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Abstract

We tackle the problem of synthesizing a video of multi-
ple moving people as seen from a novel view, given only an
input video and depth information or human poses of the
novel view as prior. This problem requires a model that
learns to transform input features into target features while
maintaining temporal consistency. To this end, we learn an
invariant feature from the input video that is shared across
all viewpoints of the same scene and a view-dependent fea-
ture obtained using the target priors. The proposed ap-
proach, View-LSTM, is a recurrent neural network struc-
ture that accounts for the temporal consistency and target
feature approximation constraints. We validate View-LSTM
by designing an end-to-end generator for novel-view video
synthesis. Experiments on a large multi-view action recog-
nition dataset validate the proposed model.

1. Introduction

Generating a video from cues such as a textual descrip-
tion, information on a specific object or scene type, or a
single frame is an interesting challenge with applications in
data augmentation and action imitation. Generating a realis-
tic video without specific priors is a challenging task. Deep-
generative models can synthesize (predict) a video using an
approximation of the density distribution of the data (prob-
abilistic methods [16, 30, 19]) or an input representation
(context-based methods [42, 41, 51]). Temporal Generative
Adversarial Nets (TGAN) [30] produces a fix length vector
that corresponds to a latent representation of frames that is
used in the decoder of the GAN [7] structure to synthesize
a video.

Recent works [55, 23] include priors to help the gener-
ation but produce more intractable results. For example,
style-content based models [11, 39, 38] separate the genera-
tion as content generation (e.g. background scene) from the
generation of the motion or dynamics. Pose Guided [54, 2]
models rely on the 2D body pose information as guidance in
the generation process. Other methods predict Optical flow
and use it along with a conditioned image to synthesize the

next frame [5] or a sequence of frames [24].

Multi-view data can be decomposed into a generic, view-
invariant component, and a view-dependent component.
This concept was used for 3D object generation via the so-
called intact space and noise as prior [52]. Feature aggrega-
tion between view-invariant and view-dependent informa-
tion is performed using summation. However, joining two
different feature points as summation for real world data
such as image or video stream might not be appropriate
with deep learning models. Features are coming from non-
linear mapping and using a linear operator (summation) as
a way to combine them can damage important feature infor-
mation. In fact concatenation is preferred in recent architec-
tures [21, 45, 41]. Similarly, features can be projected into
appearance space that is common for the same 3D object
and pose space that contains the object 3D orientation [25].

We propose View-LSTM, a novel convolutional Long
Short-Term Memory (LSTM) structure that takes advan-
tage of the temporal learning capability of Recurrent Neural
Network (RNN) to approximate the target view sequence
in the feature space. It does so by learning to aggregate a
view-invariant representation of the input view with view-
dependent information from the target prior. Moreover, we
extend the perceptual loss [14] to account for relevant tem-
poral information as needed in our video prediction task.
For this we use the features obtained from the intermediate
layers of a 3D CNN as spatiotemporal representations and
verify empirically that Conv-LSTM implicitly learns invari-
ant feature representation.

2. Related Work

Recurrent structures can predict frames from a sequence
of previous frames. Spatiotemporal LSTM (ST-LSTM) [48]
keeps track of a memory cell between subsequent time
steps to prevent the vanishing gradient problem. Pre-
dRNN++ [46] extends ST-LSTM to allow deeper stacking
of layers through an additional gating mechanism. Eidetic
3D LSTM [47] extends ST-LSTM to 3D convolution inside
the RNN gating computation thus enabling local temporal
memory. The problem of spatiotemporal prediction using
stationary and non-stationary components can be addressed

7577



with two modules inside the recurrent structure that achieve
longer predictions [49]. All the aforementioned single-view
predictive methods were tested on small datasets only, such
as KTH [31] and Moving-MNIST [35].

Long Short-Term Attention (LSTA) [36] extends the
Conv-LSTM [33] to focus on relevant spatial parts through
attention pooling for smooth temporal tracking. The model
was used for Egocentric Action Recognition with cross-
modal fusion in a two-stream architecture. Coupled Recur-
rent Network (CRN) [37] is a two-stream architecture using
independent Conv-LSTMs for each stream. The results of
the two streams are fused to distill reciprocal representa-
tions. However, these methods are not directly applicable
to novel-view video synthesis. Because they keep track of
a separate hidden state memory for each stream (modality)
whereas for the synthesis problem we only maintain one
hidden state that represents the appearance feature.

Novel-view rendering has been applied to faces and hu-
man bodies. Deep Appearance Model [26] matches ob-
ject shape (mesh) and appearance (texture) to a new (un-
seen) viewpoint. The model uses an autoencoder whose
encoder uses a mesh and an average texture from all the
views. The novel-view face rendering is then obtained us-
ing the compact feature from the encoder and a target view-
point as an input to the decoder. Estimating the 3D full
body mesh with the pose [43] is an active area of research.
Synthesizing a full body is based on the availability of pre-
recorded body scans [1]. Self-supervised models also exist
for frame-based novel view synthesis of multiple subjects
using a static background as guidance and by decomposing
the image into a latent representation that corresponds to
rotation and translation matrices [28]. However, our prob-
lem is different in two aspects. First, we target the tempo-
ral domain and thus need to ensure consistency across the
synthesized frames. Second, we need to cope with natural
variations in the background of different views.

View-invariant action representations from an input
frame and a ground-truth target prior can synthesize a
target-view optical flow [23] using a global temporal fea-
ture learning with Bidirectional-LSTM [8]. Unlike our
problem, this model does not have to hallucinate the back-
ground. Actions can also be synthesized from a given view
to a target view from non-overlapping input and output time
frames [44]. This model restricts the learning of the motion
representation to a set of predefined patterns to synthesize
the action in the target view. We instead focus on learning to
approximate the target view in the feature space with more
freedom in the types of motions that can be synthesized.

3. Temporal target feature approximation

We define the view decomposition assumption for a fea-
ture point €’ of view ¢ as a decomposition into an invariant
feature z, which is common to all the views, and a view-

dependent feature 7, which is specific to the view 4. z and
7" are combined through the operator

€ = P(z, 7). (1)

In multi-view video synthesis, we are only given an in-
put video sequence I° from a view 4 and a set of M priors
PI = {PIIM_| of atarget view j, where I’ and P}, have
T frames.

Suppose that we are given a decoder fp that takes a spa-
tiotemporal appearance feature point of view j and decodes
it back to the pixel space I7. Hence the problem of multi-
view video synthesis is reduced to approximating the target
spatiotemporal appearance feature point €/ of view j.

In what follows, we provide details on how to obtain
each component of the view decomposition assumption. We
show an architectural constraint on enforcing the invariance
to obtain z. Then 77 is presented as a linear combination
of the encoded feature representation of the prior PJ, for
m € [1..M]. Finally, we present View-LSTM that extends
the Conv-LSTM [33] to implement the aggregator ).

3.1. Invariant feature

We extract the feature input (resp. target) view sequence
I' (resp. I7) using the encoder f}; (resp. f%). A straight-
forward way to enforce invariance is to share the weights of
f}é and f7, using Siamese architecture [4] as in FD-GAN [6]
for example.

Let Wg be the shared weight between the encoder [}
and f]JE The backpropagation using the reconstruction loss
L, with respect to Wg is given as:

oL, oL, 07" 0L, 0z
8WE o 821 GWE 82]’ 8WE’

where the term z% (resp. 27) is given as fi(I?) (resp.
fé([j )). The weights of fé will also be affected by the
error coming from the reconstruction loss. We found empir-
ically that this affects the synthesis process where the model
failed to synthesize the target sequence.

Recall that a mapping fg is said to be invariant if
fe(x) = fr(y) where z # y. In order to enable the model
to synthesize a video sequence, a simple solution is to sep-
arate the parameters of f% and f7,. Since in neural network

2

the mapping has learnable weights and the encoder fJE only
serves as a guide during the training for enforcing the in-
variance, we use the same architecture for ff; and f3, and
after training with an invariance loss the weights of both
encoders will have equivalent values. We therefore have:
2= fL(I') and z ~ f}(I7) such that z has T" < T.

3.2. View-dependent feature

Let us define the encoder gg’m that maps each prior PJ,
of the view j to a lower dimensional feature 7,. We define
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Figure 1: The proposed View-LSTM recurrent structure
with one prior. The invariant feature z; (resp. view-
dependent feature 7}) is fed to the block Memg ~(resp.
Memgp) that outputs the memory cell of Conv-LSTM [33].
The memory cells C and C? of the invariant and the prior
feature are then combined with a fusion scheme to obtain
the hidden state H; that approximates €7 .

“(E-0—0

the view-dependent feature vector 7/ as a linear combina-
tion weighted by the coefficient w,, for each of the prior
feature. The component of 77 at time step ¢ is given as:

M
Trg = Z wmﬂf,m. 3)
m=1
The feature 7/ is a concatenation of each of w{ such that:
= (ﬂ{, . ,W;,).
3.3. Aggregator

The original LSTM [12] model uses fully connected
layer in the state transitions which cause the loss of spa-
tial information. Conv-LSTM [33] solves this problem by
keeping track of the spatiotemporal feature in its state tran-
sitions using convolutions. The equations to compute the
memory cell are given as:

gr = tanh(Wog * xy + Wiy * Hy 1) (4a)
it = 0o(Wai xxp + Whi x Hy 1) (4b)
fr=0Wypxaxy +WypxH; 1) (4¢)
Co=[fi©C 1+ 1O gs, (4d)

where the W ) with subscript are learnable weights, x is the
convolution operation, o is the sigmoid non-linearity and ®
is the Hadamard product. The gating i; and f; control how
much information should be kept, or updated with g;, to
compute the memory cell C; for each time step . We omit
the bias term in each equation for simplicity.

The View-LSTM accepts M + 1 inputs, the invariant fea-
ture z and the M prior features {77, }M_, . In order to have

a spatiotemporal consistency for each of the M + 1 inputs,
we keep track of a separate memory cell C;"* for each input,
and it is computed through the gating mechanism for each
time step t as:

cm = {Mem(e)o(ztaHt 170? 1) ifm=0
= .

5
Memfl (w My 1,C) ifm e [LA1], O

where Memg® refers to Equation 4a to Equation 4d with the
weights 6, for the input m € [0..M]. The appearance input
2 is given with index m = 0 and C{ = C7. The hidden state
H: 1 is used in all the M + 1 blocks and it approximates
the target feature view at the time step ¢t — 1. Therefore, only
one hidden state should be tracked over time as it represents
the actual appearance feature.

We finally fuse the information of the invariant feature
memory C; and the priors memory C;" along with the cur-
rent features information as a linear combination. The out-
put gate o; regulates how much information each of the
M +1 gates will be passed to the hidden state and the equa-
tion is given as:

M
0y = a(WZO xzp + WE «Cf + Z pm>, (6)
m=1

where p™ = W, * w{ym + W2 «C{™ which relates the cur-

rent temporal prior feature 7rf7m with the memory C;" of the
m-th prior. The sum of p™ over m € [1..M] approximates
the spatiotemporal feature 7 as a linear combination of the
pre-defined set of M priors in an early fusion scheme.
Finally, the hidden state H; that approximate ¢ is ob-
tained by combining the output gate o; with the concatena-

tion of all the memory cells C;” and is computed as:

M
He =0, ® tanh<W1 1% @OCZ”) + Nz, (7

where W7 1 is a 2D convolution with a (1, 1)-kernel that is
used to match the dimension of o;. We add a small residual
of the input view z; (n-Residual) controlled by 7 in order to
alleviate the color information loss during the approxima-
tion process (see Figure 1).

4. Novel-view video synthesis

In this section we present View Decomposition Network
(VDNet), our end-to-end learning framework for novel-
view video synthesis based on view decomposition. We
first overview the proposed network architecture and then
describe how invariance is obtained. Moreover, we present
our temporal extension of the perceptual loss and detail the
training procedure.

4.1. Architecture

The network architecture of the proposed VDNet using
one prior (e.g. depth or skeleton) is presented in Figure 2.
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