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Abstract

This paper presents a novel feature-based method that is

built upon a convolutional neural network (CNN) to learn

the deep representation for multimodal retinal image reg-

istration. We coined the algorithm deep step patterns, in

short DeepSPa. Most existing deep learning based methods

require a set of manually labeled training data with known

corresponding spatial transformations, which limits the size

of training datasets. By contrast, our method is fully auto-

matic and scale well to different image modalities with no

human intervention. We generate feature classes from sim-

ple step patterns within patches of connecting edges formed

by vascular junctions in multiple retinal imaging modal-

ities. We leverage CNN to learn and optimize the input

patches to be used for image registration. Spatial trans-

formations are estimated based on the output possibility of

the fully connected layer of CNN for a pair of images. One

of the key advantages of the proposed algorithm is its ro-

bustness to non-linear intensity changes, which widely ex-

ist on retinal images due to the difference of acquisition

modalities. We validate our algorithm on extensive chal-

lenging datasets comprising poor quality multimodal reti-

nal images which are adversely affected by pathologies (dis-

eases), speckle noise and low resolutions. The experimental

results demonstrate the robustness and accuracy over state-

of-the-art multimodal image registration algorithms.

1. Introduction

Image registration has been an important element in the

fields of computer vision, pattern recognition, and medical

image analysis. It aims to align two or more images into

the same coordinate system to receive a comprehensive un-

derstanding. In the field of ophthalmology, it is used for

assisting ophthalmologists to diagnose diseases and make
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treatment planning. There are three main retinal registra-

tion groups [9, 29, 36], which are monomodal registration,

temporal registration, and multimodal registration. The first

group aligns monomodal retinal images captured by the

same sensor (e.g. fundus camera) at different viewpoints

during a single session with a patient to form a single mo-

saic view of the retina. The second group aligns temporal

retinal images taken weeks, months or years apart to reveal

disease progression. The third group aligns multimodal reti-

nal images captured by different sensors (e.g. fundus cam-

era and fluorescein angiography) to obtain a more complete

detail of the subject. In this paper, we focus on multimodal

registration in the third group.

While medical image registration has been an active re-

search area for more than two decades [23], fully automatic

and robust multimodal image registration remains a chal-

lenging task. Among different imaging modalities, the in-

tensity differences are non-linear, and a lot of times the im-

ages obtained from the clinics and hospitals are adversely

affected by pathologies and/or noise. Fig. 1 shows some

examples for retinal images. The fluorescein angiographic

(FA) images in Fig. 1(b), 1(d) and 1(f) are acquired after

injecting of fluorescein dye into the bloodstream. The dye

highlights the blood vessels in the back of the eye causing

the intensity of the angiograms to vary substantially and ap-

pear different from the color fundus images in Fig. 1(a), 1(c)

and 1(e). The blood vessels are generally brighter than the

background tissues in the FA images but darker in the color

fundus images, and are sometimes being obscured due to

the effects of diseases. The optical coherence tomography

(OCT) fundus image in Fig. 1(h) is constructed by integra-

tion of the 3D tomogram along depth to provide a view

similar to traditional en-face imaging modalities such as

color fundus images. Due to the nature of imaging with

coherent light, OCT is susceptible to coherent noise or also

called speckle noise [28], which effectively causes signifi-

cant degradation in spatial resolution and quality.

Inspired by its success in computer vision, we propose

to learn pattern patches among different retinal imaging
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Figure 1. Poor quality multimodal retinal image pairs which are

affected by pathologies (diseases) and/or speckle noise. Each row

presents a pair, where (a), (c), (e) and (g) are the color fundus

images, (b), (d) and (f) are the FA images, and (h) is the OCT

fundus image.

modalities based on a CNN. These pattern patches are step

pattern representations of the connecting edges from the

edge maps which are mainly formed by vascular junctions.

The problem is modeled as a classification task, where the

goal is to discriminate between informative pattern patches

upon observed multiple imaging modalities and use them

for multimodal image registration. Optimization is done

by rejecting pattern patches with low classification con-

fidences, which hence improves accuracy. The proposed

method is fully automatic and no ground truth manual la-

beling is required. To the best of our knowledge, this is the

first time that CNN has been used in the context of mul-

timodal retinal image registration. Since more and more

imaging modalities are being developed to better identify

eye retina abnormalities, the development of a multimodal

image registration method that scales well to new modalities

or new image applications with little to no human interven-

tion would have a significant impact on the medical image

analysis community.

The rest of the paper is organized as follows. Section 2

discusses related work. In section 3, our methodology is

presented. Experiments and results follow in section 4. Fi-

nally, we conclude the paper in section 5.

2. Related Work

Although CNN has achieved state-of-the-art perfor-

mance in image classification and image segmentation [14,

21], there are very few work addressing image registra-

tion using CNN [20]. Work on CNN applied to multi-

modal retinal image registration are even as few as none

that we have come across. Recently, a convolutional stacked

auto-encoder (CAE) [32] has been proposed to extract fea-

tures from magnetic resonance imaging (MRI) volumes.

It is subsequently combined with a conventional sparse,

feature-driven registration algorithm. A CNN based re-

gression approach [26] is introduced to solve rigid 2D or

3D registration for device tracking from 2D X-ray images.

The registration method is supervised and not fully auto-

matic. A learnable module called spatial transformer net-

work (STN) [11], in conjunction with a CNN, is used to

learn prediction models and has demonstrated on register-

ing non-medical imaging. The STN requires many labeled

training samples. A serial-section electron microscopy

(ssEM) [34] image registration method is later presented

with combination of CAE and STN to generate a defor-

mation map for image alignment via backpropagation of

the network. It follows by a feature-based image similarity

measure which is learned from the training images by the

auto-encoder. Although the above-mentioned algorithms

give us some insight into the direction of utilizing CNN for

image registration, they are either not applied to medical

imaging, or multimodality, or disease cases.

The current state-of-the-art in multimodal retinal image

registration is based on feature-based approaches which do

not work directly with image intensity values. Information

represented by the features is on a higher level. This is suit-

able for multimodal applications where intensity changes

are expected or multi-sensor analysis is demanded [36]. In
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fact, feature-based approaches can be further subdivided

into two classes: vessel-based and feature descriptor-based.

Vessel-based methods typically involve detecting bifurca-

tion points (Y-shape features) [6] by extracting every three

dark or bright vessels from circular boundaries of candidate

bifurcation locations. The bifurcation points are matched

using either local maximization of mutual information [6],

or angle-based invariants [35]. There are several other sim-

ilar methods [3, 15, 29] that utilize vessel bifurcations for

image registration. However, although bifurations are in-

variant to intensity variations, their localizations are impre-

cise [31]. Moreover, detecting bifurcation points is chal-

lenging in poor quality or unhealthy images [8, 16].

Feature descriptor-based methods which do not rely on

vasculature have shown to be more suitable for multimodal

retinal image registration [5, 8, 16]. A generalized dual-

bootstrap iterative closest point (GDB-ICP) [33] uses the

popular scale-invariant feature transform (SIFT) [22] with

alignment method driven by corner points and face points.

An improved version, called edge-driven DB-ICP (ED-DB-

ICP) [30], is introduced by enriching SIFT with shape con-

text using edge points. However, it is not robust to scale

changes, disease cases, and noise [5, 8, 16]. To over-

come the non-linear intensity variations, gradient mirror-

ing method [13] combines opposite gradient directions of

SIFT features. However, distinctiveness is compromised

due to the reduced dimension of SIFT. To circumvent the

problem, a partial intensity invariant feature descriptor (PI-

IFD)) [4] is presented to achieve higher distinctiveness by

combining constrained gradient orientations between 0 to

π linearly. It follows by performing a rotation to address

the multimodal issue of gradient orientations of correspond-

ing points in opposite directions. Harris-PIIFD [5] is then

proposed using PIIFD to describe surrounding fixed size re-

gions of Harris corners [10]. However, the limitations of

Harris corners are the non-uniform distribution [8, 17], and

the poor repeatability rate due to scale changes or disease

cases [8, 16]. A later approach replaces Harris method with

uniform robust SIFT (UR-SIFT) [8] for more stable and

distinctive features. It has also proven to be more robust

to scale changes [16], but it still does not perform well on

multimodal retinal images with diseases [16]. Recently, a

low-dimensional step pattern analysis (LoSPA) algorithm

targets on multimodal retinal images with diseases, and has

shown to outperform GDB-ICP, ED-DB-ICP, Harris-PIIFD

and UR-SIFT-PIIFD. It uses many customized patterns to

describe the vascular junctions and the patterns are able to

handle non-linear intensity variations well. However, the

multiple patterns are complicated and difficult to imple-

ment. Furthermore, the registration success rate for disease

cases is still falling below 80% in the paper.

Figure 2. DeepSPa’s framework which shows multiple imaging

modalities going through the process of extracting feature points,

forming into pattern patches, dividing into train and test datasets,

all the way to passing through CNN for learning, and optimization

during test.

3. Methodology

The DeepSPa’s framework is illustrated in Fig. 2. We

find intersection points between edges which are mainly

formed by vascular junctions in the retinal images. Pattern

patches surrounding the intersection points are extracted

and sorted into classes according to their pixel patch pat-

terns. CNN is used to learn the patches to be used for match-

ing. During testing, optimization is done by rejecting un-

reliable pattern patches with low classification confidences

among the classes. Regardless of the imaging modalities,

the above steps are the same since the pattern patches are

sorted according to their patterns and not their modalities.

In this paper, we apply our approach to FA, OCT fundus and

color fundus images. However, it can be applied to other or

more imaging modalities. The following sections will de-

scribe each of these parts in more detail.

3.1. Feature extraction

The extraction of distinctive yet repetitive features can

be challenging as corresponding feature pairs have to be

made across different sensor modalities. Instead of feeding

the entire retinal images into our neural network, we exploit

the approach of detecting intersection points [17], which are

based on connecting edges from the edge maps of the im-

ages. Fig. 3 shows an example of extracted edges and their

intersection points. Edges are extracted using a strip fitting
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(a) (b)

Figure 3. The extracted edges of a FA image are shown in (a), and

the intersection points formed by the connecting edges are shown

in (b).

algorithm [18]. Many of the connecting edges are situated

at the vascular junctions and have shown to achieve high re-

peatability [17]. The other key advantages of this approach

are the insensitivity to non-linear intensity variations across

different modalities, and the unnecessary extraction of ma-

jor or full vascular structure for it to work. It has also shown

to outperform various feature detection methods such as the

difference of gaussians (DoG) [22] used by SIFT and Har-

ris corner detection [10], in terms of repeatability and sta-

bility [17]. However, there are also two common issues

encountered. One of them is the missing or fracturing of

edges due to the well-known fragmentation of edge maps

of real images. Another common issue is the detecting of

isolated or insignificant edges which are mainly noise. To

circumvent the issues, post-processing steps are applied to

fix (concatenate) fragmented edges with end points and an-

gles of close proximity. Two edges ei and ej are concate-

nated if the following condition is satisfied,

θsmeiej > τθ and min
(

‖Pk,i, Pk,j‖2
)

< τdist,

∀k ∈ {1, 2}, (1)

where θsmeiej denotes the smaller internal angle between ei
and ej , and τθ represents the allowed internal angle thresh-

old between them. Pk,i is the kth end point of ei, and τdist
denotes the allowed distance threshold between the short-

est end-to-end points of ei and ej . Subsequently, short and

isolated edges (e.g. < 5 pixels) are removed.

3.2. Step Pattern Representation

We extract small patches surrounding the intersection

points and sort them according to their step patterns. This

work focuses on the intensity change patterns rather than the

intensity change values as corresponding images of differ-

ent modalities often do not correlate well due to non-linear

intensity changes. We first rotate each patch relative to a

mutual orientation in order to achieve rotation invariance,

where the center of rotation is at the intersection point cei,j

of two edges ei and ej . The angle-to-rotate θcei,j is given

by:

min(θxei , θ
x
ej
) + [δ](max(θxei , θ

x
ej
)−min(θxei , θ

x
ej
)), (2)

where θxek denotes the angle from ek to the positive x-axis,

and [.] is a binary indicator function. δ is the inequality

derived as:

max(θxei , θ
x
ej
)−min(θxei , θ

x
ej
) > 180◦. (3)

After rotation, a 27 × 27 local window W
rot
c
ei,j centered

at cei,j is extracted from the rotated image. We then deter-

mine whether Wrot
c
ei,j comprises the step patterns as shown

in Fig. 4. As the name implies, these patterns come in step

forms where the higher step regions indicate higher average

intensity values in those regions. They are formed using

two parallel lines separating each square patch into three

equal-sized regions. The regions can be in patterns of two

or three level steps, e.g. Fig. 4(a) and 4(e) are the same but

the former has two level steps and the latter has three. It is

apparent that Wrot
c
ei,j can only comprises either one of the

two step patterns and not both at the same time. However,

it can comprise one or more other step patterns. This gives

a number of possible combination of classes as:

4
∑

k=0

(

4

k

)

· 2(4−k), (4)

which therefore summed up to a total of 81 classes.

Taking Fig. 4(a) as an example, the number of pixels in

R1, R2 and R3 are equal. The average intensity value IRk
avg

in Rk is formulated as:

1

N

∑

(x,y)∈Rk

W
rot
c
ei,j (x, y),

∀k ∈ {1, 2, 3}, (5)

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 4. 8 step patterns where (a)-(d) are two level step patterns

and (e)-(h) are three level step patterns.
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Figure 5. Architecture of our CNN model.

where N is the number of pixels in Rk. The output

out
W

rot

c
ei,j

1 of Wrot
c
ei,j for this step pattern can be described

as follows:

[

IR1

avg − IR2

avg > τsm
]

·
[

IR3

avg − IR2

avg > τsm
]

, (6)

where out
W

rot

c
ei,j

1 is a binary value to indicate whether

W
rot
c
ei,j comprises this step pattern, and τsm is a small po-

sition integer value to avoid noise. In order to cope with

contrast reversal problem in different image modalities, e.g.

some dark vessels become bright, the step pattern is re-

versible. Hence, another output out
W

rot

c
ei,j

2 can be mathe-

matically revised as:

[

IR2

avg − IR1

avg > τsm
]

·
[

IR2

avg − IR3

avg > τsm
]

. (7)

The final equation to describe W
rot
c
ei,j for the step pattern

shown in Fig. 4(a) is given by:

out
W

rot

c
ei,j

3 = out
W

rot

c
ei,j

1 + out
W

rot

c
ei,j

2 , (8)

where out
W

rot

c
ei,j

3 is still a binary value. The rest of the pat-

terns in Fig. 4 can also be computed similarly by apply-

ing Eq. (5-8). There will be 8 binary values (as a vector)

as there are 8 step patterns, and 81 possible combination

classes as described in Eq. (4).

3.3. CNN

The most successful type of models for image analysis to

date are CNNs. CNNs contain many layers that transform

their input with convolution filters of a small extend. In this

paper, we use CNNs to learn, classify and optimize the pat-

tern patches extracted from the original images of multiple

modalities. Our CNN network architecture is illustrated in

Fig. 5. The 27 × 27 RGB pattern patches are fed to the

network. The network consists of a series of convolutional,

ReLU and max pooling layers. The output of the network is

a classification possibility of 81 classes via a softmax layer.

In order to recognize the pattern patches extracted from

all image modalities, we train a multi-modality classifica-

tion model with multiple modal mixed data. A classification

confidence threshold τcl is used to filter the pattern patches

and improve classification accuracy. For an input feature,

there are 81 classification confidence output (each between

0.0 and 1.0, summed to 1.0) for 81 classes after the softmax

layer. When the max classification confidence is higher than

τcl, the input feature is considered as reliable and reserved

to be used in the subsequent steps, else it will be rejected.

A higher τcl means more stringent requirements for the pat-

tern patches. It leads to an increase in the accuracy of the

classification but a reduction in the number of remaining

features. A good balance will be an optimal τcl for good

classification accuracy while keeping as many features as

possible. We experimentally test this in section 4.

3.4. Feature matching and validation

After classification and optimization using CNN, we find

corresponding pairs between two sets of classified DeepSPa

features by Euclidean distance, using the k-dimensional

data structure and search algorithm [2]. The algorithm iden-

tifies the k closest neighbors of features in high-dimensional

spaces, where we set k to 4 in this paper.

Next, we validate the corresponding pairs in a global

transformation function between the two images, regard-

less of their image modalities. Random sample consensus

(RANSAC) [7] with affine transformation setting is applied

to the corresponding pairs. Incorrect pairs are excluded us-

ing this method.

3.5. Transformation function

Various types of transformation functions can be applied

to register retinal images. The most common ones are the

linear conformal [25], affine [12] and second-order poly-

nomial [10, 27] models. Linear conformal is the simplest

model which only requires two corresponding pairs. As the

number of corresponding pairs obtained by our proposed al-

gorithm is usually sufficient and well distributed on the sur-

face of the retina, we can either use the higher order models

such as the affine model (three corresponding pairs) or the

second-order polynomial model (six pairs of points). We

favor affine model over second-order polynomial model as

we did not see any significant differences between the re-
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sults among the two models in our experiments.

When the transformation function has been applied on

the floating retinal image, we simply superpose the trans-

formed retinal image on the fixed retinal image to produce

a retinal mosaic. The mosaic image results of images in

Fig. 1 are shown in Fig. 6.

(a) (b)

(c) (d)

Figure 6. Mosaic results of the proposed DeepSPa algorithm for

multimodal image pairs shown in Fig. 1(a) and 1(b), Fig. 1(c)

and 1(d), Fig. 1(e) and 1(f), and Fig. 1(g) and 1(h) respectively.

4. Experiments and Results

In this section, we evaluate our proposed DeepSPa al-

gorithm on three parts: CNN settings, rotation invariance

and scale change. We also compare our registration perfor-

mance with state-of-the-art algorithms.

4.1. Datasets

In our experiments, we perform tests mainly on three

retinal image modalities: OCT fundus, color fundus and

FA images. For CNN evaluation, 67,240 DeepSPa features

are being extracted from 200 OCT fundus images ranging

in size from 304 × 304 to 513 × 385. 196,212 DeepSPa

features are being extracted from 292 color fundus images

ranging in size from 410×410 to 2588×1958, and 100,125

DeepSPa features are being extracted from 194 FA images

ranging in size from 720 × 576 to 768 × 768. The total

number of DeepSPa features being extracted is 363,577.

The other evaluations and comparative tests are demon-

strated on three multimodal retinal image datasets. The

datasets are described as follows.

Color fundus-FA (mild-to-moderate retinal diseases)

The first dataset [1] is publicly available comprising both

color fundus and corresponding FA images of 30 patients

with diabetic retinopathy. We classify this dataset as

patients with mild-to-moderate retinal diseases in this

paper. Both the color fundus and the FA images in the

dataset have the same resolution of 720 × 576.

Color fundus-FA (severe retinal diseases) The second

dataset was provided by a local hospital, comprising color

fundus and corresponding FA images of 120 anonymous

patients with symptoms of severe macular edema and

staphyloma which require retinal photocoagulation or

photodynamic therapy. The doctors described this dataset

as one of the most challenging ones compared to other

retinal abnormality cases. We classify this dataset as

patients with severe retinal diseases in this paper. Some

examples of the image pairs are shown in Fig. 1. The color

fundus images range in size from 2588 × 1958, and the FA

images range in size from 768 × 768. The largest scaling

factor in the two datasets is 1.8, however most of these

clinical data are of very small scale difference of below 1.5.

The largest rotation angle is 30◦.

Color fundus-OCT (speckle noise & low resolution) The

third dataset was also provided by a local hospital. It com-

prises 80 pairs of color fundus and corresponding OCT fun-

dus images. The OCT fundus images are adversely af-

fected by speckle noise. We classify this dataset as im-

ages with speckle noise and of low resolution in this pa-

per. Fig. 1(g) and 1(h) show one of these image pairs. The

color fundus photographs were acquired with a TRC-NW8

non-mydriatic fundus camera and the 3D OCT data were

obtained from a Topcon DRI OCT-1 machine with a size of

992 × 512 × 256 voxels. The OCT fundus images were

formed by intensity averaging along A-scans. The color

fundus images range in size from 410 × 410 to 1016 × 675,

and the resized low resolution OCT fundus images range in

size from 304 × 304 to 513 × 385.

4.2. Robustness test results

This part evaluates on the CNN settings and the robust-

ness of DeepSPa algorithm to rotation invariance and scale

insensitivity.

CNN test We divide the datasets described in section 4.1

into training sets and testing sets. Each training set com-

prises of 80% randomly picked features and the other 20%
features are used as testing set. We train three single modal-

ity classification models which comprise of OCT fundus,

color fundus and FA features individually. We also train

a multi-modality classification model with all three modal

mixed data. We apply different classification confidence
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Figure 7. CNN test results with different classification confidence

threshold τcl. The two lines intersect at 0.68.

Table 1. Classification accuracies of different modality models

without thresholding, on three datasets. Top score in each is in-

dicated in bold type.

Model
Test Accuracy on Datasets (in %)

OCT FA Color fundus Total

OCT 59.03 50.46 19.15 36.84

FA 72.02 85.42 28.43 59.19

Color fundus 53.47 49.50 79.36 63.10

Multimodal 80.95 87.01 85.52 86.04

threshold τcl to filter the pattern patches and the detailed

test results are shown in Fig. 7. From the chart, we can see

that when the threshold rises, the classification accuracy in-

creases. On the contrary, the remaining features drop when

the threshold rises. An optimal τcl to choose is the inter-

section point at 0.68, which gives a good balance of 90%
in the classification accuracy and remaining features. Ta-

bles 1 and 2 compare the classification accuracies between

single trained models and multi-modality trained model in

three different datasets, without and with thresholding re-

spectively. We can see an increase in accuracy for all mod-

els, and it is clear that our multi-modality trained model per-

forms best in all three datasets. We use 0.68 for τcl through-

out the rest of our experiments since it gives the best results.

Rotation invariance test Although the largest rotation

angle in our datasets is 30◦, we select 20 multimodal image

pairs from our datasets and rotate the floating images in

the image pairs from 0◦ to 180◦ with a 20◦ step. It should

be noted that the reference images are held fixed. We

apply DeepSPa algorithm on the reference images and the

rotated floating images. All image pairs are successfully

registered regardless of the rotation angle, demonstrating

that DeepSPa is rotation invariant.

Table 2. Classification accuracies of different modality models

with 0.68 threshold applied, on three datasets. Top score in each

is indicated in bold type.

Model
Test Accuracy on Datasets (in %)

OCT FA Color fundus Total

OCT 70.25 62.23 31.04 53.84

FA 79.13 89.95 31.95 65.61

Color fundus 68.25 56.43 87.28 71.13

Multimodal 84.59 90.10 90.76 90.11

Figure 8. Successful registration relative to scale factor.

Scale change test The largest scaling factor in our datasets

is 1.8. Similarly, we select 20 multimodal image pairs from

our datasets to perform rescaling. We rescale the float-

ing images with a scaling factor from 1 to 2.8, and apply

DeepSPa algorithm on all the images. The registration rates

across a range of scale changes are shown in Fig. 8. The re-

sults indicate that DeepSPa can provide robust registration

when the scale factor is 1.8 and below. It usually fails when

the scale factor is above 1.9. However, this is acceptable as

clinical data are usually of very small scale differences and

are usually less than 1.5 [5, 16].

4.3. Comparative test results

Ground truth We select 10 pairs of corresponding points

in every image pair manually to generate ground truth.

These points are selected to be distributed uniformly with

an accurate localization. The main advantage of this

method is that it can handle poor quality retinal images

which are adversely affected by diseases and/or noise. For

each marked image pair, there will be another team member

to verify the correctness of the marked points. The process

is time-consuming, but it provides a relatively reliable and

fair measurement over all images.

Evaluation criteria As our datasets comprise clinical

images of poor quality, e.g. adversely affected by patholo-

gies and/or speckle noise, centerline error measure [3, 29]

which measures the median error of the centerline of
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Table 3. Multimodal registration results of 7 algorithms on dataset of color fundus-FA (mild-to-moderate retinal diseases). Success rate of

registration, average RMSE, average MAE and average MEE are shown. Top score in each is indicated in bold type.

SIFT GDB-ICP ED-DB-ICP UR-SIFT-PIIFD Harris-PIIFD LoSPA DeepSPa

Success rate (%) 0 10 60 86.67 90 93.33 96.67

Average RMSE N.A. 4.07 2.33 2.97 2.27 1.93 1.71

Average MAE N.A. 7.67 4.06 4.88 3.67 3.35 2.97

Average MEE N.A. 3 1.78 2.54 1.67 1.55 1.37

Table 4. Multimodal registration results of 7 algorithms on dataset of color fundus-FA (severe retinal diseases). Success rate of registration,

average RMSE, average MAE and average MEE are shown. Top score in each is indicated in bold type.

SIFT GDB-ICP ED-DB-ICP UR-SIFT-PIIFD Harris-PIIFD LoSPA DeepSPa

Success rate (%) 0 4.17 27.5 35 41.67 79.17 86.5

Average RMSE N.A. 3.81 3.1 4.58 3.93 2.61 2.13

Average MAE N.A. 8.23 6.58 8.86 8.4 6.26 4.61

Average MEE N.A. 3.51 2.81 4.55 3.69 2.34 2.12

Table 5. Multimodal registration results of 7 algorithms on dataset of color fundus-OCT (speckle noise & low resolution). Success rate of

registration, average RMSE, average MAE and average MEE are shown. Top score in each is indicated in bold type.

SIFT GDB-ICP ED-DB-ICP UR-SIFT-PIIFD Harris-PIIFD LoSPA DeepSPa

Success rate (%) 0 3.75 22.5 27.5 33.75 63.75 81.25

Average RMSE N.A. 4.21 3.5 4.46 3.97 3.43 2.62

Average MAE N.A. 8.63 6.98 8.98 8.74 6.68 5.29

Average MEE N.A. 3.71 2.95 4.25 3.83 2.72 2.07

vasculature is ineffective. In practice, small differences

will exist between the coordinates of the transformed

points and reference points. Hence, we evaluate the reg-

istration accuracy by the root-mean-square-error (RMSE)

between 10 pairs of corresponding points in each image

pair [8, 16, 19, 24]. A RMSE below 5 pixels is acceptable

for clinical purposes [24]. We also report the median

error (MEE) [5, 8] and maximal error (MAE) [5, 8] over

all corresponding points. For successful registration, we

consider the RMSE < 5 pixels [8] in proportion to the

image resolution in [8]. In addition, a significant error of

MAE > 10 pixels [5] results in a registration failure. We

record results for all successful registrations.

Comparison results We run comparative experiments be-

tween 7 algorithms: SIFT [22], GDB-ICP [33], ED-DB-

ICP [30], UR-SIFT-PIIFD [8], Harris-PIIFD [5], LoSPA,

and our DeepSPa. Tables 3, 4 and 5 show the compari-

son results on the three datasets as described in section 4.1.

SIFT algorithm fails to register any image pairs on all three

datasets. For less challenging dataset of color fundus-FA

(mild-to-moderate retinal diseases), most algorithms pass

the 50% success rate mark, with DeepSPa dominating in

all scores as shown in Table 3. For datasets of color fundus-

FA (severe retinal diseases) and color-fundus-OCT (speckle

noise and low resolution) which are more challenging, only

LoSPA and DeepSPa algorithms pass the 50% success rate

mark, with DeepSPa still unsurpassable in all scores as

shown in Tables 4 and 5. DeepSPa is also the only algorithm

among the 7 algorithms to achieve above 80% registration

success rate on all three datasets. Some registration results

of DeepSPa on the three datasets are shown in Fig. 6.

The comparison in this section demonstrates that the de-

ployment of the DeepSPa algorithm to multimodal retinal

image registration translates into higher registration accu-

racy. Although we have demonstrated our algorithm on the

color fundus, FA and OCT fundus images, it can be applied

to other image modalities such as autofluorescence and en-

face OCT images, as well as images from other applica-

tions.

5. Conclusion

In this paper, we leverage on the strength of deep neu-

ral networks for learning and optimizing our step pattern

patches to be used for multimodal retinal image registra-

tion. The DeepSPa algorithm is invariant to non-linear in-

tensity changes which is an important requisite for mul-

timodal registration. We have demonstrated DeepSPa on

three multimodal retinal image datasets, and results indicate

that DeepSPa achieves higher registration accuracy which

easily frustrates the other 6 existing algorithms in the exper-

iments. It has also achieved state-of-the-art performance by

consistently attaining above 80% registration success rates

on all the three datasets, which includes the more challeng-

ing ones such as with severe retinal diseases.
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