and witness success in image

super-resolution [23] and in-painting [53]. Recently, [21]

introduced GAN to deblurring by treating it as a special

image-to-image translation task [13]. The proposed model,

called DeblurGAN, was demonstrated to restore perceptu-

ally pleasing and sharp images, from both synthetic and

real-world blurry images. DeblurGAN was also 5 times

faster than its closest competitor as of then [33].

Built on the success of DeblurGAN, this paper aims to

make another substantial push on GAN-based motion de-

blurring. We introduce a new framework to improve over

DeblurGAN, called DeblurGAN-v2 in terms of both de-

blurring performance and inference efficiency, as well as to

enable high flexibility over the quality- efficiency spectrum.

Our innovations are summarized as below1:

1An informal note: we quite like the sense of humor in [38], quoted
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• Framework Level: We construct a new conditional

GAN framework for deblurring. For the generator, we

introduce the Feature Pyramid Network (FPN), which

was originally developed for object detection [27], to

the image restoration task for the first time. For the dis-

criminator, we adopt a relativistic discriminator [16]

with a least-square loss wrapped [30] inside, and with

two columns that evaluate both global (image) and lo-

cal (patch) scales respectively.

• Backbone Level: While the above framework is ag-

nostic to the generator backbones, the choice would

affect deblurring quality and efficiency. To pursue the

state-of-the-art deblurring quality, we plug in a so-

phisticated Inception-ResNet-v2 backbone. To shift

towards being more efficient, we adopt MobileNet,

and further create its variant with depth-wise separa-

ble convolutions (MobileNet-DSC). The latter two be-

come extremely compact in size and fast at inference.

• Experiment Level: We present very extensive ex-

periments on three popular benchmarks to show the

state-of-the-art (or close) performance (PSNR, SSIM,

and perceptual quality) achieved by DeblurGAN-

v2. In terms of the efficiency, DeblurGAN-v2 with

MobileNet-DSC is 11 times faster than DeblurGAN

[21], over 100 times faster than [33, 45], and has a

model size of just 4 MB, implying the possibility of

real-time video deblurring. We also present a subjec-

tive study of the deblurring quality on real blurry im-

ages. Lastly, we show the potential of our models in

general image restoration, as extra flexibility.

2. Related work

2.1. Image Deblurring

Single image motion deblurring is traditionally treated

as a deconvolution problem, and can be tackled in either a

blind or a non-blind manner. The former assumes a given

or pre-estimated blur kernel [39, 52]. The latter is more

realistic yet highly ill-posed. Earlier models rely on nat-

ural image priors to regularize deblurring [20, 36, 25, 5].

However, most handcrafted priors cannot well capture the

complicated blur variations in real images.

Emerging deep learning techniques have boosted the

breakthrough in image restoration tasks. Sun et al. [43] ex-

ploited a convolutional neural network (CNN) for blur ker-

nel estimation. Gong et al. [8] used a fully convolutional

network to estimate the motion flow. Besides those kernel-

based methods, end-to-end kernel-free CNN methods were

as: ”We present some updates to YOLO. We made a bunch of little de-

sign changes to make it better. We also trained this new network that’s

pretty swell.” – that well describes what we have done to DeblurGAN,

too; although we consider DeblurGAN-v2 a non-incremental upgrade of

DeblurGAN, with significant performance & efficiency improvements.

explored to restore a clean image from the blurry input di-

rectly, e.g., [33, 35]. The latest work by Tao et al. [45] ex-

tended the Multi-Scale CNN from [33] to a Scale-Recurrent

CNN for blind image deblurring, with impressive results.

The success of GANs for image restoration has im-

pacted single image deblurring as well since Ramakrish-

nan et al. [37] first solved image deblurring by referring

to the image translation idea [13]. Lately, Kupyn et al. [21]

introduced DeblurGAN that exploited Wasserstein GAN [2]

with the gradient penalty [10] and the perceptual loss [15].

2.2. Generative adversarial networks

A GAN [9] consists of two models: a discriminator D

and a generator G, that form a two-player minimax game.

The generator learns to produce artificial samples and is

trained to fool the discriminator, in a goal to capture the real

data distribution. In particular, as a popular GAN variant,

conditional GANs [31] have been widely applied to image-

to-image translation problems, with image restoration and

enhancement as special cases. They take the label or an ob-

served image in addition to the latent code as inputs.

The minimax game with the value function V (D,G) is

formulated as the following [9] (fake-real labels set to 0−1):

min
G

max
D

V (D,G) = Ex∼pdata(x)

[

logD(x)
]

+ Ez∼pz(z)

[

log(1−D(G(z)))
]

Such an objective function is notoriously hard to optimize,

and one needs to deal with many challenges, e.g., mode col-

lapse and gradient vanishing/explosion, during the training

process. To fix the vanishing gradients and stabilize the

training, Least Squares GANs discriminator [30] tried to

introduce a loss function that provides smoother and non-

saturating gradient. The authors observe that the log-type

loss in [9] saturates quickly as it ignores the distance be-

tween x to the decision boundary. In contrast, an L2 loss

provides gradients proportional to that distance, so that fake

samples more far away from the boundary receive larger

penalties. The proposed loss function also minimizes the

Pearson χ2 divergence that leads to the better training sta-

bility. The LSGAN objective function is written as::

min
D

V (D) =
1

2
Ex∼pdata(x)

[

(D(x)− 1)2
]

+
1

2
Ez∼pz(z)

[

D(G(z))2
]

(1)

min
G

V (G) =
1

2
Ez∼pz(z)

[

(D(G(z))− 1)2
]

Another relevant improvement to GANs is the Relativis-

tic GAN [16]. It used a relativistic discriminator to estimate

the probability that the given real data is more realistic than

a randomly sampled fake data. As the author advocated,

such would account for a priori knowledge that half of the

8879



Figure 2: DeblurGAN-v2 pipeline architecture.

data in the mini-batch is fake. The relativistic discriminators

show more stable and computationally efficient training in

comparison to other GAN types, including WGAN-GP [10]

that was used in DeblurGAN-v1.

3. DeblurGAN-v2 Architecture

The overview of DeblurGAN-v2 architecture is illus-

trated in Figure 2. It restores a sharp image IS from a single

blurred image IB , via the trained generator.

3.1. Feature Pyramid Deblurring

Existing CNNs for image deblurring (and other restora-

tion problems) [23, 33] typically refer to ResNet-like struc-

tures. Most state-of-the-art methods [33, 45] dealt with dif-

ferent levels of blurs, utilizing multi-stream CNNs with an

input image pyramid at different scales. However, process-

ing multiple scale images is time-consuming and memory-

demanding. We introduce the idea of Feature Pyramid Net-

works [27] to image deblurring (more generally, the field of

image restoration and enhancement), for the first time to our

best knowledge. We treat this novel approach as a lighter-

weight alternative to incorporate multi-scale features.

The FPN module was originally designed for object de-

tection [27]. It generates multiple feature map layers which

encode different semantics and contain better quality infor-

mation. FPN comprises a bottom-up and a top-down path-

way. The bottom-up pathway is the usual convolutional net-

work for feature extraction, along which the spatial resolu-

tion is downsampled, but more semantic context informa-

tion is extracted and compressed. Through the top-down

pathway, FPNs reconstructs higher spatial resolution from

the semantically rich layers. The lateral connections be-

tween the bottom-up and top-down pathways supplement

high-resolution details and help localize objects.

Our architecture consists of an FPN backbone from

which we take five final feature maps of different scales as

the output. Those features are later upsampled to the same

1
4 input size and concatenated into one tensor which con-

tains the semantic information on different levels. We addi-

tionally add two upsampling and convolutional layers at the

end of the network to restore the original image size and re-

duce artifacts. Similar to [21, 29], we introduce a direct skip

connection from the input to the output, so that the learning

focuses on the residue. The input images are normalized to

[-1 1]. We also use a tanh activation layer to keep the out-

put in the same range. In addition to the multi-scale feature

aggregation capability, FPN also strikes a balance between

accuracy and speed: please see experiment parts.

3.2. Choice of Backbones: Tradeoff between Per
formance and Efficiency

The new FPN-embeded architecture is agnostic to the

choice of feature extractor backbones. With this plug-and-

play property, we are entitled with the flexibility to navi-

gate through the spectrum of accuracy and efficiency. By

default, we choose ImageNet-pretrained backbones to con-

vey more semantic-related features. As one option, we use

Inception-ResNet-v2 [44] to pursue strong deblurring per-

formance, although we find other backbones such as SE-

ResNeXt [12] to be similarly effective.

The demands of efficient restoration model have recently

drawn increasing attentions due to the prevailing need of

mobile on-device image enhancement [54, 50, 47]. To ex-

plore this direction, we choose the MobileNet V2 backbone

[40] as one option. To reduce the complexity further, we

try another more aggressive option on top of DeblurGAN-

v2 with MobileNet V2, by replacing all normal convolu-

tions in the full network (including those not in backbone)

with Depthwise Separable Convolutions [6]. The resulting

model is denoted as MobileNet-DSC, and can provide ex-

tremely lightweight and efficient image deblurring.

To unleash this important flexibility to practitioners, in

our codes, we have implemented the switch of backbones

as a simple one-line command: it can be compatible with
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many state-of-the-art pre-trained networks.

3.3. DoubleScale RaGANLS Discriminator

Instead of the WGAN-GP discriminator in DeblurGAN

[21], we suggest several upgrades in DeblurGAN-v2. We

first adopt the relativistic “wrapping” [16] on the LSGAN

[30] cost function, creating a new RaGAN-LS loss:

LRaLSGAN
D = Ex∼pdata(x)

[

(D(x)− Ez∼pz(z)D(G(z))− 1)2
]

+ Ez∼pz(z)

[

(D(G(z))− Ex∼pdata(x)D(x) + 1)2
]

(2)

It is observed to make training notably faster and more

stable compared to using the WGAN-GP objective. We

also empirically conclude that the generated results possess

higher perceptual quality and overall sharper outputs. Cor-

respondingly, the adversarial loss Ladv for the DeblurGAN-

v2 generator will be optimizing (2) w.r.t. G.

Extending to Both Global and Local Scales. Isola et

al. [13] propose to use a PatchGAN discriminator which

operates on the images patches of size 70 × 70, that proves

to produce sharper results than the standard “global” dis-

criminator that operates on the full image. The PatchGAN

idea was adopted in DeblurGAN [21].

However, we observed that for highly non-uniform

blurred images, especially when complex object move-

ments are involved, the “global” scales are still essential for

discriminators to incorporate full spatial contexts [14]. To

take advantage of both global and local features, we pro-

pose to use a double-scale discriminator, consisting of one

local branch that operates on patch levels like [13] did, and

the other global branch that feeds the full input image. We

observe that to allow DeblurGAN-v2 to better handle larger

and more heterogeneous real blurs.

Overall Loss Function For training image restoration

GANs, one needs to compare the images on the training

stage the reconstructed and the original ones, under some

metric. One common option is the pixel-space loss LP , e.g.,

the simplest L1 or L2 distance. As [23] suggested, using

Lp tends to yield oversmoothened pixel-space outputs. [21]

proposed to use the perceptual distance [15], as a form of

“content” loss LX . In contrast to the L2, it computes the

Euclidean loss on the VGG19 [41] conv3 3 feature maps.

We incorporate those prior wisdoms and use a hybrid three-

term loss for training DeblurGAN-v2:

LG = 0.5 ∗ Lp + 0.006 ∗ LX + 0.01 ∗ Ladv

The Ladv terms contains both global and local discriminator

losses. Also, we choose mean-square-error (MSE) loss as

Lp: although DeblurGAN did not include an Lp term, we

find it to help correct color and texture distortions.

3.4. Training Datasets

The GoPro dataset [33] uses the GoPro Hero 4 cam-

era to capture 240 frames per second (fps) video sequences,

(a) (b) (c) (d)

Figure 3: Visual comparison of synthesized blurry images,

without interpolation (a,c) and with interpolation (b,d).

and generate blurred images through averaging consecutive

short-exposure frames. It is a common benchmark for im-

age motion blurring, containing 3,214 blurry/clear image

pairs. We follow the same split [33], to use 2,103 pairs for

training and the remaining 1,111 pairs for evaluation.

The DVD dataset [42] collects 71 real-world videos cap-

tured by various devices such as iPhone 6s, GoPro Hero 4

and Nexus 5x, at 240 fps. The author then generated 6708

synthetic blurry and sharp pairs by averaging consecutive

short-exposure frames to approximate a longer exposure

[46]. The dataset was initially used for video deblurring

but was later also brought to the image deblurring field.

The NFS dataset [17] was initially proposed to bench-

mark visual object tracking. It consists of 75 videos cap-

tured with high-frame rate cameras from iPhone 6 and

iPad Pro. Additionally, 25 sequences are collected from

YouTube captured at 240 fps from a variety of different de-

vices. It covers variety of scenes including sport, skydiving,

underwater, wildlife, roadside, and indoor scenes.

Training data preparation: Conventionally, the blurry

frames are averaged from consecutive clean frames. How-

ever, we notice unrealistic ghost effects when observing the

directly averaged frames, as in Figure 3(a)(c). To alleviate

that, we first use a video frame interpolation model [34] to

increase the original 240-fps videos to 3840 fps, then per-

form average pooling over the same time window (but now

with more frames). It leads to smoother and more contin-

uous blurs, as in Figure 3(b)(d). Experimentally, this data

preparation did not noticeably impact PSNR/SSIM but was

observed to improve the visual quality results.

4. Experimental evaluation

4.1. Implementation Details

We implemented all of our models using PyTorch [1].

We compose our training set by selecting each second frame

from the GoPro and DVD datasets, and every tenth frame

from the NFS dataset, with the hope to reduce overfit-

ting to any specific dataset. We then train DeblurGAN-

v2 on the resulting set of approximately 10,000 image
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Table 1: Performance and efficiency comparison on the GoPro test dataset, All models were tested on the linear image subset.

Sun et al. [43] Xu et al. [51] DeepDeblur [33] SRN [45] DeblurGAN [21] Inception-ResNet-v2 MobileNet MobileNet-DSC

PSNR 24.64 25.10 29.23 30.10 28.70 29.55 28.17 28.03

SSIM 0.842 0.890 0.916 0.932 0.927 0.934 0.925 0.922

Time 20 min 13.41s 4.33s 1.6s 0.85s 0.35s 0.06s 0.04s

FLOPS N/A N/A 1760.04G 1434.82G 678.29G 411.34G 43.75G 14.83G

Table 2: PSNR and SSIM comparison on the Kohler dataset.

Method Sun [43] DeepDeblur [33] SRN [45] DeblurGAN [21] Inception-ResNet-v2 MobileNet MobileNet-DSC

PSNR 25.22 26.48 26.75 26.10 26.72 26.36 26.35

SSIM 0.773 0.807 0.837 0.816 0.836 0.820 0.819

pairs. Three backbones are evaluated: Inception-ResNet-

v2, MobileNet, and MobileNet-DSC. The former tar-

gets at high-performance deblurring, while the latter two

are more suited for resource-constrained edge applica-

tions. Specifically, the extremely lightweight DeblurGAN-

v2 (MobileNet-DSC) costs 96% fewer parameters than

DeblurGAN-v2 (Inception-ResNet-v2).

All models were trained on a single Tesla-P100 GPU,

with Adam [18] optimizer and the learning rate of 10−4 for

150 epochs, followed by another 150 epochs with a linear

decay to 10−7. We freeze the pre-trained backbone weights

for 3 epochs, and then we unfreeze all weights and continue

the training. The un-pre-trained parts are initialized with

random Gaussian. The training takes 5 days to converge.

The models are fully convolutional, thus can be applied to

the images of arbitrary size.

4.2. Quantitative Evaluation on GoPro Dataset

We compare our models with a number of state-of-the-

arts: one of is a traditional method by Xu et al. [51], while

the rest are deep learning-based: [43] by Sun et al., Deep-

Deblur [33], SRN [45], and DeblurGAN [21]. We compare

on both standard performance metrics (PSNR, SSIM), and

inference efficiency (averaged running time per image mea-

sured on a single GPU). Results are summarized in Table1.

In terms of PSNR/SSIM, DeblurGAN-v2 (Inception-

ResNet-v2) and SRN are ranked top-2: DeblurGAN-v2

(Inception-ResNet-v2) has slightly lower PSNR, which is

not surprising since it was not trained under pure MSE

loss; but it outperforms SRN in SSIM. However, we are

very encouraged to observe that DeblurGAN-v2 (Inception-

ResNet-v2) takes 78% less inference time than SRN.

Moreover, two of our light-weight models, DeblurGAN-v2

(MobileNet) and DeblurGAN-v2 (MobileNet-DSC), show

SSIMs (0.925 and 0.922) on par with the other two latest

deep deblurring methods, DeblurGAN (0.927) and Deep-

Deblur (0.916), while being up to 100 times faster.

In particular, MobileNet-DSC only costs 0.04s per im-

age, which even enables near real-time video frame de-

blurring, for 25-fps videos. To our best knowledge,

Table 3: Results on DVD dataset

PSNR SSIM Inference Time Resolution

WFA 28.35 N/A N/A N/A

DVD (single) 28.37 0.913 1.0s 960 x 540

DeblurGAN-v2
28.54 0.929 0.06s 1280 x 720

(MobileNet)

DeblurGAN-v2 (MobileNet-DSC) is the only deblurring

method so far that can simultaneously achieve (reasonably)

high performance and that high inference efficiency.

4.3. Quantitative Evaluation on Kohler dataset

The Kohler dataset [19] consists of 4 images, each

blurred with 12 different kernels. It is a standard benchmark

for evaluating blind deblurring algorithms. The dataset was

generated by recording and analyzing real camera motion,

which was then played back on a robot platform such that

a sequence of sharp images was recorded sampling the 6D

camera motion trajectory.

The comparison results are reported in Table 2. Similarly

to GoPro, SRN and DeblurGAN-v2 (Inception-ResNet-

v2) remain to be the best two PSNR/SSIM performers,

but this time SRN is marginally superior in both. How-

ever, please be reminded that, similarly to the GoPro case,

this “almost tie” result was achieved while DeblurGAN-v2

(Inception-ResNet-v2) costs only 1/5 of SRN’s inference

complexity. Moreover, both DeblurGAN-v2 (MobileNet)

and DeblurGAN-v2 (MobileNet-DSC) outperform Deblur-

GAN on the Kohler dataset in both SSIM and PSNR: that is

impressive given the former two’s much lighter weights.

Figure 4 displays visual examples on the Kohler dataset.

DeblurGAN-v2 effectively restores the edges and textures,

without noticeable artifacts. SRN for this specific example

shows some color artifacts when zoomed in.

4.4. Quantitative Evaluation on DVD dataset

We next test DeblurGAN-v2 on the DVD testing set used

in [42], but with a single-frame setting (treating all frames

as individual images) without using multiple frames to-

gether. We compare with two strong video deblurring meth-

8882



Table 4: Average subjective scores of deblurring results on the Lai dataset [22].

Blurry Krishnan et al. [20] Whyte et al. [49] Xu et al. [51] Sun et al. [43] Pan et al. [36]

1 1.08 0.57 0.77 0.64 0.91

DeepDeblur [33] SRN [45] DeblurGAN [21] DeblurGAN-v2 DeblurGAN-v2 DeblurGAN-v2

(Inception-ResNet-v2) (MobileNet) (MobileNet-DSC)

1.08 1.68 1.29 1.74 1.44 1.32

(a) Blurry (b) DeepDeblur [33]

(c) SRN [45] (d) DeblurGAN [21]

(e) DeblurGAN-v2 (f) DeblurGAN-v2

(Inception-ResNet-v2) (MobileNet)

Figure 4: Visual comparison on the Kohler dataset.

ods: WFA [7], and DVD [42], For the latter, we adopt the

authors’ self-reported results when using a single frame as

the model input (denoted as “single”), for a fair compar-

ison. As shown in Table 6, DeblurGAN-v2 (MobileNet)

outperforms WFA and DVD (single), while being at least

17 times faster (DVD was tested on a reduced resolution of

960 × 540, while DeblurGAN-v2 is on 1280 x 720).

While not specifically optimized for video deblurring,

DeblurGAN-v2 shows good potential, and we will extend

it to video deblurring as future work.

4.5. Subjective Evaluation on Lai dataset

The Lai dataset [22] has real-world blurry images of dif-

ferent qualities and resolutions collected in various types of

scenes. Those real images have no clean/sharp counterparts,

making a full-reference quantitative evaluation impossible.

Following [22], we conduct a subjective survey to compare

the deblurring performance on those real images.

We fit a Bradley-Terry model [3] to estimate the sub-

jective score for each method so that they can be ranked,

with the identical routine following the previous benchmark

work [24, 26]. Each blurry image is processed with each of

the following algorithms: Krishnan et al. [20], Whyte et

al. [49], Xu et al. [51], Sun et al. [43], Pan et al. [36],

DeepDeblur [33], SRN [45], DeblurGAN [21]; and the

three DeblurGAN-v2 variants (Inception-ResNet-v2, Mo-

bileNet, MobileNet-DSC). The eleven deblurring results,

together with the original blurry image, are sent for pair-

wise comparison to construct the winning matrix. We col-

lect the pair comparison results from 22 human raters. We

observed good consensus and small inter-person variances

among raters, which makes scores reliable.

The subjective scores are reported in Table 4. We did

not normalize the scores due to the absence of ground-

truth: as a result, it is the score rank rather than the ab-

solute score value that matters here. It can be observed

that deep learning-based deblurring algorithms, in general,

have more favorable visual results than traditional methods

(some even making visual quality worse than the blurry

input). DeblurGAN [21] outperforms DeepDeblur [33],

but lags behind SRN [45]. With the Inception-ResNet-

v2 backbone, DeblurGAN-v2 demonstrates clearly superior

perceptual quality over SRN, making it the top performer

in terms of subjective quality. DeblurGAN-v2 with Mo-

bileNet and MobileNet-DSC backbones have minor perfor-

mance degradations compared to the Inception-ResNet-v2
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(a) Blurred photo (b) Whyte et al. [49] (c) Krishnan et al. [20] (d) Sun et al. [43]

(e) Xu et al. [51] (f) Pan et al. [36] (g) DeepDeblur [33] (h) SRN [45]

(i) DeblurGAN [21] (j) DeblurGAN-v2

(Inception-ResNet-v2)
[Best visual quality]

(k) DeblurGAN-v2

(MobileNet)
[High efficiency]

(l) DeblurGAN-v2

(MobileNet-DSC)
[Highest efficiency]

Figure 5: Qualitative comparison on the “face2” test image of the Lai dataset [22]. DeblurGAN-v2 models are artifact-free,

in contrast to other neural and non-CNN algorithms, producing smoother and visually more pleasing results.

version. However, both are still preferred by subjective

raters, compared to DeepDeblur and DeblurGAN, while be-

ing 2-3 orders-of-magnitude faster.

Figure 5 displays visual comparison examples on deblur-

ring the “face2” image. DeblurGAN-v2 (Inception-ResNet-

v2) (5j) and SRN (5h) are the top-2 most favored results,

both balancing well between edge-sharpness and overall

smoothness. By zooming in, SRN is found to still gener-

ate some ghost artifacts on this example, e.g., the white “in-

trusion” from the collar to the bottom right face region. In
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(a) Degraded photo (b) DeblurGAN (c) DeblurGAN-v2
(Inception-ResNet-v2)

(d) Clean photo

Figure 6: Visual comparison example on the Restore Dataset.

comparison, DeblurGAN-v2 (Inception-ResNet-v2) shows

artifact-free deblurring. Besides, DeblurGAN-v2 (Mo-

bileNet) and DeblurGAN-v2 (MobileNet-DSC) results are

also smooth and visually better than DeblurGAN, though

less sharper than DeblurGAN-v2 (Inception-ResNet-v2).

4.6. Ablation Study and Analysis

We perform an ablation study on the effect of specific

components of the DeblurGAN-v2 pipeline. Starting from

the original DeblurGAN (ResNet G, local-scale patch D,

WGAN-GP + perceptual loss), we gradually inject our

modifications on the generator (adding FPN), discrimina-

tor (adding global-scale), and the loss (replacing WGAN-

GP loss with RaGAN-LS, and adding an MSE term). The

results are summarized in Table 6. We can see that all

our proposed components steadily improve both PSNR and

SSIM. In particular, the FPN module contributes most sig-

nificantly. Also, adding either MSE or perceptual loss ben-

efits both training stability and final results.

Table 5: Ablation Study on the GoPro dataset, based on

DeblurGAN-v2 (Inception-ResNet-v2).

PSNR SSIM

DeblurGAN (starting point) 28.70 0.927

+ FPN 29.26 0.931

+ FPN + Global D 29.29 0.932

+ FPN + Global D + RaGAN-LS 29.37 0.933

DeblurGAN-v2 (FPN + Global D +

RaGAN-LS + MSE Loss) 29.55 0.934

Removing perceptual loss

(replace 0.5 with 0 in LG) 28.81 0.924

As an extra baseline for the efficiency of FPN, we tried to

create a “compact” version of SRN, with roughly the same

FLOPs (456 GFLOPs) to match DeblurGAN-v2 Inception-

ResNet-v2 (411 GFLOPs). We reduced the numbers of

ResBlocks by 2/3 in each EBlock/DBlock while keeping

their 3-scale recurrent structure. We then compare with

DeblurGAN-v2 (Inception-ResNet-v2) on GoPro, where

that “compact” SRN only achieved PSNR = 28.92 dB and

SSIM = 0.9324. We also tried channel pruning [11] to re-

duce SRN FLOPs and the result was no better.

Table 6: PSNR/SSIM comparison on Restore Dataset.

PSNR SSIM

Degraded 22.056 0.873

DeblurGAN 26.435 0.892

DeblurGAN-v2 (Inception-ResNet-v2) 26.916 0.894

DeblurGAN-v2 (MobileNet-DSC) 25.412 0.891

4.7. Extension to General Restoration

Real-world natural images commonly go through multi-

ple kinds of degradations (noise, blur, compression, etc.)

at once, and a few recent works were devoted to such

join enhancement tasks [32, 55] We study the effect of

DeblurGAN-v2 on the task of general image restoration.

While NOT being the main focus of this paper, we intend

to show the general architecture superiority of DeblurGAN-

v2, especially for modifications made w.r.t. DeblurGAN.

We synthesize a new challenging Restore Dataset. We

take 600 images from GoPro, and 600 images from DVD,

both with motion blurs already (same as above). We then

use the albumentations library [4] to further add Gaus-

sian and speckle Noise, JPEG compression, and up-scaling

artifacts to those images. Eventually, we split 8000 im-

ages for training and 1200 for testing. We train and com-

pare DeblurGAN-v2 (Inception-ResNet-v2), DeblurGAN-

v2 (MobileNet-DSC), and DeblurGAN. As shown in Ta-

ble 6 and Fig. 6, DeblurGAN-v2 (Inception-ResNet-v2)

achieves the best PSNR, SSIM, and visual quality.

5. Conclusion

This paper introduces DeblurGAN-v2, a powerful and

efficient image deblurring framework, with promising

quantitative and qualitative results. DeblurGAN-v2 enables

to switch between different backbones, for flexible trade-

offs between performance and efficiency. We plan to ex-

tend DeblurGAN-v2 for real-time video enhancement, and

for better handling mixed degradations.

Acknowledgements: O. Kupyn was supported by Soft-

Serve, T. Martyniuk - by Let’s Enhance and Eleks. J. Wu

and Z. Wang were supported by NSF Award RI-1755701.

The authors thank Arseny Kravchenko, Andrey Luzan and

Yifan Jiang for constructive discussions, and Igor Krashenyi

and Oles Dobosevych for computational resources.

8885



References

[1] PyTorch. http://pytorch.org.

[2] Martin Arjovsky, Soumith Chintala, and Léon Bottou.

Wasserstein gan. arXiv preprint arXiv:1701.07875, 2017.

[3] Ralph Allan Bradley and Milton E Terry. Rank analysis of

incomplete block designs: I. the method of paired compar-

isons. Biometrika, 39(3/4):324–345, 1952.

[4] Alexander Buslaev, Alex Parinov, Eugene Khvedchenya,

Vladimir I Iglovikov, and Alexandr A Kalinin. Albumenta-

tions: fast and flexible image augmentations. arXiv preprint

arXiv:1809.06839, 2018.

[5] Chia-Feng Chang and Jiunn-Lin Wu. A new single image

deblurring algorithm using hyper laplacian priors. In ICS,

pages 1015–1022, 2014.

[6] François Chollet. Xception: Deep learning with depthwise

separable convolutions. In Proceedings of the IEEE con-

ference on computer vision and pattern recognition, pages

1251–1258, 2017.

[7] Mauricio Delbracio and Guillermo Sapiro. Burst deblurring:

Removing camera shake through fourier burst accumulation.

In Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition, pages 2385–2393, 2015.

[8] Dong Gong, Jie Yang, Lingqiao Liu, Yanning Zhang, Ian

Reid, Chunhua Shen, Anton Van Den Hengel, and Qinfeng

Shi. From Motion Blur to Motion Flow: a Deep Learning

Solution for Removing Heterogeneous Motion Blur. 2016.

[9] Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing

Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and

Yoshua Bengio. Generative Adversarial Networks. June

2014.

[10] Ishaan Gulrajani, Faruk Ahmed, Martin Arjovsky, Vincent

Dumoulin, and Aaron C Courville. Improved training of

wasserstein gans. In Advances in neural information pro-

cessing systems, pages 5767–5777, 2017.

[11] Yihui He, Xiangyu Zhang, and Jian Sun. Channel pruning

for accelerating very deep neural networks. In Proceedings

of the IEEE International Conference on Computer Vision,

pages 1389–1397, 2017.

[12] Jie Hu, Li Shen, and Gang Sun. Squeeze-and-excitation net-

works. In Proceedings of the IEEE conference on computer

vision and pattern recognition, pages 7132–7141, 2018.

[13] Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A

Efros. Image-to-image translation with conditional adver-

sarial networks. arxiv, 2016.

[14] Yifan Jiang, Xinyu Gong, Ding Liu, Yu Cheng, Chen Fang,

Xiaohui Shen, Jianchao Yang, Pan Zhou, and Zhangyang

Wang. Enlightengan: Deep light enhancement without

paired supervision. arXiv preprint arXiv:1906.06972, 2019.

[15] Justin Johnson, Alexandre Alahi, and Li Fei-Fei. Perceptual

losses for real-time style transfer and super-resolution. In

European Conference on Computer Vision, 2016.

[16] Alexia Jolicoeur-Martineau. The relativistic discriminator:

a key element missing from standard gan. arXiv preprint

arXiv:1807.00734, 2018.

[17] Hamed Kiani Galoogahi, Ashton Fagg, Chen Huang, Deva

Ramanan, and Simon Lucey. Need for speed: A benchmark

for higher frame rate object tracking. In Proceedings of the

IEEE International Conference on Computer Vision, pages

1125–1134, 2017.

[18] Diederik P. Kingma and Jimmy Ba. Adam: A method for

stochastic optimization. CoRR, abs/1412.6980, 2014.
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