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Abstract

In this paper, we study closed-form optimal solutions to

two-view triangulation with known internal calibration and

pose. By formulating the triangulation problem as L1 and

L∞ minimization of angular reprojection errors, we derive

the exact closed-form solutions that guarantee global opti-

mality under respective cost functions. To the best of our

knowledge, we are the first to present such solutions. Since

the angular error is rotationally invariant, our solutions can

be applied for any type of central cameras, be it perspective,

fisheye or omnidirectional. Our methods also require signif-

icantly less computation than the existing optimal methods.

Experimental results on synthetic and real datasets validate

our theoretical derivations.

1. Introduction

Recovering the position of a 3D point given its projec-

tions in two or more cameras is called triangulation. It con-

stitutes a fundamental building block in stereo vision [33],

simultaneous localization and mapping (SLAM) [22] and

structure-from-motion (SfM) pipelines [29]. For large prob-

lems, reconstructing thousands (or millions) of points is not

uncommon, so achieving fast and accurate triangulation is

important for the performance of such systems.

If one assumes the exact knowledge of camera matrices

and noiseless feature measurements, triangulation amounts

to intersecting two backprojected rays that correspond to

the same 3D point. In practice, however, this assumption is

unrealistic, and the rays do not necessarily intersect. There-

fore, a nontrivial method is required even for just two views.

The standard approach is to find the 3D point that min-

imizes a chosen cost function given the feature measure-

ments. The most common are the L1 norm (sum of magni-

tude), L2 norm (sum of squares) and L∞ norm (maximum)

of image reprojection errors. While reasonable for perspec-

tive cameras, the image reprojection error does not gener-

alize well to different camera types (e.g., omnidirectional

or fully spherical panoramic cameras). This motivates the

use of angular reprojection error, a rotationally invariant al-

ternative to the image reprojection error that is generic and

independent of the projection geometry [21, 24, 27].

In this work, we derive, for the first time to our knowl-

edge, the exact closed-form solutions to the L1 and L∞ op-

timal triangulation from two views based on the angular re-

projection error. Unlike iterative methods (e.g., [13, 17]),

the proposed methods guarantee global optimality with-

out any iterations, and unlike polynomial methods (e.g.,

[10, 23, 32]), they do not involve finding the roots of a

higher-degree polynomial. Hence, our methods simultane-

ously provide the global optimality, speed and simplicity.

We also present our own derivation of the L2 optimal so-

lution that is much more compact and geometrically intu-

itive than the existing one [24]. Since all three methods are

based on the angular error, they are not limited to standard

perspective cameras and can also be used for fisheye, omni-

directional and fully spherical panoramic cameras.

The paper is organized as follows. In the next three sec-

tions, we discuss the related work and preliminaries. Sec-

tion 5, 6 and 7 respectively present the closed-form solu-

tions to the L1, L2 and L∞ optimal triangulation. To make

our paper compact and easily accessible, we separated the

proofs from our main findings and put them in the appendix.

Section 8 addresses the cheirality constraint. Finally, exper-

imental results are provided in Section 9, followed by the

conclusions in Section 10.

2. Related Work

The most widespread approach to triangulation is to find

the 3D point that minimizes the L2 norm of image reprojec-

tion errors [8]. Assuming that image points are perturbed by

Gaussian noise, the L2 optimal solution gives the maximum

likelihood estimate (MLE). This can be obtained in closed

form by solving a polynomial of degree 6 for two views

[10] and degree 47 for three views [32]. Such polynomial

methods are, however, computationally expensive and sus-

ceptible to ill-conditioning [17]. Besides, an iterative search

for the roots may converge to a local minimum [10].

Another two-view method by Kanatani et al. [13] iter-

atively corrects the 2D projections of the points. Although

this method was shown to be faster than the one by Hartley
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and Sturm [10], it does not satisfy the epipolar constraint

[19] in each iteration. Lindstrom [17] solved this problem

with an improved iterative algorithm that is even more sta-

ble and faster. However, neither his method nor Kanatani’s

guarantees global optimality. Oliensis [24] showed that by

formulating the problem as L2 minimization of the sine of

angular reprojection errors, an exact closed-form solution

can be derived for two-view triangulation.

Instead of minimizing the L2 norm, one may choose to

minimize the L1 norm of reprojection errors. The advan-

tage of L1 norm is that it is more robust to outliers as it

places less emphasis on large errors [10, 11]. For two views,

Hartley and Sturm [10] showed that the L1 optimal solution

can be obtained in closed form by solving a polynomial of

degree 8. They also found that the L1 optimization gives

slightly more accurate 3D results than the L2 optimization.

In geometric problems, another popular norm is the L∞

norm. The L∞ optimal solution corresponds to the MLE

under the assumption of uniform noise in the image points

[6]. The advantage of the L∞ cost function over the L2

cost is that it is relatively simpler and has a single minimum

[9]. For the case of two views, Nı́ster [23] showed that the

optimal solution can be obtained in closed form by keeping

the reprojection errors equal in the two views and solving

the resulting quartic equation. A main drawback of the L∞

cost is that it is relatively more sensitive to outliers [9]. This

being said, such sensitivity was shown to be useful for out-

lier removal [30, 26, 16].

While most of the aforementioned works formulate their

optimization problem in terms of the image reprojection er-

ror, the angular reprojection error is another popular choice.

It embodies a better noise model for fisheye or omnidirec-

tional cameras [24, 20]. Even for perspective cameras, the

assumption of Gaussian noise is not justified [6], and the

angular reprojection error is just as valid as the image re-

projection error, if not more so. In the literature, it has been

proposed to minimize the sine of angular reprojection errors

in L2 norm [24], the tangent in L2 or L∞ norm [7, 9, 12],

and the cosine in negative L1 norm [28, 3]. In contrast to

these methods, our L1 and L∞ optimization do not involve

trigonometric functions.

3. Preliminaries on 3D Geometry

Throughout the paper, we adopt the following notation:

We use bold letters for vectors and matrices, and light letters

for scalars. The Euclidean norm of a vector v is denoted by

‖v‖, and the unit vector by v̂ = v/‖v‖. The angle between

two lines L0 and L1 is denoted by ∠ (L0, L1) ∈ [0, π/2].
The following vector identities will come in handy later:

a · (b× c) = b · (c× a) = c · (a× b) (1)

‖â× b̂‖2 = 1− (â · b̂)2 (2)

We also make frequent use of the following formulas:

1. The distance between a point p and a plane Π0(x) =
n0 · (x − c0) = 0 is given by ‖p − r0‖ where r0 is the

projection of p onto Π0. This is computed as follows:

‖p− r0‖ = |n̂0 · (p− c0)|. (3)

2. The distance between two skew lines L0(s0) = c0 +
s0m0 and L1(s1) = c1 + s1m1 is given by ‖r0 − r1‖
where r0 and r1 are the points on each line that form the

closest pair. Letting t = c0−c1 and q = m0×m1, this

is computed as follows:

‖r0 − r1‖ = |t · q̂| . (4)

The two points can also be obtained individually [14]:

r0 = c0 +
q · (m1 × t)

‖q‖2
m0, (5)

r1 = c1 +
q · (m0 × t)

‖q‖2
m1. (6)

Equation (4) can be interpreted as the minimum amount

of translation required for the two lines to intersect. In

this work, it will be also important to know the minimum

amount of rotation (or pivot) required for the two lines to

intersect. We answer this question in the following lemma:

Lemma 1 (Minimum Pivot Angle for Intersection)

Given two skew lines L0(s0) = c0 + s0m0 and L1(s1) =
c1 + s1m1, let L′

0
be the line that forms the smallest angle

θ0 ∈ [0, π/2] to L0 among all possible lines that intersect

both point c0 and line L1. Then, L′
0

is the projection of

L0 onto the plane that contains c0 and L1. Furthermore,

letting t = c0 − c1 and n1 = m1 × t,

sin (θ0) = |n̂1 · m̂0|. (7)

We call θ0 the minimum pivot angle for intersection, as it

represents the smallest angle required for pivoting line L0

at c0 to make it intersect L1.

Proof. Refer to Appendix A. �

4. Preliminaries on Two-View Triangulation

Consider two cameras C0 and C1 observing the same

3D world point xw. Let c0 and c1 be their positions

in the world frame, and let R and t be the rotation ma-

trix and translation vector that together transform a point

from the camera frame C0 to C1, i.e., x1 = Rx0 + t,

where x0 = [x0, y0, z0]
⊺ and x1 = [x1, y1, z1]

⊺ corre-

spond to xw in camera frame C0 and C1, respectively.

Since triangulation is impossible for zero translation, we

set ‖t‖ = ‖c0 − c1‖ = 1 without loss of generality. Let

u0 = (u0, v0, 1)
⊺ and u1 = (u1, v1, 1)

⊺ be the homoge-

neous pixel coordinates of the estimated correspondence to

xw in each frame. Given the camera calibration matrix K,

the normalized image coordinates f0 = [x0/z0, y0/z0, 1]
⊺

and f1 = [x1/z1, y1/z1, 1]
⊺ are related to u0 and u1 by

u0 = Kf0 and u1 = Kf1.
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Figure 1. The difference between the observed features (f0, f1) and

the triangulation result (f ′0, f ′1) can be quantified by either image

reprojection errors (d0, d1) or angular reprojection errors (θ0, θ1).

The two backprojected rays in frame C1, i.e., r1(s1) =
s1f1 and r0(s0) = s0Rf0 + t, do not necessarily intersect

due to inaccuracies in the image measurements and camera

matrices. For the rays to intersect, f0 and f1 must be cor-

rected to f ′
0

and f ′
1

such that the epipolar constraint [19] is

satisfied. It enforces the coplanarity of f ′
1
, Rf

′
0

and t, and

is given by

f ′
1
· (t×Rf ′

0
) = 0. (8)

The goal of the optimal triangulation is to minimally cor-

rect the feature rays so that they satisfy (8) and intersect at

some point x′
1

in frameC1. What is meant by “minimal” de-

pends on the chosen cost function and error criterion. Fig. 1

illustrates two most popular error criteria, namely the image

reprojection error and the angular reprojection error. For-

mally, they are defined as follows:

di := ‖ui − u′
i‖ = ‖K (fi − f ′i)‖, for i = 0, 1 (9)

θi := ∠ (fi, f
′
i) = ∠

(
K−1ui,K

−1u′
i

)
for i = 0, 1 (10)

In this work, we minimize the latter in L1, L2 and L∞

norms. Once we have the optimal f ′
0

and f ′
1
, the point of

intersection x′
1

can be obtained using either (5) or (6):

x′
1
= t+

z · (t× f ′
1
)

‖z‖2︸ ︷︷ ︸
λ0

Rf
′
0
=

z · (t×Rf ′
0
)

‖z‖2︸ ︷︷ ︸
λ1

f ′
1

(11)

with z = f ′
1
×Rf ′

0
,

where λi equals the depth multiplied by ‖f ′i‖ for i = 0, 1.

Note that the epipolar constraint (8) is a necessary con-

dition for intersecting the two rays, but not a sufficient one.

Fig. 2 illustrates scenarios where the two rays are coplanar,

but do not intersect. This happens when the intersection re-

quires negative depth(s), violating the cheirality constraint

[8]. In the following analysis (until Section 8), we will tem-

porarily assume that satisfying the epipolar constraint (8) is

sufficient for intersecting the rays.

5. Closed-Form L1 Triangulation

The L1 triangulation based on the angular reprojection

error (10) finds the feature rays f ′
0

and f ′
1

that minimize

θ0+ θ1 subject to the epipolar constraint (8). The following

lemma reveals a surprising fact that (θ0+θ1)min is achieved

by correcting either one of f0 or f1, but not both:

(a) (b)

t
t

C C

f0 f1R

x'

t

(c)

f0R f0Rf1

f1

0 1

C0 C1

C1

C0

' '

' ' '

'

1

x'1

x'1

Figure 2. Example scenarios satisfying the epipolar constraint (8).

The epipolar plane (shown in green) contains both the rays and the

camera centers. Cheirality condition is violated in case (b) and (c).

Lemma 2 (L1 Angle Minimization)

Given two skew lines L0(s0) = c0 + s0m0 and L1(s1) =
c1 + s1m1, consider any two intersecting lines that also

pass c0 and c1, respectively, i.e., L′
0
(s′

0
) = c0 + s′

0
m′

0
and

L′
1
(s′

1
) = c1 + s′

1
m′

1
. Let t = c0 − c1, n0 = m0 × t,

n1 = m1 × t, θ0 = ∠(L0,L
′
0
) and θ1 = ∠(L1,L

′
1
). Then,

(θ0 + θ1) is minimized for the following m′
0

and m′
1
:

If ‖m̂0 × t‖ ≤ ‖m̂1 × t‖,

m′
0
= m0 − (m0 · n̂1) n̂1 and m′

1
= m1. (12)

Otherwise,

m′
0
= m0 and m′

1
= m1 − (m1 · n̂0) n̂0 (13)

Proof. Refer to Appendix B. �

By substituting Rf0 and f1 into m0 and m1 in the above

lemma, the resulting m′
0

and m′
1

become the corrected rays

Rf
′
0

and f ′
1

that satisfy the L1 optimality, and n0 (or n1)

becomes the normal of the corresponding epipolar plane.

6. Closed-Form L2 Triangulation

Considering that the angular errors are small in practice,

the “relaxed” L2 triangulation finds the feature rays f ′
0

and

f ′
1

that minimize sin2(θ0)+sin2(θ1) (instead of θ2
0
+θ2

1
) sub-

ject to the epipolar constraint (8). Note that the small-angle

approximation by sin(θ) is more accurate than by tan(θ) or

1− cos(θ) that have been used in literature [7, 9, 12, 28, 3].

This is easily seen by comparing their Maclaurin expan-

sions. As will be shown in the following lemma (and previ-

ously in [24]), the relaxation with the sine function allows

us to derive the L2 optimal solution in closed form.

Lemma 3 (L2 Angle Minimization)

Given two skew lines L0(s0) = c0 + s0m0 and L1(s1) =
c1 + s1m1, consider any two intersecting lines that also

pass c0 and c1, respectively, i.e., L′
0
(s′

0
) = c0 + s′

0
m′

0
and

L′
1
(s′

1
) = c1+s

′
1
m′

1
. Let t = c0−c1, θ0 = ∠(L0,L

′
0
) and

θ1 = ∠(L1,L
′
1
). Then,

(
sin2 θ0 + sin2 θ1

)
is minimized for

m′
i = mi − (mi · n̂

′)n̂′ for i = 0, 1, (14)

where n̂′ is the second column of the 3× 3 matrix V from
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USV
⊺

= SVD
([

m̂0 m̂1

]⊺ (
I− t̂ t̂

⊺
))

. (15)

Proof. Refer to Appendix C. �

Analogously to the L1 method, substituting Rf0 and f1
into m0 and m1 in the above lemma gives Rf

′
0
= m′

0
and

f ′
1
= m′

1
that satisfy the L2 optimality.

7. Closed-Form L∞ Triangulation

The L∞ triangulation based on the angular reprojection

error (10) finds the feature rays f ′
0

and f ′
1

that minimize

max(θ0, θ1) subject to the epipolar constraint (8). The fol-

lowing lemma states that this is achieved when θ0 = θ1:

Lemma 4 (L∞ Angle Minimization)

Given two skew lines L0(s0) = c0 + s0m0 and L1(s1) =
c1 + s1m1, consider any two intersecting lines that also

pass c0 and c1, respectively, i.e., L′
0
(s′

0
) = c0 + s′

0
m′

0

and L′
1
(s′

1
) = c1 + s′

1
m′

1
. Let t = c0 − c1, na =

(m̂0 + m̂1) × t, nb = (m̂0 − m̂1) × t, θ0 = ∠(L0,L
′
0
)

and θ1 = ∠(L1,L
′
1
). Then, max (θ0, θ1) is minimized when

θ0 = θ1. This is achieved for

m′
i = mi − (mi · n̂

′)n̂′ for i = 0, 1, (16)

where
n′ =

{
na if ‖na‖ ≥ ‖nb‖

nb ohterwise
(17)

Proof. Refer to Appendix D. �

Analogously to the previous two methods, substituting

Rf0 and f1 into m0 and m1 gives Rf
′
0
= m′

0
and f ′

1
= m′

1

that satisfy the L∞ optimality.

8. Cheirality, Parallax and Outliers

We have used the term lines instead of rays in all lemmas

so far, ignoring the cheirality constraint [8]. We argue that

if the optimal solution violates the cheirality constraint, the

most reasonable choice is to simply discard the result. In

the following, we provide the rationale for this choice.

Fig. 4 illustrates five scenarios where the optimal solu-

tion violates the cheirality constraint. In case (a), both rays

have negative depths at the optimal intersection. Increasing

the allowed angular reprojection error, the first intersection

with positive depths occurs when the two corrected rays be-

come parallel, resulting in a point at infinity. This point

cannot be triangulated, so it should be discarded.

In the remaining cases, the optimal intersection involves

only one of the rays having a negative depth. Following the

same procedure, the first intersection with positive depths

occurs either at infinity (case (b)), at one of the camera cen-

ters (case (c)), along the ray parallel to the translation (case

(d)), or at a point somewhere else (case (e)).

In case (b), (c) and (d), the newly triangulated point has

either infinite, zero or ambiguous depth, so it is reasonable

to discard it. In case (e), we found that reattempting the

triangulation with positive depths yields either a very large

Input: Calib. matrix (K), relative pose (R, t), and a

match (u0, u1) from two views (C0, C1).

Output: Triangulated 3D point (x′
1
) in ref. frame C1.

1) f0 ← K–1u0, f1 ← K–1u1, m0 ← Rf0, m1 ← f1.

2) For L1 triangulation:

If ‖m̂0 × t‖ ≤ ‖m̂1 × t‖, use (12) to obtain

m′
0

and m′
1
. Otherwise, use (13).

For L2 triangulation:

Compute m′
0

and m′
1

from (14) and (15).

For L∞ triangulation:

Compute m′
0

and m′
1

from (16) and (17).

3) Rf
′
0
←m′

0
and f ′

1
←m′

1
.

4) Check cheirality:

(i) Obtain λ0 and λ1 from (11).

(ii) Discard the point and terminate if either

λ0 ≤ 0 or λ1 ≤ 0.

5) Check angular reprojection errors:

(i) θ0 ← ∠(Rf0,Rf
′
0
) and θ1 ← ∠(f1, f

′
1
).

(ii) Discard the point and terminate if

max(θ0, θ1) > ǫ1 for some small ǫ1.

6) Check parallax:

(i) β ← ∠(Rf
′
0
, f ′

1
)

(ii) Discard the point and terminate if

β < ǫ2 for some small ǫ2.

7) Compute and return x′
1

from (11).

Table 1. Summary of the proposed methods.

error, a point near the epipole or a low parallax angle. Typ-

ically, these are the indicators of low accuracy or an outlier

[10, 8], so a reasonable choice is to discard the match. This

procedure is outlined in Step 4–6 of Tab. 1.

9. Experimental Results

We evaluate the proposed methods in comparison to the

midpoint method [2, 10], Hartley and Sturm’s L1 and L2

method [10], Lindstrom’s L2 method with five iterations

[17], and Nı́ster’s L∞ method [23]. The evaluation was

performed on both synthetic and real datasets. We gener-

ated the synthetic datasets as follows: A set of 8 × 4 point

clouds of 2,500 points each are generated with a Gaus-

sian radial distribution N (0, (d/4)2) where d is the dis-

tance from the world origin. Each point cloud is centered at

[0, 0, d]⊺ for d = 2n with n = −1, 0, ...,+6, and their im-

age projections are perturbed by Gaussian noise N (0, σ2)
for σ = 0.5, 1, 2, 4, 8. The size and the focal length of

the images are 1, 024 × 1, 024 pixels and 512 pixel, re-

spectively. We have three configurations for the camera

poses: (1) “orbital” - the cameras at [±0.5, 0, 0]⊺ point-

ing at the point cloud center, (2) “lateral” - the cameras

at [±0.5, 0, 0]⊺ pointing at [0, 0,∞]⊺, and (3) “forward” -

2684



(a) Dinosaur (b) Model House (c) Corridor (d) Notre Dame (e) Fountain

Figure 3. Top row: Real dataset images. Bottom row: Main segments of the median reconstruction results using the proposed L1 method.

Figure 4. Five scenarios where the optimal solution violates the

cheirality constraint, and the possible reattempts for triangulation.

the cameras at [0, 0,±0.5]⊺ pointing at the point cloud cen-

ter. The poses are slightly perturbed with uniform noise

U(0, 0.01). For real datasets, we used the Oxford Dinosaur,

Model House and Corridor [1], Notre Dame [31] and Foun-

tain [4, 25] dataset. In total, the synthetic and real datasets

provide over 5.5 million unique triangulation problems in a

wide variety of geometric configurations.

Tab. 2 provides the percentage of the total matches (from

both synthetic and real datasets) for which each method

yields the lowest error in given criterion. In 100 % of the to-

tal triangulation problems, all three of our methods yield the

lowest errors in their corresponding optimal criterion. We

also see that minimizing sin2(θ0) + sin2(θ1) is very close

to minimizing θ2
0
+ θ2

1
, as discussed in Section 6. Since

our L1 angular method is numerically stable, it sometimes

finds better solutions than Hartley-Sturm’s closed-form L1
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Figure 5. 3D triangulation errors before (top) and after (bottom)

discarding the points with the lowest 5% parallax.

method [10] even in the L1 image error criterion (d0 + d1).

In Fig. 5, histograms are given for the 3D reconstruction

errors on the synthetic datasets. It shows that 1) discarding

low-parallax points (Step 6 of Tab. 1) helps to remove large

3D errors, and 2) all methods then exhibit similar 3D accu-

racy. Qualitatively, we also found that the reconstructions of

the real datasets look similar for all methods. Fig. 3 shows

the reconstruction results using the proposed L1 method.

We compare the speed of each algorithm in Tab. 3. The

midpoint method is the fastest, as it directly computes the

3D point using (11) without correcting the feature rays or

image points. Among the optimal methods, our L1 and L∞

methods are significantly faster than the rest, i.e., at least 1–

2 orders of magnitude faster than the state-of-the-art [17].
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Midpoint L1 img L2 img L2 img L∞ img
L1 ang L2 ang L∞ ang

[2, 10] [10] [10] 5 it. [17] [23]

E
rr

o
r

C
ri

te
ri

o
n

θ0 + θ1 - - - - - 100 % - -

θ20 + θ21 - - 7e-5 % 5e-5 % - - 99.9999 % -

sin2(θ0) + sin2(θ1) - - - - - - 100 % -

max(θ0, θ1) - - - - - - - 100 %

d0 + d1 - 70.84% 0.002% 0.002% - 29.16 % - -

d20 + d21 - - 23.14 % 76.86 % - - - -

max(d0, d1) - - - - 100 % - - -

Table 2. Percentage of the total matches (from all synthetic and real datasets) for which each method yields the lowest error in given

criterion. “img/ang”: optimal in the image/angular errors. See the supplementary material for the results from individual datasets.

Midpoint L1 img L2 img L∞ img L2 img L2 img
L1 ang L2 ang L∞ ang

[2, 10] [10] [10] [23] 2 it. [17] 5 it. [17]

Points/sec 42 M 65 K 92 K 270 K 1.4 M 520 K 29 M 670 K 14 M

Relative Speed 1.0 0.0016 0.0022 0.0064 0.033 0.013 0.71 0.016 0.33

Table 3. Speed of computing a 3D point. The relative speed is normalized by that of the midpoint method. Note that this does not take into

account Step 4–6 of Tab. 1. All algorithms were implemented in C++ and run on a laptop CPU (Intel i7-4810MQ, 2.8 GHz).

10. Conclusions

In this work, we derived optimal closed-form solutions to

theL1, L2 andL∞ stereo triangulation based on the angular

reprojection error. The proposed triangulation methods are

extremely simple and fast, and they guarantee global opti-

mality under respective cost functions. We believe that our

findings will be particularly useful for large-scale SfM and

real-time visual SLAM algorithms.
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Appendix

A. Proof of Lemma 1

Consider a right circular cone with apex c0 and axis L0,

lying sideways on a plane Π that contains c0 and line L1

(see Fig. 6). The equation of the plane is given by

Π(x) = n1 · (x− c0) = 0 with n1 = m1 × t. (18)

The line of intersection between the plane and the cone

forms the smallest angle to L0 among all possible lines on

the plane that pass c0. That is, it forms the smallest angle

to L0 among all possible lines that pass both c0 and L1.

Hence, this line of intersection must be L′
0
. Now, consider

a point a0 = c0 + m̂0 located one unit away from c0 along

L0. Let r be the projection of a0 onto plane Π. Accord-

ing to lemma 5 in Appendix E, the point r must be located

c0
c1

L0
L1
L'0

1 d

Π

p

a0

r
θ0

Figure 6. The angle θ0 is the smallest angle required for pivoting

line L0 at point c0 to make it intersect L1.

along L′
0
. Let d = ‖a0 − r‖, i.e., the distance between a0

and plane Π. Then, we obtain sin (θ0) as follows:

sin (θ0) = d
(3)
= |n̂1 · (a0 − c0)| = |n̂1 · m̂0|. �

B. Proof of Lemma 2

One of the following is true when (θ0+θ1) is minimized:

1. L′
0
6= L0 and L′

1
= L1 ←→ θ0 > 0 and θ1 = 0.

2. L′
0
= L0 and L′

1
6= L1 ←→ θ0 = 0 and θ1 > 0.

3. L′
0
6= L0 and L′

1
6= L1 ←→ θ0 > 0 and θ1 > 0.

Suppose, for the sake of argument, that one of the first

two statements is true. In the first case, lemma 1 states that

m′
0

is obtained by projecting m0 onto the plane with the

normal m1 × t, which leads to (12) and

sin(θ0) =
|m̂0 · (m1 × t)|

‖m1 × t‖
=
|m̂0 · (m̂1 × t)|

‖m̂1 × t‖
. (19)

Likewise, in the second case, lemma 1 leads to (13), and

sin(θ1) =
|m̂1 · (m0 × t)|

‖m0 × t‖

(1)
=
|m̂0 · (m̂1 × t)|

‖m̂0 × t‖
. (20)
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Now, the question is how to determine which of the two

statements is true. Comparing the right-hand side of (19)

and (20), we find that if ‖m̂0 × t‖ ≤ ‖m̂1 × t‖, then

min
θ0|θ1=0

θ0 ≤ min
θ1|θ0=0

θ1, (21)

and min(θ0+θ1) is equal to the left-hand side of (21), indi-

cating that the first statement is true. Naturally, the second

statement is true otherwise. Note that there is an ambigu-

ity if ‖m̂0 × t‖ = ‖m̂1 × t‖, and the solution is optimal

whichever case is considered. This concludes the proof of

lemma 2 for the first two cases.

We will now prove that the third case never occurs.

Given some angle θ1, minimizing (θ0 + θ1) is equivalent

to minimizing θ0. This is the identical situation as the first

case if we replace L1 by L′
1
. We know from the proof of

lemma 1 that pivoting a line to intersect another with min-

imum angle can be modeled by a cone lying sideways on

a plane. The top of Fig. 7 illustrates this. Similarly, the

bottom of Fig. 7 illustrates the minimization of θ1 with re-

spect to L′
0

given θ0. Now, since both planes touching each

cone contain the same two intersecting lines L′
0

and L′
1
,

they must be the same plane. Let this plane be Π′. Accord-

ing to lemma 1, L′
0

is the projection of L0 onto plane Π′.

Therefore,

m̂′
0
=

m̂0 − (m̂0 · n̂
′)n̂′

‖m̂0 − (m̂0 · n̂′)n̂′‖
, (22)

where n̂′ is the unit normal of plane Π′. Since Π′ contains

both c0 and c1, n̂′ is perpendicular to t = c0 − c1. Hence,

computing the dot product with t on each side of (22) yields

t · m̂′
0
=

t · m̂0

‖m̂0 − (m̂0 · n̂′)n̂′‖
. (23)

Note that ‖m̂0−(m̂0 · n̂
′)n̂′‖ corresponds to the magnitude

of the projection of m̂0 onto plane Π′ for non-zero θ0, so it

must be smaller than ‖m̂0‖ = 1. Thus,

|t · m̂′
0
| =

|t · m̂0|

‖m̂0 − (m̂0 · n̂′)n̂′‖
> |t · m̂0|. (24)

Using (2), this inequality can be written as

‖t× m̂′
0
‖ < ‖t× m̂0‖. (25)

Analogously, we can also derive

‖t× m̂′
1
‖ < ‖t× m̂1‖. (26)

Now, suppose that

min
θ0,θ1

(θ0 + θ1) = θ∗
0
+ θ∗

1
with θ∗

0
, θ∗

1
> 0. (27)

Without loss of generality, let us assume that ‖t × m̂0‖ ≤
‖t × m̂1‖. Then, (25) gives ‖t × m̂′

0
‖ < ‖t × m̂1‖. As

we discussed for the first two cases, this means that pivoting

L′
0

to intersect L1 takes smaller angle than pivoting L1 to

intersect L′
0
, i.e., θ′

0
< θ∗

1
. Thus

c0

c1

L0

L1

L'0

L'1

L'0

L'1

Π'

Π'

θ0

θ1

p

p

c0

c1

Figure 7. When two cones intersect at a single point p on their

lateral surface, they are tangent to the same plane containing p

and the apexes of each cone. For visualization purposes, we show

the two cones lying on each side of the plane separately.

θ∗
0
+ θ′

0
< θ∗

0
+ θ∗

1
. (28)

According to lemma 6 in Appendix E, pivoting a line twice

for intersection takes equal or greater angle than the single

minimum pivot angle. Therefore,

min
θ0|θ1=0

θ0 ≤ θ
∗
0
+ θ′

0
< θ∗

0
+ θ∗

1
, (29)

which contradicts (27). Therefore, (θ0 + θ1) is minimized

when either θ0 or θ1 is zero. �

C. Proof of Lemma 3

Given some angle θ1,
(
sin2 (θ0) + sin2 (θ1)

)
min

is

achieved by minimizing θ0 and vice versa. As discussed

in the proof of lemma 2, this means that the underlying ge-

ometry at
(
sin2 (θ0) + sin2 (θ1)

)
min

can be represented by

the two cones with apex c0, c1 and skew axes L0, L1, re-

spectively, touching each side of the same plane on their

lateral surface. This is visualized in Fig. 7. Let n′ be the

normal of plane Π′. From Lemma 1, we know that

sin (θ0) = |n̂
′ · m̂0| and sin(θ1) = |n̂

′ · m̂1|. (30)

Combining these two equations, we get

sin2 (θ0) + sin2 (θ1) = ‖M
⊺

n̂′‖2

with M =
[
m̂0 m̂1

]
.

(31)

Since plane Π′ contains both c0 and c1, n̂′ is perpendic-

ular to t = c0 − c1. Therefore, minimizing (sin2 (θ0) +
sin2 (θ1)) is equivalent to solving the following equality-

constrained quadratic programming problem:

argmin
n̂′

‖M
⊺

n̂′‖2, s.t. ‖n̂′‖ = 1 and t · n̂′ = 0. (32)

In [5], it was shown that this problem can be solved us-

ing the method of Lagrange multipliers, and ‖M
⊺

n̂′‖2 is
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minimized when n̂′ is the eigenvector corresponding to the

smallest nontrivial eigenvalue of A = (I − t̂ t̂
⊺

)MM
⊺

.

Letting P = (I − t̂ t̂
⊺

), it can be easily shown that

P = P
⊺

= P
⊺

P = PP
⊺

. Hence, A = PMM
⊺

=

PP
⊺

MM
⊺

. Note that for any square matrix X and Y,

the eigen-decomposition of XY is the same as that of YX.

This means that the eigenvectors of A = P
(
P

⊺

MM
⊺)

are

the same as those of
(
P

⊺

MM
⊺)

P = (M
⊺

P)
⊺

(M
⊺

P),

i.e., the right-singular vectors of M
⊺

P. Therefore, letting

USV
⊺

= SVD
(
M

⊺

P
)

with the diagonal entries of S in

descending order, the optimal n̂′ is given by the second col-

umn of V. Finally, projecting m0 and m1 onto plane Π′

leads to (14). �

D. Proof of Lemma 4

First, we show that θ0 = θ1 when max(θ0, θ1) is mini-

mized: Consider two cones with apex c0, c1 and skew axes

L0, L1. Constrain both their apertures to be 2θ. When

θ = 0, the they are simply two skew lines. As we gradually

increase θ, they will grow at the same rate, and eventually,

touch one another. Let θ = θ′ at this point. Now, suppose

θ∗ := min
θ0,θ1

max(θ0, θ1) < θ′. (33)

The definition of θ∗ implies that setting θ0 = θ1 = θ∗ will

make the two cones partially overlap in space (or at least

meet at a point). However, the they do not meet when θ0 =
θ1 < θ′. This is a contradiction, so the inequality in (33)

must be false, and θ∗ must be equal to θ′. That is, θ0 =
θ1 = θ′ in order for max(θ0, θ1) to be minimized.

We can now represent the underlying geometry at

(max(θ0, θ1))min as two congruent cones with skew axes,

touching each side of the same plane Π′ on their lateral sur-

face. This is the situation shown in Fig. 7 for θ0 = θ1. Let

n′ be the normal of plane Π′. Then, from lemma 1, we get

sin (θ0) = sin (θ1) = |n̂
′ · m̂0| = |n̂

′ · m̂1|. (34)

The last equality in (34) can be written as

(m̂0 + wm̂1) · n̂
′ = 0, (35)

where w is −1 or 1, depending on the signs of n̂′ · m̂0 and

n̂′ · m̂1. On the other hand, since plane Π′ contains both c0
and c1, n̂′ is perpendicular to t = c0 − c1:

t · n̂′ = 0. (36)

Combining (35) and (36), n̂′ can be expressed as

n̂′ = λ(m̂0 + wm̂1)× t (37)

where λ is the normalizing factor. Evaluating (37) at w = 1
and w = −1 gives two candidates for optimal n̂′. The op-

timal solution is then determined by comparing the values

of (34) with each candidate n̂′, which amounts to choosing

the solution with smaller λ. This procedure corresponds to

(17). Finally, projecting m0 and m1 onto plane Π′ with

optimal n̂′ leads to (16). �

c0

c1

L0*
L1
*

L1
L'0

L2
*

p

r0
q2

q1

p
q2

q1

ψ φ

(a) (b)

c0
τ

Figure 8. (a) Pivoting line L∗

0 in two steps (L∗

0 → L∗

1 → L∗

2) to

make it intersect to another line L1. (b) A tetrahedron formed by

point c0, p, q1 and q2.

E. Other Geometric Lemmas

Lemma 5 (Cone-On-Plane Perpendicularity)

When a plane is tangent to a right circular cone, the line of

intersection is the projection of cone’s axis onto the plane.

Proof. Consider a cone with axis L0 and plane Π tangent

to this cone. They are both symmetric with respect to the

plane that contains L0 and the normal of Π. Let this plane

of symmetry be Πsym. For any circular cross-section of the

cone, there is a single point touching Π. Therefore, this

point must lie on Πsym, and so must the line of intersection,

L′
0
. It follows that Πsym contains L0 and L′

0
. Since Πsym is

perpendicular to Π, L′
0

is a projection of L0 onto Π. �

Lemma 6 (Single vs Multi-Pivot for Intersection)

Given two skew lines L0(s0) = c0 + s0m0 and L1(s1) =
c1 + s1m1, let L′

0
be the line that forms the smallest angle

θ0 ∈ [0, π/2] to L0 among all possible lines that inter-

sect both point c0 and line L1. For any positive integer N ,

consider the following arbitrary lines passing c0 such that

L∗
i (s

∗
i ) =

{
L0 for i = 0

c0 + s∗im
∗
i for i = 1, 2, · · · , N

where only L∗
N intersects L1. Then,

θ0 ≤
N∑

i=1

∠(L∗
i , L

∗
i−1

). (38)

Proof. The right-hand side of (38) corresponds to the sum

of N pivot angles that make line L0 to intersect L1. Fig.

8a depicts such operation for N = 2. Let φ = ∠ (L∗
0
, L∗

1
),

ψ = ∠ (L∗
1
, L∗

2
) and τ = ∠ (L∗

0
, L∗

2
). Now, consider three

arbitrary points p, q1 and q2 on L∗
0
, L∗

1
and L∗

2
, respec-

tively. A tetrahedron formed by these three points and c0
are shown in Fig. 8b. At a vertex of a tetrahedron, the three

edges form three angles such that the sum of any two an-

gles is greater than the third one [18, 15]. Thus, τ ≤ φ+ψ.

Since θ0 is the minimum pivot angle for intersection, we

have θ0 ≤ τ ≤ φ+ ψ, which proves (38) for N = 2. Now,

for N > 2, we know that replacing the last two pivots by

the corresponding single minimum pivot will produceN−1
pivots that take equal or smaller angle. Repeating this pro-

cess until N = 1 proves (38) for any N > 2. �
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[22] Raúl Mur-Artal and Juan D. Tardós. ORB-SLAM2: an

open-source SLAM system for monocular, stereo and RGB-

D cameras. IEEE Trans. Robotics, 33(5):1255–1262, 2017.

1

[23] David Nı́ster. Automatic Dense Reconstruction from Uncal-

ibrated Video Sequences. PhD thesis, KTH, 2001. 1, 2, 4,

6

[24] John Oliensis. Exact two-image structure from motion. IEEE

Trans. Pattern Anal. Mach. Intell., 24(12):1618–1633, 2002.

1, 2, 3

[25] Carl Olsson, Olof Enqvist, and Fredrik Kahl. Stable struc-

ture from motion for unordered image collections. In Image

Analysis, pages 524–535, 2011. 5

[26] Carl Olsson, Anders Eriksson, and Richard Hartley. Outlier

removal using duality. In IEEE Conf. on Computer Vision

and Pattern Recognition, pages 1450–1457, 2010. 2

[27] Alain Pagani and Didier Stricker. Structure from motion us-

ing full spherical panoramic cameras. In IEEE Int. Conf. on

Computer Vision Workshops, pages 375–382, 2011. 1

[28] Shawn Recker, Mauricio Hess-Flores, and Kenneth I. Joy.

Statistical angular error-based triangulation for efficient and

accurate multi-view scene reconstruction. In IEEE Workshop

on Applications of Computer Vision, pages 68–75, 2013. 2,

3

[29] Johannes L. Schönberger and Jan-Michael Frahm. Structure-

from-Motion revisited. In IEEE Conf. on Computer Vision

and Pattern Recognition, pages 4104–4113, 2016. 1

[30] Kristy Sim and Richard Hartley. Removing outliers using the

L∞ norm. In IEEE Conf. on Computer Vision and Pattern

Recognition, volume 1, pages 485–494, 2006. 2

[31] Noah Snavely, Steven M. Seitz, and Richard Szeliski. Photo

tourism: exploring photo collections in 3D. ACM Trans.

Graph., 25(3):835–846, 2006. 5

[32] Henrik Stewénius, Frederik Schaffalitzky, and David Nister.

How hard is 3-view triangulation really? In IEEE Int. Conf.

on Computer Vision, volume 1, pages 686–693, 2005. 1

[33] Beau Tippetts, Dah Jye Lee, Kirt Lillywhite, and James

Archibald. Review of stereo vision algorithms and their suit-

ability for resource-limited systems. Journal of Real-Time

Image Processing, 11(1):5–25, 2016. 1

2689


