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Abstract

We propose a novel method for instance label segmenta-

tion of dense 3D voxel grids1. We target volumetric scene

representations, which have been acquired with depth sen-

sors or multi-view stereo methods and which have been pro-

cessed with semantic 3D reconstruction or scene comple-

tion methods. The main task is to learn shape information

about individual object instances in order to accurately sep-

arate them, including connected and incompletely scanned

objects. We solve the 3D instance-labeling problem with a

multi-task learning strategy. The first goal is to learn an

abstract feature embedding, which groups voxels with the

same instance label close to each other while separating

clusters with different instance labels from each other. The

second goal is to learn instance information by densely es-

timating directional information of the instance’s center of

mass for each voxel. This is particularly useful to find in-

stance boundaries in the clustering post-processing step, as

well as, for scoring the segmentation quality for the first

goal. Both synthetic and real-world experiments demon-

strate the viability and merits of our approach. In fact, it

achieves state-of-the-art performance on the ScanNet 3D

instance segmentation benchmark [5].

1. Introduction

A central goal of computer vision research is high-level

scene understanding. Recent methodological progress for

2D images makes reliable results possible for a variety

of computer vision problems, including image classifica-

tion [24, 44, 48], image segmentation [1, 32, 42], object de-

tection [30, 39, 41] and instance segmentation in 2D im-

ages [9, 18, 37]. Furthermore, it is now possible to recover

highly-detailed 3D geometry with low-cost depth sensors

[20,35,47,55] or with image-based 3D reconstruction algo-

rithms [12, 22, 43]. Combining both these concepts, many

algorithms have been developed for 3D scene and object

classification [33, 45, 51], 3D object detection [26, 52], and

joint 3D reconstruction and semantic labeling [4,6,7,25,49].

1https://sites.google.com/view/3d-instance-mtml
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Figure 1. Sample results of our method. Our proposed method

takes as input a 3D point cloud, and outputs instance labels unique

to each object within the scene. The labels are generated by learn-

ing a metric that groups parts of the same object instance and esti-

mates the direction towards the instance’s center of mass.

Advances in 2D instance segmentation were mainly fu-

eled by the large number of datasets and challenges avail-

able in the 2D realm. When compared to the plethora of

powerful methods for instance segmentation of 2D images,

the 3D counterpart problem has been less explored in the

literature. In addition to the lack of datasets, the majority

of 2D methods are not applicable to the 3D setting or their

extension is by no means straightforward.

With the emergence of labeled datasets and benchmarks

for the task of 3D instance segmentation (e.g. ScanNet [5]),

numerous works have surfaced to tackle this task. In many

cases, the work in 3D benefits from pioneering work in 2D,

with modifications that allow processing of 3D input data.

As such, this 3D processing tends to be similar to other 3D

understanding techniques, mainly semantic segmentation.

In this paper, we address the problem of 3D instance seg-

mentation. Given the 3D geometry of a scene, we want

to label all the geometry that belongs to the same object

with a unique label. Unlike previous methods that entan-

gle instance labeling with semantic labeling, we propose a

technique that mainly focuses on instance labeling through
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grouping/clustering of information pertaining to a single

object. Our method still benefits from semantic information

as a local cue, but adds to it information related to 3D di-

mensions and 3D connectivity, whose usefulness is unique

to the 3D setting.

In particular, we propose a learning algorithm that pro-

cesses a 3D voxel grid and learns two main characteristics:

(1) a feature descriptor unique to every instance, and (2) a

direction that would point towards the instance center. Our

method aims to provide a grouping force that is independent

of the size of the scene and the number of instances within.

Contributions. Our contributions are two fold. (i) We pro-

pose a multi-task neural network architecture for 3D in-

stance segmentation of voxel-based scene representations.

In addition to a metric learning task, we task our network

to predict directional information to the object’s center. We

demonstrate that the multi-task learning improves the re-

sults for both tasks. Our approach is robust and scalable,

therefore suitable for processing large amounts of 3D data.

(ii) Our experiments demonstrate state-of-the-art perfor-

mance for 3D instance segmentation. At the time of submis-

sion, our method ranks first in terms of average AP50 score

on the ScanNet 3D instance segmentation benchmark [5].

2. Related Work

This section gives a brief overview of related 2D and 3D

approaches. It is worthwhile to note that a large amount

of related work exists for 2D deep learning-based seman-

tic segmentation and instance label segmentation. Recent

surveys can be found in [13, 16].

2D Instance Segmentation via Object Proposals or De-

tection. Girshick [14] proposed a network architecture that

creates region proposals as candidate object segments. In a

series of followup work, this idea has been extended to be

faster [41] and to additionally output pixel-accurate masks

for instance segmentation [18]. The authors of YOLO [39]

and its follow-up work [40] apply a grid-based approach, in

which each grid cell generates an object proposal. Deep-

Mask [37] learns to jointly estimate an object proposal and

an object score. Lin et al. [30] propose a multi-resolution

approach for object detection, which they call feature pyra-

mid networks. In [17], the region proposals are refined with

a network that predicts the distance to the boundary which

is then transformed into a binary object mask. Khoreva et

al. [21] jointly perform instance and semantic segmenta-

tion. A similar path follows [27], which combines fully

convolutional networks for semantic segmentation with in-

stance mask proposals. Dai et al. [9] use fully convolutional

networks (FCNs) and split the problem into bounding box

estimation, mask estimation, and object categorization and

propose a multi-task cascaded network architecture. In a

follow-up work [8], they combine FCNs with windowed

instance-sensitive score maps.

While all these approaches have been very successful in

the 2D domain, many of them require large amounts of re-

sources and their extension to the 3D domain is non-trivial

and challenging.

2D Instance Segmentation via Metric Learning.

Liang et al. [28] propose a method without object proposals

as they directly estimate bounding box coordinates and

confidences in combination with clustering as a post-

processing step. Fathi et al. [10] compute likelihoods of

pixels to belong to the same object by grouping similar

pixels together within an embedding space. Bai and Urta-

sun [2] learn an energy map of the image in which object

instances can be easily predicted. Novotny et al. [36] learn

a position sensitive metric (semi-convolution embedding)

to better distinguish between identical copies of the same

object. Kong and Fowlkes [23] train a network that assigns

all pixels to a spherical embedding, in which points of the

same object instance are within a close vicinity and non-

instance related points are placed apart from each other.

The instances are then extracted via a variant of mean-shift

clustering [11] that is implemented as a recurrent network.

The approach by DeBrabandere et al. [3] follows the same

idea, but the authors do not impose constraints on the shape

of the embedding space. Likewise, they compute the final

segmentation via mean-shift clustering in the feature space.

None of these approaches has been applied to a 3D set-

ting. Our approach builds upon the work of DeBraban-

dere et al. [3]. We extend this method with a multi-task ap-

proach for 3D instance segmentation on dense voxel grids.

3D Instance Segmentation. Wang et al. [50] propose

SGPN, an instance segmentation for 3D point clouds. In

the first step, they extract features with PointNet [38] and

subsequently build a similarity matrix, in which each ele-

ment classifies whether two points belong to the same ob-

ject instance. The approach is not very scalable and limited

to small point cloud sizes, since the size of the similarity

matrix is squared the number of points in the point cloud.

Moreover, there is a number of recent concurrent or unpub-

lished works that address 3D instance segmentation. The

GSPN method [54] proposes a generative shape proposal

network, which relies on object proposals to identify in-

stances in 3D point clouds. The 3D-SIS approach [19] com-

bines 2D and 3D features aggregated from multiple RGB-D

input views. MASC [31] relies on the superior performance

of the SparseConvNet [15] architecture and combines it

with an instance affinity score that is estimated across mul-

tiple scales. PanopticFusion [34] predicts pixel-wise labels

for RGB frames and carries them over into a 3D grid, where

a fully connected CRF is used for final inference.

Apart from these recent concurrent works, there has gen-

erally been sparse research on 3D instance segmentation.
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Figure 2. Overview of our network architecture. We cast 3D instance segmentation as a multi-task learning problem. The input to our

method is a voxel grid and the output are two latent spaces: 1) a feature vector embedding that groups voxels with similar instance label

close in the latent space; 2) a 3D latent space that encodes directional predictions for each voxel. The inputs and outputs of our network

are visualized and explained in Fig. 3. The parameters in the figure correspond to (number of filters, kernel size, stride, dilation).

3. Method Overview

In this work, we aim at segmenting 3D instances within

a given 3D scene. To fully locate a 3D instance, one would

require both a semantic label and an instance label. Rather

than solving the complex task of scene completion, seman-

tic labeling and instance segmentation at once, we model

our 3D instance segmentation process as a post-processing

step for semantic segmentation labeling. We focus on the

grouping and splitting of semantic labels, relying on inter-

instance and intra-instance relations. We benefit from the

real distances in 3D scenes, where sizes and distances be-

tween objects are key to the final instance segmentation.

We split our task into a label segmentation then instance

segmentation problem, as we believe that features learned

in each step possess task-specific information. Semantic

segmentation on one hand can rely on local information

to predict the class label. Learning to semantically label a

volumetric representation inherently encodes features from

neighboring volumes but does not require knowledge of the

whole environment. On the other hand, instance segmenta-

tion requires a holistic understanding of the scene in order

to join or separate semantically labeled volumes.

Problem Setting. Our method’s input is a voxelized 3D

space with each voxel encoding either a semantic label or

a local feature vector learned through semantic labeling. In

this paper, we use the semantic labeling network in [15]. We

fix the voxel size to preserve 3D distances among all voxels

within a scene. In problem settings where point clouds or

meshes are available, one could generate a 3D voxelization

by grouping information from points within every voxel.

Our method then processes the voxelized 3D space and out-

puts instance label masks, each corresponding to a single

object in the scene, along with its semantic label. The out-

put mask can also be reprojected back into a point cloud by

assigning the voxel label to all points within it.

3.1. Network Architecture

In order to process the 3D input, we utilize a 3D con-

volution network, which is based on the SSCNet architec-

ture [46]. We apply some changes to the original SSCNet

network to better suit our task. As shown in Figure 2, the

network input and output are equally sized. Since the pool-

ing layer scales down the scene size, we use a transpose

of convolution (also referred to as deconvolution [56]) to

upsample back into the original size. We also use larger

dilations for diluted 3D convolution layers to increase the

receptive field. We make the receptive field large enough to

access all the voxels of usual indoor rooms. With a voxel

size of 10cm, our receptive field is as large as 14.2m. With

larger scenes, our 3D convolution network would still be ap-

plicable to the whole scene, while preserving the filter and

voxel sizes, and thus preserving the real distances. Objects

lying at distances larger than the receptive field are sepa-

rated by default.

3.2. Multi­task Loss Function

In order to group voxels of the same instance, we aim to

learn two types of feature embedding. The first type maps

every voxel into a feature space, where voxels of the same

instance are closer to each other than voxels belonging to

different instances. This is similar to the work of DeBra-

bandere et al. [3], but applied in a 3D setting. The sec-

ond type of feature embedding assigns a 3D vector to every

voxel, where the vector would point towards the physical

center of the object it belongs to. This enables the learn-

ing of shape containment and removes ambiguities among

similar shapes.

In order to learn both feature embeddings, we introduce

a multi-task loss function that is minimized during training.

The first part of the loss encourages discrimination in the

feature space among multiple instances, while the second

part penalizes angular deviations of vectors from the desired

direction.
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Figure 3. Embedding space visualization. Voxels with similar instance labels in the world space (left) are mapped: (1) to similar locations

in the feature embedding space such that the instances form clusters (middle) and (2) to directional vectors pointing to the object center

(right). The red arrows depict inter-class push forces among cluster centers, while the grey arrows indicate intra-class pull forces of

between points and cluster centers. The other colors differentiate voxels or features of different object instances.

Feature Embedding Loss. We follow the work of DeBra-

bandere et al. [3], which learns a feature embedding that

can be subsequently clustered. Thus, we define the fea-

ture embedding loss as a weighted sum of three terms: (1)

an intra-cluster variance term Lvar that pulls features that

should belong to the same instance towards the mean fea-

ture, (2) an inter-cluster distance term Ldist that encourages

clusters with different instance labels to be pushed apart,

and (3) a regularization term Lreg that pulls all features to-

wards the origin in order to bound the activations.

LFE = γvarLvar + γdistLdist + γregLreg (1)

The individual loss functions are weighted by γvar = γdist =
1, γreg = 0.001 and are defined similar to [3] as follows:

Lvar =
1

C

C
∑

c=1

1

Nc

Nc
∑

i=1

[‖µc − xi‖ − δvar]
2

+
(2)

Ldist =
1

C(C − 1)

C
∑

cA=1

C
∑

cB=1

cB 6=cA

[

2δdist − ‖µcA
− µcB

‖
]2

+

(3)

Lreg =
1

C

C
∑

c=1

‖µc‖ (4)

Here C is the number of ground truth clusters, Nc denotes

the number of elements in cluster c, µc is the cluster center,

i.e. the mean of the elements in cluster c, and xi is a fea-

ture vector. Further, the norm ‖ · ‖ denotes the ℓ2-norm and

[x]+ = max(0, x) the hinge. The parameter δvar describes

the maximum allowed distance between a feature vector xi

and the cluster center µc in order to belong to cluster c.

Likewise, 2δdist is the minimum distance that different clus-

ter centers should have in order to avoid overlap. A visual-

ization of the forces and the embedding spaces can be found

in Figure 3. Feature embeddings of different clusters exert

forces on each other, i.e. each feature embedding is affected

by the number and location of other cluster centers. This

connection might be disadvantageous in some cases, espe-

cially when a large number of instances exist in a single

scene. Therefore, we propose next an additional loss that

provides local information essential for instance separation

without being affected by other instances.

Directional Loss. We here aim to generate a vector fea-

ture that would locally describe the intra-cluster relationship

without being affected by other clusters. We choose the vec-

tor to be the one pointing towards the ground truth center of

the object. To learn this vector feature, we attend to the

following directional loss:

Ldir = −
1

C

C
∑

c=1

1

Nc

Nc
∑

i=1

v
⊤
i v

GT

i with v
GT

i =
zi − zc

‖zi − zc‖

(5)

Here, vi denotes the normalized directional vector fea-

ture, vGT
i

is the desired direction which points towards the

object center, zi is the voxel center location, and zc is the

object center location.

Joint Loss. We jointly minimize both the feature embed-

ding loss and the directional loss during training. Our final

joint loss reads as:

Ljoint = αFELFE + αdirLdir (6)

We use αFE = 0.5 and αdir = 1.

Post-processing. We apply mean-shift clustering [11] on

the feature embedding. Similar to object detection algo-

rithms, instance segmentation does not restrict the labeling

to one coherent set, and thus allows overlap between mul-

tiple objects. We use the mean-shift clustering output with

multiple thresholds as proposals that are scored according to
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their direction feature consistency. We also use connected

components for suggested splitting that would further be

scored by the coherency of its feature embeddings. The co-

herency of the feature embedding is described by the num-

ber of feature embeddings that lie within a given threshold

from the feature cluster center. The directional feature co-

herency score is simply Ldir, which is the average cosine

similarity between the normalized vector pointing from the

voxel to the center of the object and the predicted normal-

ized direction feature. We then sort all object proposals and

perform non-maximum suppression (NMS) to remove ob-

jects that overlap by more than a threshold. The final score

is obtained by appending both feature embedding scores

with a score that encourages objects of regular sizes over

extremely large or small objects. As for the semantic label,

it is chosen to be the most occurring label among all points

within the clustered voxels.

3.3. Network Training

Training Data. During training, we append flips of vox-

elized scenes as well as multiple orientations around the

vertical axis to our training data. We pretrain our network

using ground truth segmentation labels as input, with labels

one-hot encoded to maintain the same sized input as train-

ing using the semantic segmentation output.

4. Results and Evaluation

Setup. Our network was implemented in Tensorflow and

run with an Nvidia GTX1080Ti GPU. For the network train-

ing, we use the ADAM optimizer and a learning rate of

5e−4 and batch size of 2. The training converged after

about 100 epochs and took about 2 days. The inference time

for our network is about 1s for scene sizes of 1.6M voxels.

Datasets. For experimental evaluation, we trained and

tested our method on the following datasets that include real

and synthetic data.

• Synthetic Toy Dataset: In order to validate our ap-

proach, we create a synthetic dataset with objects of dif-

ferent sizes and aspect ratios placed on a planar surface.

We introduce 5 object shapes, where each shape is analo-

gous to an object class in the real data. The shapes of the

objects considered are shown in Figure 4. We then ran-

domly orient and position objects on the surface plane,

and randomly choose whether an object is in contact with

another object. We generate 1000 scene, and split our

dataset into 900 training scenes, and 100 testing scenes.

• ScanNet [5]: We conduct experiments on the ScanNet

v2 dataset, which contains 1513 scans with 3D instance

annotations. The training set contains 1201 scans, and

the remaining 312 scans are used for validation. An ad-

ditional 100 unlabeled scans form an evaluation test set.

Figure 4. Overview of the synthetic toy dataset. Left: We con-

sider 5 different object classes represented by cubes with various

edge lengths. Middle: Example scene with object colors show-

ing the class labels. Right: Corresponding ground truth instance

labeling (randomly chosen color per instance).

Evaluation metrics. Following the evaluation procedure

adopted in most instance segmentation methods as well as

the ScanNet evaluation benchmark, we use the average pre-

cision metric (AP) score to evaluate our proposed algo-

rithm. We use the AP25 and AP50 metrics, which denote

the AP score with a minimum intersection-over-union (IoU)

threshold of 25% and 50%, respectively. The AP score aver-

ages scores obtained with IoU thresholds ranging from 50%

to 95% with a step of 5%.

Baselines. To assess the performance of our method, we

consider the following baseline methods:

• Input Segmentation: In this case, we assume that the

segmentation label, which is input to our method, to be

the desired instance segmentation label. If every scene

contains a single instance of every semantic label, this

baseline would be ideal. In reality, these scenes barely

occur, but such a metric would still serve as an inception

to whether splitting and/or grouping voxels is reasonable.

• Connected Components: Given the ground truth seg-

mentation labels, a connected components algorithm

tends to correctly label all instances that are not touch-

ing. Since this happens seldom in a 3D setting, this is

usually a high-scoring and challenging baseline.

• We further compare against submissions to the Scan-

Net benchmark, specifically MaskRCNN proj [18],

SGPN [38], GSPN [54], 3D-SIS [19], Occipital-SCS,

MASC [31], PanopticFusion [34], and 3D-BoNet [53].

4.1. Evaluation on Synthetic 3D Data

We evaluate our method on the simple toy dataset, and

report AP50 score for all objects in Table 1. In this part, we

allow only one coherent labeling. Note that the directional

loss alone is not discriminative enough for subsequent clus-

tering and is thus not considered in the ablation study. Gen-

erating object proposals from directional information only

is tedious, since it is noisy and the clustering problem is

much more difficult and less efficient. Therefore, we do not

evaluate the directional prediction alone, but instead, we re-

sort to using object proposals from mean shift clustering

and using the directional information for scoring them.
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Method Obj1 Obj2 Obj3 Obj4 Obj5

Connected comp. 92.5 85.1 86.9 93.5 79.9

Ours (FE only) 97.3 92.7 95.0 96.4 95.2

Ours (Multi-task) 98.0 93.5 96.1 96.6 95.3

Table 1. AP50 results on synthetic toy dataset. On this dataset

with 5 objects, our approach with multi-task learning as well as the

baseline with only feature embedding (FE) outperform the con-

nected components baseline, even though it uses the ground truth

semantic labels. The difference between FE only and Multi-task is

small in a noise-free setting.

Input Scenes with Semantic Labels Output Scenes with Instance Labels

Figure 5. Experiment on synthetic toy dataset. Two examples of

random scenes for which our network generated instance labels.

The goal of the simple toy problem in Figure 5 is to

study whether the network can abstract and differentiate

various object sizes although their shapes are rather simi-

lar. Furthermore, it is interesting to see how our method

performs when object instances are spatially touching, es-

pecially when they belong to the same semantic class. Al-

though the input features are very similar (due to the same

object class and the spatial proximity), our network is able

to successfully place the corresponding feature vectors in

different locations in the feature space.

4.2. Evaluation on Real 3D Data

Feature Space Study. Minimizing the feature loss in

Eq. (1) works toward two tasks: pulling points belonging to

the same instance together and pushing clusters of different

instances apart. Since real data contains noise, outliers, and

missing data, the mapping of individual points in the fea-

ture space might be less discriminative and clusters might

be overlapping. In Figure 6, we visualize the 3D feature

space in order to study these effects and observe that fea-

ture points of the same instance do indeed spread towards

neighboring clusters. But for this example, the feature clus-

tering results are not influenced and still achieve high ac-

curacy. Note that we exclude ground and wall labels since

their instance segmentation and splitting is less meaningful

and is also ignored in the benchmark.

Evaluation on ScanNet Output. In Figure 7, we present

qualitative results on the ScanNet dataset [5]. The results

of our method on the voxel grid are simply projected onto

the mesh which is then used for evaluation on the bench-

mark. As can be seen in the rightmost column, our method

sometimes splits objects like ‘desk’ or the labels of ‘furni-

ture’ bleed into neighboring geometry. Due to our mostly

geometric approach, our method needs structural changes

to recognize object boundaries and to potentially relabel a

new instance. Nonetheless, our proposed method was able

to group single object instances together in most cases.

In Table 2, we provide an ablation study and include

comparisons against simple baselines. The first baseline

uses the input segmentation labels (SparseConvNet [15])

as instance labels. Furthermore, we evaluate a simple con-

nected component labeling method on the segmentation la-

beling, because in the 3D setting in general, and consider-

ing the given datasets, very few object instances are touch-

ing each other. Hence, this connected component baseline

is already a challenging one especially for a rather noise

free geometry and labeling. It is clear that this method

tends to substantially improve the instance labeling results.

With increasing amounts of noise connected component la-

beling rapidly performs worse. In rare cases, the results

of this method get worse, which is due to the fact that the

scenes are not completely scanned and a single object in-

stance might be disconnected due to missing scene parts.

Ablation Study: Single-task vs. Multi-task. We com-

pare our network with single-task learning to that of multi-

task learning. The six rightmost columns in Table 2 show

the results of single-task learning and multi-task learning.

With very few exceptions, the network trained with a multi-

task loss consistently outperforms the single-task one. This

is in line with the results on the synthetic dataset and sup-

ports our hypothesis that the directional loss adds more dis-

criminative features, which are helpful to group the features

according to object instances in the feature space. For ob-

jects that rarely have multiple instances within a scene, such

as the ‘counter’ class, the segmentation as instance outper-

forms our method. Since this occurrence is uncommon, its

effect on the overall average evaluation is negligible.

Table 3 provides an overview of our benchmark results

on the ScanNet test dataset (with held out ground truth).

One can see that our method outperforms the others in AP50

score. Other methods include those that process all RGB-D
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Input (RGB) Feature Label GT Feature Label Ours GT Label Clustering Label

Figure 6. Visualization of the feature embedding and labeling. This figure shows (from left to right) the colored 3D scene input, its

generated 3D feature embeddings, along with the ground truth (GT) labels and our instance labeling result after mean-shift clustering

(colors of the instances in the final results are chosen randomly and do not correspond to GT label colors).

Segment. [15] as Instance Connect. Comp. on [15] Ours (FE only) Ours (Multi-task)

Class AP AP50 AP25 AP AP50 AP25 AP AP50 AP25 AP AP50 AP25

cabinet 0.002 0.008 0.039 0.024 0.081 0.153 0.036 0.118 0.396 0.042 0.145 0.346

bed 0.105 0.197 0.540 0.200 0.467 0.651 0.154 0.446 0.696 0.197 0.540 0.806

chair 0.000 0.001 0.027 0.138 0.239 0.434 0.475 0.689 0.814 0.567 0.792 0.877

sofa 0.066 0.240 0.462 0.157 0.398 0.533 0.172 0.369 0.684 0.226 0.488 0.803

table 0.027 0.061 0.160 0.154 0.324 0.428 0.207 0.361 0.593 0.242 0.427 0.674

door 0.019 0.037 0.070 0.041 0.073 0.108 0.142 0.304 0.429 0.152 0.324 0.458

window 0.015 0.023 0.023 0.020 0.031 0.037 0.113 0.258 0.423 0.152 0.327 0.472

bookshelf 0.013 0.024 0.187 0.077 0.198 0.453 0.075 0.175 0.423 0.080 0.219 0.453

picture 0.001 0.005 0.005 0.001 0.005 0.008 0.028 0.067 0.169 0.044 0.109 0.198

counter 0.007 0.032 0.216 0.008 0.034 0.266 0.001 0.004 0.094 0.001 0.008 0.097

desk 0.012 0.057 0.211 0.022 0.109 0.364 0.011 0.053 0.327 0.031 0.142 0.499

curtain 0.034 0.085 0.185 0.081 0.173 0.225 0.114 0.285 0.450 0.174 0.399 0.542

refrigerator 0.059 0.112 0.211 0.105 0.162 0.225 0.124 0.302 0.317 0.185 0.421 0.441

shower curtain 0.119 0.231 0.231 0.128 0.227 0.284 0.392 0.593 0.710 0.402 0.643 0.749

toilet 0.326 0.676 0.701 0.575 0.801 0.801 0.636 0.962 0.977 0.625 0.965 0.980

sink 0.048 0.130 0.328 0.054 0.135 0.307 0.094 0.294 0.397 0.120 0.364 0.445

bathtub 0.357 0.677 0.677 0.319 0.631 0.700 0.235 0.553 0.674 0.311 0.708 0.794

otherfurniture 0.004 0.010 0.039 0.021 0.052 0.107 0.061 0.154 0.283 0.097 0.215 0.335

average 0.068 0.145 0.239 0.118 0.230 0.338 0.171 0.333 0.492 0.203 0.402 0.554

Table 2. Ablation study on the ScanNet dataset [5] validation set. We show the instance labeling performance of the segmentation

method in [15], connected components labeling on the [15] segmentation, our method with feature embedding (FE) only and our method

with multi-task learning.
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MTML (Ours) 0.55 1.00 0.81 0.59 0.33 0.65 0.00 0.82 0.18 0.42 0.36 0.18 0.45 1.00 0.44 0.69 0.57 1.00 0.40

Occipital-SCS 0.51 1.00 0.72 0.51 0.51 0.61 0.09 0.60 0.18 0.35 0.38 0.17 0.44 0.85 0.39 0.62 0.54 0.89 0.39

3D-BoNet 0.49 1.00 0.67 0.59 0.30 0.48 0.10 0.62 0.31 0.34 0.26 0.13 0.43 0.80 0.40 0.50 0.51 0.91 0.44

PanopticFusion [34] 0.48 0.67 0.71 0.60 0.26 0.55 0.00 0.61 0.18 0.25 0.43 0.44 0.41 0.86 0.49 0.59 0.27 0.94 0.36

ResNet-backbone [29] 0.46 1.00 0.74 0.16 0.26 0.59 0.14 0.48 0.22 0.42 0.41 0.13 0.32 0.71 0.41 0.54 0.59 0.87 0.30

MASC [31] 0.45 0.53 0.56 0.38 0.38 0.63 0.00 0.51 0.26 0.36 0.43 0.33 0.45 0.57 0.37 0.64 0.39 0.98 0.28

3D-SIS [19] 0.38 1.00 0.43 0.25 0.19 0.58 0.01 0.26 0.03 0.32 0.24 0.08 0.42 0.86 0.12 0.70 0.27 0.88 0.24

Unet-backbone [29] 0.32 0.67 0.72 0.23 0.19 0.48 0.01 0.22 0.07 0.20 0.17 0.11 0.12 0.44 0.2 0.62 0.36 0.92 0.09

R-PointNet [54] 0.31 0.50 0.41 0.31 0.35 0.59 0.05 0.07 0.13 0.28 0.29 0.03 0.22 0.21 0.33 0.40 0.28 0.82 0.25

3D-BEVIS 0.25 0.67 0.57 0.08 0.04 0.39 0.03 0.04 0.10 0.10 0.03 0.03 0.10 0.38 0.13 0.60 0.18 0.85 0.17

Seg-Cluster 0.22 0.37 0.34 0.29 0.11 0.33 0.03 0.28 0.09 0.11 0.11 0.01 0.08 0.32 0.11 0.31 0.30 0.59 0.12

SGPN [50] 0.14 0.21 0.39 0.17 0.07 0.28 0.03 0.07 0.00 0.09 0.04 0.02 0.03 0.00 0.11 0.35 0.17 0.44 0.14

MaskRCNN proj 0.06 0.33 0.00 0.00 0.05 0.00 0.00 0.02 0.00 0.05 0.02 0.24 0.07 0.00 0.01 0.11 0.02 0.11 0.01

Table 3. State-of-the-art comparison on the ScanNet 3D instance segmentation dataset [5]. The table shows the AP50 score of

individual semantic categories and the average score (sorted by avg AP50 score in descending order). We achieve the best average score.

images that were used to reconstruct the scenes of ScanNet.

Instance labels of single RGB-D frames in these methods

are propagated throughout the whole scene and concate-

nated based on the location estimation. On the other hand,

our method directly operates in the 3D setting, without the

need to use the 2D information. This leads to much faster

processing on the 3D scenes, and requires substantially less

information to extract the 3D object instance segmentations.

9262



Input (RGB) Semantic GT SPC [15] CC SGPN [50] Instance GT Ours

Figure 7. Qualitative results of our method on the ScanNet validation dataset [5]. This figure shows the original input scene as a

textured mesh, the semantic labeling results of SparseConvNet (SPC) [15] which we use as input and our instance labeling results as well

as the semantic groundtruth (GT). We further show multiple 3D instance segmentation baselines: connected component (CC) labeling on

the SPC semantic labeling, SPGN [50], and the groundtruth instance labels next to our labeling results.

5. Conclusion

We proposed a method for 3D instance segmentation of

voxel-based scenes. Our approach is based on metric learn-

ing and the first part assigns all voxels belonging to the same

object instance feature vectors that are in close vicinity.

Conversely, voxels belonging to different object instances

are assigned features that are further apart from each other

in the feature space. The second part estimates directional

information of object centers, which is used to score the

segmentation results generated by the first part.
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