

Abstract

This paper presents a monocular indirect SLAM system

which performs robust initialization and accurate

localization. For initialization, we utilize a matrix

factorization-based method. Matrix factorization-based

methods require that extracted feature points must be

tracked in all used frames. Since consistent tracking is

difficult in challenging environments, a geometric

interpolation that utilizes epipolar geometry is proposed.

For localization, 3D lines are utilized. We propose the use

of ݈ܲݑሷ ݎ݁݇ܿ line coordinates to represent geometric

information of lines. We also propose orthonormal

representation of ݈ܲݑሷ line coordinates and Jacobians ݎ݁݇ܿ

of lines for better optimization. Experimental results show

that the proposed initialization generates consistent and

robust map in linear time with fast convergence even in

challenging scenes. And localization using proposed line

representations is faster, more accurate and memory

efficient than other state-of-the-art methods.

1. Introduction

Nowadays, the interests of visual SLAM(Simultaneously

Localization and Mapping) has been increased since it has

been used for augmented reality, autonomous driving car,

and robotics as an important component. Moreover, the

monocular camera has been widely considered for the

visual SLAM due to not only its inexpensiveness but also a

widely used equipment in many industries. However,

monocular visual SLAM has several drawbacks such as

scale drift, pure rotation, etc., which come from the use of

single image to operate the system [1].

In particular, map initialization in monocular visual

SLAM is more challenging than sensor-based SLAMs.

Since map initialization is highly related with the system

performance, special efforts should be made on robust

initialization. Conventional initialization methods in

indirect (feature-based) monocular visual SLAM utilize

feature points to optimize the system by minimizing

geometric errors [10, 14]. These methods find

corresponding feature points between two frames, calculate

relative camera pose, and then reconstruct 3D landmarks

using them. However, the estimated camera pose calculated

from the estimated fundamental matrix has multiple

solutions, or the one from homography is specified for

movement on planar scene only. Model selection between

fundamental matrix and homography is also tricky as

discussed in [2, 10]. In addition, highly restricted criterions

such as detecting low-parallax cases and twofold planar

ambiguity [3] causes initialization to fail. Moreover, frames

are simply abandoned when the initialization is failed which

may slow down convergence.

In contrast, direct (pixel-based) monocular visual SLAM

systems that use pixel-wise matching for minimizing

photometric errors generate random initial map and update

it using consecutively associated data. However, these

methods may generate unstable result as discussed in [4].

Besides, Direct-based methods are accurate only if the input

images are rectified by photometric calibration [5, 6].

Currently, Tang et al. [7] suggested robust initialization

based on rank-1 matrix factorization. This method

generates initial map free from model selection problem.

Furthermore, this method guarantees fast convergence with

linear time by optimizing all involved cameras and points

simultaneously. However, to operate matrix factorization,

all feature points that are used for matrix factorization must

be tracked in all using frames. To address this problem,

Tang et al. used KLT tracking-based system to track feature

points. However, this method is highly relied on the

performance of KLT tracking [8]. And it may be failed by

illumination change and large baseline movement as

discussed in [9]. Moreover, by the nature of KLT tracking,

lost features are hardly recovered. Therefore, KLT-based

SLAM only utilizes RANSAC-based n-points algorithms

[25, 26, 27] for pose estimation that is less accurate than

state-of-the-art indirect SLAM systems [10, 11].

Another critical issue in monocular SLAM is localization.

For robust localization, current methods utilize line and

point features simultaneously [12, 20]. Line is a geometric

primitive that has dual relation with point, thus it produces

valuable geometric information as important as point even

though the representation is different. Pumarola, et al.

proposed the state-of-the-art method using points and lines

[12]. This method represents a line segment with its two

endpoints, and reconstructs a 3D line by triangulating each

Elaborate Monocular Point and Line SLAM with Robust Initialization

Sang Jun Lee

School of Computer Science and Electrical

Engineering

Handong Global University, Korea
eowjd4@naver.com

Sung Soo Hwang

School of Computer Science and Electrical

Engineering

Handong Global University, Korea
sshwang@handong.edu

1121

endpoint. All optimization of re-projection error on 3D line

is operated as optimizing two 3D endpoints that are over

parameterized. Even though the endpoints representation of

line is also a good approach, this cannot reliably reconstruct

3D lines due to endpoints shifting. Assume there is a

detected line segment lying on a projected line from a 3D

straight line. Even if two endpoints of the line segment are

shifted on the projected line, line’s internal coefficients are

same yet the positions are different. This causes a factor of

deficiency of the system.

In this paper, we propose a robust initialization and

localization method for monocular indirect visual SLAM.

For robust initialization, we utilize rank-1 factorization. In

feature-based indirect method, features are hardly tracked

in all frames, so in order to handle this problem, we propose

a geometric interpolation utilizing a computational trick[1,

36]. The geometric interpolation is based on well-known

epipolar constraint to make all features to be tracked in all

frames, and the computational trick is proposed for efficient

computation of essential matrices for the geometric

interpolation.

For accurate localization, the proposed method utilizes Pluሷ cker line representation which represents 3D lines

geometrically well in homogeneous coordinates.Pluሷ cker
line representation has less parameters than endpoints

representation, and there is no shifting situation. Thus, this

representation is computationally cheaper and more

geometrically robust than endpoints representation. Even

though Pluሷ cker line representation has been utilized in

other SLAMs [18-23], to our best knowledge, this is the

first approach to use Pluሷ cker line representation in

monocular indirect SLAM. In addition, we employ their

orthonormal representation in which minimal parameters

are retained. Based on this parameterization, Jacobians of

lines are analytically calculated for pose and line graph

optimization and they update line by decoupling lines

without any gauge-freedoms. It leads the line optimization

to be geometrically robust, efficient, and fast. Finally, we

suggest solving degeneracy of line reconstruction occurred

from two-view reconstruction by n-view reconstruction

verified by the proposed initialization.

This paper is organized as follows. Section 2 and 3

demonstrate details of the factorization-based initialization

and point-line SLAM using Pluሷ cker coordinates,

respectively. Then, we explain implementation details in

Section 4. Section 5 evaluates the experiments, and Section

6 concludes this paper.

2. Robust initialization

Figure 1 shows the outline of the proposed rank-1

factorization-based initialization. The proposed

initialization method associates subsequent m frames from

initial frame and n feature points that are tracked in all m

frames to make a matrix A as shown in Figure 1. (b).

However, feature matching by using its descriptor may not

be tracked in all frames. Therefore, the proposed geometric

interpolation obtains n feature points as being tracked in all

m frames as shown in Figure 1. (a). We demonstrate more

details how to construct matrix A in Section 3.1 and how

the geometric interpolation is performed in Section 3.2.

For all notations in this paper, we use bold-type for a

vector regardless of uppercase and lowercase, uppercase

without bold-type is used for matrix, and italic-type is used

for a scalar or index. All points are in homogeneous

coordinates, i.e., ܠ = ,ത୘ܠ) 1)୘ ∈ ℝଷ, ܆ = ,ഥ୘܆) 1)୘ ∈ ℝସ

where upper-bar at ܠത indicates inhomogeneous coordinates.

In addition, line and plane are basically represented in

homogeneous coordinates.

2.1. Point-camera constraints & factorization

To factorize a matrix into all camera poses and 3D points

simultaneously, all entities in a matrix must be filled by

point-camera constraints widely used in SfM [7, 16, 17]

illustrated in Figure 2.

Let ܨ௜ is i-th frame and ܋௜ is the camera position of	ܨ௜ ,
then ܨ଴ is initial frame and ܋଴ is the camera position of	ܨ଴

located at origin. ܘ௞ is a k-th 3D point with inverse depth ݀௞ viewed from ܨ଴. Because ݀௞ is unknown, ݀௞ is set by

one to make derivation simple and it is generalized later.

Then, ܘ௞ becomes the ray viewed from ܋଴ computed by

normalizing the corresponding feature point in	ܨ଴.

Assuming there is no noise, the ܋௜ becomes

௜܋		 = ௜ܜ଴௜ݏ = ௞ܘ − ௜௞, (1)ܘ௜௞ݏ

where ݏ଴௜ and ݏ௜௞ are scale coefficients for that constraints, ܘ௜௞ is R௜୘ܘ௞ , and the translation ܜ௜ and rotation R௜ are

camera pose of ܋௜. The camera pose can be calculated by

eight-point algorithm [25] or five-point algorithm for

rotation [26] and two-point algorithm for translation [27].

(a)

(b)

Figure 1: Overview of rank-1 factorization-based initialization. (a)

Data association using geometric interpolation, (b) Rank-1

factorization using associated data from (a).

Initial Frame Current FrameInter-frames⋯ ⋯
m frames

Geometric interpolation  full tracked n feature points

n≈ ×3m

n

3m

1

1

A C

D

1122

However, noise always exists in real data, ܋௜ is

approximated by the midpoint of two representations as:

௜܋														 ≈ 12 ܉) + (܊ = 12 ௜ܜ଴௜ݏ) + ௞ܘ − (2)										௜௞),ܘ௜௞ݏ

and ݏ଴௜ and ݏ௜௞ can be estimated by solving the simple

matrix equation as:

 																																ቈ ௜௞୘ܘ௜୘ܜ ቉ ܉) − (܊ = ૙ଶ×ଵ.																												(3)

Then, we now rewrite Equation (2) replacing ௜ܜ	 to 	R(߱௜௞) ∙ ௞ܘ ௞ that is the rotation matrix around the axisܘ ௞ that is the rotationܘ(௜௞ߠ)R	௜௞ toܘ ߱௜௞, and	௜ for an angleܜ×

matrix around the axis ܘ௞ × :௜௞, asߠ	௜௞ for an angleܘ

௜܋					 ≈ 12 ௞ܘ଴௜R(߱௜௞)ݏ) + ௞ܘ − (௞ܘ(௜௞ߠ)௜௞Rݏ = ௜௞ܞ ,					(4)

where ۯ௜௞ = ௞ܘ଴௜R(߱௜௞)ݏ)1/2 + ௞ܘ − (௞ܘ(௜௞ߠ)௜௞Rݏ is a

known vector. By generalizing ܘ௞ in Equation (4) to 1/݀௞ ௜܋	 ௞ by using inverse depth, we finally get the equationܘ∙ ≈1/݀௞ ∙ ௜௞, and we solveܞ

 																			arg min܋೔సభ⋯೘܌ೖసభ⋯೙෍෍ ∥ ௜݀௞܋ − ௜௞ۯ ∥ଶଶ௡
௞ୀଵ

௠
௜ୀଵ ,																	(5)

where m is the number of subsequent frames that are used

for matrix factorization, and n is the number of key points

that are tracked in all m frames, ∥ ௜݀௞܋ − ௜௞ۯ ∥ଶଶ is a

reweighted geometric error suggested in [7]. We solve

Equation (5) by rank-1 factorization because depth has rank

one. Equation (5) can be solved by using SVD (Singular

Value Decomposition) with Lanczos algorithm [28] that is

an adaption of power methods to find one eigen vector

corresponding to the most useful one eigenvalue. Therefore,

a known matrix Aଷ௠×௡ is decomposed into camera position

matrix Cଷ௠×ଵ and depth matrix Dଵ×௡	 while reconstructing

all cameras and depths simultaneously.

2.2. Matrix completion by geometric interpolation

In order to apply factorization-based initialization to

indirect SLAM system, we conduct geometric interpolation

for matrix completion. For precise estimation of location of

un-matched feature points, we utilize epipolar geometry to

estimate appropriate location using known camera poses.

We first demonstrate how to interpolate the location, and

then show how to conduct geometric interpolation.

 As shown in Figure 3, given all the camera poses as

initial frame ሾI|૙ሿ , current frame ሾR|ܜሿ௖ and subsequent

inter-frames ሾR|ܜሿ௜ୀଵ⋯௖ିଵwith a matching pair ܠത଴ ↔ ത௖onܠ

initial frame and current frame, the interpolated point ܠത௜ in

an inter-frame is estimated by intersecting two epipolar

lines ܔ଴, ௜ܠ ௖ asܔ = ଴ܔ × ଴ is calculated forwardܔ ௖. The lineܔ

from initial frame as ܔ଴ = E଴௜ ଴ܠ where E଴௜ is the essential

matrix constructed by the relative pose ሾR|ܜሿ௜ from initial

frame to i-th inter-frame. The line ܔ௖ is calculated backward

from current frame ܔ௖ = E௖௜ܠ௖ where Eୡ௜ is constructed by

relative pose ሾR|ܜሿ௜	ሾR|ܜሿ௖ି ଵ from current frame to i-th inter-

frame. In the Figure 3, ‘→ ’ indicates the relation of

constructing relative camera pose to essential matrix

formed as ሾܜሿ×R where ሾ∙ሿ× indicates the skew-symmetric

matrix of a vector.

When the geometric interpolation is operated, it

calculates the essential matrix from current frame to an inter

frame. It needs the inverse matrix of the current frame’s

camera pose that leads to over computation in interpolation

for all features to be tracked in all frames. To prevent the

calculation of the inverse matrix, we utilize the face that

frames of SLAM system have been captured sequentially.

The idea is to pre-calculate some of valuable information of

each frame to avoid calculation of inverse. We notice that

the essential matrix from current frame to inter frames can

be obtained by incrementally multiplying the essential

matrices between the inter frame and its next inter frame in

the backward direction from current frame to initial frame.

To this end, we store E଴௖ and relative pose from previous

frame ሾR|ܜሿ௖ିଵ௖ = ሾR|ܜሿ௖ିଵିଵ ሾR|ܜሿ௖ with its inverse ሾR|ܜሿ௖௖ିଵ

in every time. Then, it is easy to calculate essential matrix

from current frame to inter-frames as like as chain rule

when the interpolation is operated. For an example, a point

in i-th frame is interpolated by backward process from

current frame calculating the position using two essential

matrix one from initial frame E଴௜ constructed by own

camera pose ሾR|ܜሿ௜ , and another one from current frame E௖௜ = E௜ାଵ௜ 	E௜ାଶ௜ାଵ⋯E௖ିଵ௖ିଶE௖௖ିଵ , which is obtained by

incremental multiplication of pre-stored inverse matrix as

shown in Figure 4. Utilizing this method, after subsequent

m frames are stacked, each and all matched feature points

between initial frame and current frame is interpolated, and

matrix factorization is operated.

The outliers of points that are used for matrix completion

are rejected by symmetric epipolar distance [1]. We use

3.84 based on ࣲଶ distribution test at 95% for the threshold

of symmetric epipolar distance. Furthermore, to avoid

degeneracy that is occurred when the movement of features

Figure 2: Point-camera constraints.

ܜ ௜
߱௜௞ ଴܋௜௞ߠ

௜܋

௞ܘ
௜௞ܘ−

܉ = ܜ଴௜ݏ ௜ ܊ = ௞ܘ − ௜௞ܘ௜௞ݏ

1123

lies on the epipolar plane in geometric interpolation, we

reject the features from matrix completion if an interpolated

feature lies on epipolar plane calculated from initial frame

and current frame have the angle between -5 and 5 degree.

3. Line-based localization

In this Section, we demonstrate the proposed line-based

localization. We utilize Pluሷ cker coordinates and their

orthonormal representation to reconstruct and represent 3D

lines. We introduce the concept of those representations in

homogeneous coordinates in Section 3.1, and define the re-

projection error and the cost function with regard to those

representations to optimize pose and line graph for the

system in Section 3.2. Then, we explain line reconstruction

methods solving several degeneracy cases in Section 3.3.

ሷܝܔ۾ .3.1 orthonormal representation & ܚ܍ܓ܋

3D line represented by Pluሷ cker coordinates consists of

two 3D points ܆ଵ~(܆ഥଵ் ୘according to(ଶݎ|ഥଶ்܆)~ଶ܆ ଵ)୘ andݎ|

the way in [34] as following Equation (6):

ۺ																																	 = ቂ܌ܕቃ ∈ ℙହ ⊂ ℝ଺,																													(6)

where ܌ = ഥଶ܆ଵݎ − ഥଵ܆ଶݎ is direction vector, and ܕ = ܌ ഥଵis moment vector that indicates normal of the line. Pluሷ܆× cker coordinates described in [1] represent line with

5 d. o. f (degree of freedom) in homogeneous coordinates

satisfying Klein quadric constraints ܕ୘܌ = 0. In addition, Pluሷ cker coordinates also can apply linear projection in

homogeneous coordinates. When K is camera intrinsic

matrix with squared pixel, and T௖௪ is extrinsic matrix for a

3D point as:

 																K = ൥ ௫݂ 0 ܿ௫0 ௬݂ ܿ௬0 0 1 ൩ , T௖௪ = ൤R௖௪ ௖௪૙୘ܜ 1 ൨.												(7)

Then, intrinsic matrix ࣥ and extrinsic matrix ℋ for a 3D

line are as follows:

 																												ࣥ = ቎ ௬݂ 0 00 ௫݂ 0− ௬݂ܿ௫ − ௫݂ܿ௬ ௫݂ ௬݂቏,																												(8) 																									ℋ௖௪ = ൤R௖௪ ሾܜ௖௪ሿ×R௖௪0ଷ×ଷ R௖௪ ൨.																							(9)

However, Pluሷ cker coordinates also have two gauge-

freedom itself, so orthonormal representation of Pluሷ cker
coordinates is suggested to parameterize it to minimal four

parameters [29].

Any Pluሷ cker coordinates can be represented by

orthonormal representation (U,W) ∈ ܱܵ(3) × ܱܵ(2)
where ܱܵ(∙) is special orthogonal groups of Lie algebra [30]

as: 																					U = ൤ ∥ܕ ܕ ∥ ∥܌ ܌ ∥ ܕ × ∥܌ ܕ × ܌ ∥൨,														(10) 																					W = 1∥ ܕ ∥∥ ܌ ∥ ቂ ∥ ܕ ∥ ∥ ܌ ∥−∥ ܌ ∥ ∥ ܕ ∥ቃ.												(11)
 U and W can be updated as U ← UR(ી) where ી ∈ ℝଷ

and W ← WR(ߠ) where ߠ ∈ ℝ, respectively, and rotation

matrix R(ી) is represented by exponential map. Therefore, ઼ી = ሾી୘, ሿߠ ∈ ℝସ is the four minimal parameters to update

orthonormal representation. The 	Pluሷ cker coordinates can

be recovered from orthonormal representation as ۺ୘~൫ݓଵଵܝଵ୘, ௜ܝ W, and	୧୨ is an element inݓ ૛୘൯, whereܝଶଵݓ
is the i-th column of U. The orthonormal representation is

used for the optimization of the re-projection errors on line.

3.2. Point-line & pose graph optimization

Now, we define line re-projection error between

estimated line and observed line segment for line and pose

graph optimization.

Let ۺ௪ is a Pluሷ cker line in 3D-space, then	Pluሷ cker line ۺ௖ in camera coordinates and line ܔ௖ in image space that

projected by ۺ௖ are obtained as:

௖ۺ											 = ቂܕ௖܌௖ ቃ = ℋ௖௪ۺ௪ 		, ௖ܔ = ௖ܕࣥ ∈ ℝଷ.													(12)

Then, we define orthogonal distance between ܔ௖ and

measured two endpoints ܠ௦, ௘ܠ from the observed line

segment ࢠ as: 																			d(ࢠ, (௖ܔ = ቈ ௖ඥ݈ଵଶܔ௦୘ܠ + ݈ଶଶ , ௖ඥ݈ଵଶܔ௘୘ܠ + ݈ଶଶ቉୘ ,																	(13)

Figure 4: Efficient operation for geometric interpolation. ܠ௞ is a

feature point matched between initial frame and current frame.

ଵܨ଴ܨ௞ܠ
ଶܨଵܨ଴ܨ௞ܠ

௞ܠ ௞ሾI|૙ሿRܠ ܜ ଴ଵ ⟼ E଴ଵR ܜ ଴ଶ ⟼ E଴ଶ
R ܜ ଴଺ ⟼ E଴଺

⋯

R ܜ ଵଶR ܜ ଶଷ
R ܜ ହ଺

⋯

R ܜ ହ଺ିଵ ⟼ E଺ହ
R ܜ ଶଷିଵ ⟼ EଷଶR ܜ ଵଶିଵ ⟼ Eଶଵ

E଴଺ , E଻଺
଺ܨହܨସܨଷܨ

଻ܨ଺ܨହܨସܨଷܨଶܨଵܨ଴ܨ
E଴ହ , E଻ହ = E଺ହ ∗ E଻଺E଴ସ , E଻ସ = Eହସ ∗ E଻ହE଴ଷ , E଻ଷ = Eସଷ ∗ E଻ସE଴ଶ , E଻ଶ = Eଷଶ ∗ E଻ଷ⋯ ⋯

Figure 3: Overview of geometric interpolation. Using two points

in initial frame and current frame estimates interpolated points in

inter-frames.

⋯ ⋯Initial Frame An inter Frame Current Frame

଴ܔ = E଴௜ܠ଴ ௖ܔ = E௖௜ܠ௖ܠ଴ ௖ܠ
R ܜ ௜ ⟼ E଴௜ ܜ = ௜ ×R௜ R ܜ ௜ R ܜ ௖ି ଵ ⟼E௖௜

௜ܠ = ଴ܔ × ௖ܔ
ሾI|૙ሿ R ܜ ௜ R ܜ ௖

1124

where d(∙) is the distance function.

The camera pose T௞௪ , the 3D point position ܆௪௜, and the

position of 3D line ۺ௪௝ are denoted as vertices in the graph

model. In the graph model, a vertex of T௞௪ connects each ܆௪௜ and ۺ௪௝ as two types of edges. Then, the re-projection

errors in the edges are as follows:

௞௜݌ܧ							 = ௞௜ܠ − ,(ഥ௪௜܆KT௞௪)ߨ ௞௝݈ܧ = d൫ࢠ௞௝ , (14)						௞௝൯,ܔ

where ݌ܧ௞௜ and ݈ܧ௞௝ indicate the re-projection errors for

point and line, respectively, ܠ௞௜ is the measured position of

feature point corresponding 3D point ܆௪௜ in image, π(∙)
represents inhomogeneous 2D points dividing by last

element in homogeneous coordinates, and ௞௝ܔ = ௞௝ܕࣥ ,
where	ۺ௞௝ = ௞௝୘ܕൣ ௞௝୘܌ ൧୘ = ℋ௞௪ۺ௪௝ .
 Therefore, the cost function C for point-line and pose

graph optimization is constructed as:

ܥ	 =෍݌ܧ)ߩ௞௜୘ Σ݌௞௜ିଵ݌ܧ௞௜)௞,௜ +෍݈ܧ)ߩ௞௝୘ Σ݈௞௝ିଵ݈ܧ௞௝)௞,௝ ,			(15)

where ߩ(∙) is robust Huber cost function, Σ݌௞௜ିଵ and Σ݈௞௝ିଵ

are information matrix of point and line as their inverse

covariance matrices.

To get Jacobians according to line re-projection error to

optimize the cost function C as an iterative approach, we

calculate analytic computed Jacobians for line parameters

and camera poses. We skipped derivation about point, as it

is well known. The Jacobians for line can be analytically

calculated by chain rule to make derivation simple using

following derivations. First, the partial derivative of re-

projection of line ݁௟ = d(ࢠ, is ܔ with respect to the line (ܔ

given by:

				∂݁௟∂ܔ = 1ඥ݈ଵଶ + ݈ଶଶ ێێۏ
௦ݔۍێ − ݈ଵܠ௦ܔඥ݈ଵଶ + ݈ଶଶ ௦ݕ − ݈ଶܠ௦ܔඥ݈ଵଶ + ݈ଶଶ 1
௘ݔ − ݈ଵܠ௘ܔඥ݈ଵଶ + ݈ଶଶ ௘ݕ − ݈ଶܠ௘ܔඥ݈ଵଶ + ݈ଶଶ ۑۑے1

ېۑ
ଶ×ଷ

.			(16)

Then, partial derivatives of l with respect to ۺୡ, and ۺୡ
by ۺ୵ are as follows:

 																					 ௖ۺ∂ܔ∂ = ௖ۺ∂௖ܕࣥ∂ = ሾࣥ 0ଷ×ଷሿଷ×଺,																		(17) 																					∂ۺ௖∂ۺ௪ = ∂ℋ௖௪ۺ௪∂ۺ௪ = ℋ௖௪ .																																(18)

We use orthonormal representation to update minimal

parameters of ۺ୵, so we directly write Jacobian of ۺ୵with

respect to ઼ી suggested in [29] :

௪∂઼ીۺ∂	 = ൤ ૙ଷ×ଵ ଷܝଵଵݓ− ଷܝଵଶݓଶܝଵଵݓ ૙ଷ×ଵ ଵܝଵଶݓ− ଶܝଵଵݓଵܝଵଶݓ− ൨଺×ସ . (19)

For camera pose update, Jacobian matrix for camera pose

in camera coordinates is given by:

௖∂઼૆ۺ∂									 = ൤−ሾRܕሿ× − ሾሾܜሿ×R܌ሿ× −ሾR܌ሿ×−ሾR܌ሿ× 0ଷ×ଷ ൨଺×଺ ,						(20)

where ઼૆ denotes the parameters of camera pose. The

Equation (20) is derived by Zuo et al. in [20].

Finally, the complete Jacobians of re-projection error of

line for line and camera pose are as follows respectively:

ીܬ																										 = ∂݁௟∂઼ી = ∂݁௟∂ܔ ௖ۺ∂ܔ∂ ௪ۺ∂௖ۺ∂ ௪∂઼ીۺ∂ ૆ܬ																										 (21)																	, = ∂݁௟∂઼૆ = ∂݁௟∂ܔ ௖ۺ∂ܔ∂ ௖∂઼૆ۺ∂ .																											(22)

All optimization with respect to line is conducted by the

analytically computed Jacobians in iterative approaches.

3.3. Line reconstruction

Reconstruction of 3D Line using two-views is conducted

by following steps. Given two camera projection matrices Pଵ, Pଶ where P௜ = KT௜ ∈ ℝଷ×ସ , and matched each line

segments ࢠଵ, ଶࢠ in each camera image, where ࢠ includes

two endpoints {ܠ௦, :௘}. Constructing two planes ૈଵ, ૈଶ asܠ

 																																		ૈଵ = ,ଵ୘Pଵܔ ૈଶ = (23)																								ଶ୘Pଶ,ܔ

where ܔ = ௦ܠ × ௘. We can construct dual Pluሷܠ cker matrix

[1] L௪∗ = ૈଵૈଶ୘ − ૈଶૈଵ୘ ∈ ℝସ×ସ . Because dual Pluሷ cker
matrix has the properties,

 																																					L∗ = ൤ ሾ܌ሿ× ୘ܕ−ܕ 0 ൨,																												(24)

we can directly extract Pluሷ cker coordinates (ܕ୘, .୘)୘܌

However, Reconstruction using two frames has

degeneracy when the measured line lies on epipolar plane

that is discussed in [1]. Furthermore, it mis-creates 3D lines

when a line is mismatched because Equation (23) and

Equation (24) generates 3D line unconditionally whatever

the matching is right as illustrated in Figure 5 (a).

 We use n-views 3D line reconstruction to address these

problems. To reconstruct 3D line by n-views, all planes ܔ୧୘P୧, (݅ = 1⋯݊) are stacked on matrix ࣱ:

																																								ࣱ = ێێۏ
ۑۑے௡୘P௡ܔ⋮ଶ୘Pଶܔଵ୘Pଵܔۍ

ې
௡×ସ

.																												(25)

By singular value decomposition of ࣱ as ሾS, D, Vሿ =SVD(ࣱ), we get two dominant planes ૈଵ, ૈଶ by taking two

1125

columns of V corresponding to the two largest singular

values. Then, 3D line can be reconstructed as same way by

Equation (23) and Equation (24).

 After reconstructing 3D line, it needs to recover two 3D

endpoints for visualization. Because the measured

endpoints projected from 3D endpoints of line are similar

to endpoints of observed line segment, we use the way to

use intersection plane suggested in [18] rather than directly

back-projection of observed endpoints due to noise as

shown in Figure 5 (b).

Given an observed line segment ࢠ = ,௦ܠ} {௘ܠ and

estimated line ܔ, in the case of starting point, we compute

closest points ୄܠୱ of ܠ௦ to ܔ by calculating intersection

point with a line ୄܔ௦ perpendicular to ܔ as:

ୱୄݔ																							 = −൬ݕ௦ − ݈ଶ݈ଵ ௦ݔ + ݈ଷ݈ଶ൰ ݈ଵ݈ଶ݈ଵଶ + ݈ଶଶ ୱୄݕ																							 (26)												, = − ݈ଵ݈ଶ ௦ݔ 	− ݈ଷ݈ଶ .																																							(27)

Calculating ܠ଴௦ intersecting x=0 with lying on ୄܔ௦ as:

଴௦ݔ																							 = 0, ଴௦ݕ = ௦ݕ − ݈ଶ݈ଵ ௦ݔ .																												(28)

We can compute 3D plane by

 																					ૈ௦ = P୘ܔ௖௦ , where	ܔ௖௦ = ௦ୄܠ × (29)												଴௦.ܠ

Given Pluሷ cker line coordinates,ۺ = ,୘ܕ) ୘)୘, we can܌

construct Pluሷ cker matrix L and 3D starting endpoint ۲௦
can be recovered as:

 																						۲௦ = Lૈ௦, where	L = ൤ሾܕሿ× ୘܌−܌ 0൨,												(30)

and this process is done for ending point as well.

For n-view reconstruction, we select three-views(initial

frame, middle frame, and current frame) for initialization.

For local mapping, three closest key frames from current

key frame are selected. A 3D line generated by three-views

is rejected if the line does not satisfy i)Klein quadric

constraints ܕ୘܌ <0.01 or ii)perpendicular distance

between projected line and endpoints of corresponding line

segment is less than one in any view. If a line is failed to be

generated, then it is tried to be generated by two-view

reconstruction using the criterion of point feature

reconstruction with regard to each endpoint suggested in

[10] to prevent endpoints shifting. All the re-projection

error for line is calculated by perpendicular distance that

should be less than one as well.

4. Implementation details

We implement the proposed system with Intel Core i7-

7700HQ (2.80GHz), 8GB memory and codes are written by

C++. The proposed initialization and line-based SLAM are

used for the proposed point-line SLAM system. This

system is built on top of ORB-SLAM [10], and we

implement line optimization based on g2o [31] pose-graph

optimization framework. Therefore, the system architecture

is same with ORB-SLAM except for i) line features are

utilized simultaneously with ORB point features, and ii)

initialization is conducted by the proposed matrix

factorization. We use LSD line segment detector [32] to

detect line segments, and LBD line binary descriptor [33]

to descript the line segments as features. Initial camera

poses to be used for matrix factorization are obtained by 8-

points algorithm for rotation matrix and 2-points algorithm

[27] for translation matrix. We only use robust frames for

initialization by checking inliers by RANSAC scheme.

For line matching, we reject line-matching pairs if min

line distance divided by max line distance are less than 0.8

to check distance similarity. In addition, if the difference of

angle between line pairs are larger than angle between

rotation axis of the corresponding two frames’ rotation

matrix, the line pairs are rejected.

5. Experiments

We compare the proposed system with other state-of-the-

art systems in TUM RGB-D Benchmark [35]. In order to

measure the precise effects with regard to the proposed

initialization and line representation, we experiment each

part separately.

For the comparison with other initialization, we compare

the proposed initialization and conventional initialization.

The conventional initialization uses a method suggested in

ORB-SLAM [10], which selects a model either

fundamental matrix or homography for pose estimation,

and reconstructs landmarks using estimated poses. Both of

systems are built on top of ORB-SLAM.

For the comparison of line representation, we call the

 (a) (b)

Figure 5: Illustrations for line reconstruction. (a) A case of line

degeneracy that even false match generates 3D line. The blue line

segment on right frame is right line pair, and the red line segment

is incorrectly matched line. (b) Restoration of endpoints of 3D li-

ne ۺ. The endpoints of 3D line can be found intersecting each p-

lane ૈ constructed by the perpendicular line ୄܔ to projected line ,ܔ
which passes each endpoint of detected line segment z.

L

z
lୄܔ௦

௘ୄܔ
ૈ௦ ૈ௘

1126

