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Abstract

Lifelong learning with deep neural networks is well-

known to suffer from catastrophic forgetting: the perfor-

mance on previous tasks drastically degrades when learn-

ing a new task. To alleviate this effect, we propose to

leverage a large stream of unlabeled data easily obtain-

able in the wild. In particular, we design a novel class-

incremental learning scheme with (a) a new distillation

loss, termed global distillation, (b) a learning strategy

to avoid overfitting to the most recent task, and (c) a

confidence-based sampling method to effectively leverage

unlabeled external data. Our experimental results on vari-

ous datasets, including CIFAR and ImageNet, demonstrate

the superiority of the proposed methods over prior meth-

ods, particularly when a stream of unlabeled data is ac-

cessible: our method shows up to 15.8% higher accuracy

and 46.5% less forgetting compared to the state-of-the-art

method. The code is available at https://github.

com/kibok90/iccv2019-inc.

1. Introduction

Deep neural networks (DNNs) have achieved remarkable

success in many machine learning applications, e.g., classi-

fication [10], generation [29], object detection [9], and rein-

forcement learning [39]. However, in the real world where

the number of tasks continues to grow, the entire tasks can-

not be given at once; rather, it may be given as a sequence of

tasks. The goal of class-incremental learning [33] is to en-

rich the ability of a model dealing with such a case, by aim-

ing to perform both previous and new tasks well.1 In partic-

ular, it has gained much attention recently as DNNs tend to

forget previous tasks easily when learning new tasks, which

is a phenomenon called catastrophic forgetting [7, 28].

The primary reason of catastrophic forgetting is the lim-

ited resources for scalability: all training data of previous

tasks cannot be stored in a limited size of memory as the

number of tasks increases. Prior works in class-incremental

learning focused on learning in a closed environment, i.e., a

1In class-incremental learning, a set of classes is given in each task. In

evaluation, it aims to classify data in any class learned so far without task

boundaries.
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Figure 1. We propose to leverage a large stream of unlabeled

data in the wild for class-incremental learning. At each stage, a

confidence-based sampling strategy is applied to build an external

dataset. Specifically, some of unlabeled data are sampled based

on the prediction of the model learned in the previous stage P
for alleviating catastrophic forgetting, and some of them are ran-

domly sampled for confidence calibration. Under the combination

of the labeled training dataset and the unlabeled external dataset,

a teacher model C first learns the current task, and then the new

model M learns both the previous and current tasks by distilling

the knowledge of P , C, and their ensemble Q.

model can only see the given labeled training dataset during

training [3, 12, 23, 24, 33]. However, in the real world, we

live with a continuous and large stream of unlabeled data

easily obtainable on the fly or transiently, e.g., by data min-

ing on social media [26] and web data [17]. Motivated by

this, we propose to leverage such a large stream of unla-

beled external data for overcoming catastrophic forgetting.

We remark that our setup on unlabeled data is similar to

self-taught learning [31] rather than semi-supervised learn-

ing, because we do not assume any correlation between un-

labeled data and the labeled training dataset.

Contribution. Under the new class-incremental setup, our

contribution is three-fold (see Figure 1 for an overview):

A. We propose a new learning objective, termed global

distillation, which utilizes data to distill the knowledge

of reference models effectively.
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B. We design a 3-step learning scheme to improve the ef-

fectiveness of global distillation: (i) training a teacher

specialized for the current task, (ii) training a model

by distilling the knowledge of the previous model, the

teacher learned in (i), and their ensemble, and (iii) fine-

tuning to avoid overfitting to the current task.

C. We propose a confidence-based sampling method to

effectively leverage a large stream of unlabeled data.

In the contribution A, global distillation encourages the

model to learn knowledge over all previous tasks, while

prior works only applied a task-wise local distillation [3, 12,

24, 33]. In particular, the proposed global distillation distills

the knowledge of how to distinguish classes across different

tasks, while local distillation does not. We show that the

performance gain due to global distillation is particularly

significant if some unlabeled external data are available.

In the contribution B, the first two steps (i), (ii) of the

proposed learning scheme are designed to keep the knowl-

edge of the previous tasks, as well as to learn the current

task. On the other hand, the purpose of the last step (iii) is

to avoid overfitting to the current task: due to the scalabil-

ity issue, only a small portion of data in the previous tasks

are kept and replayed during training [3, 30, 33]. This in-

evitably incurs bias in the prediction of the learned model,

being favorable for the current task. To mitigate the issue of

imbalanced training, we fine-tune the model based on the

statistics of data in the previous and current tasks.

Finally, the contribution C is motivated from the intu-

ition that as the data distribution of unlabeled data is more

similar to that of the previous tasks, it prevents the model

from catastrophic forgetting more. Since unlabeled data in

the wild is not necessarily related to the previous tasks, it

is far from being clear whether they contain an useful in-

formation for alleviating catastrophic forgetting. Therefore,

we propose to sample an external dataset by a principled

sampling strategy. To sample an effective external dataset

from a large stream of unlabeled data, we propose to train

a confidence-calibrated model [19, 20] by utilizing irrele-

vant data as out-of-distribution (OOD)2 samples. We show

that unlabeled data from OOD should also be sampled for

maintaining the model to be more confidence-calibrated.

Our experimental results demonstrate the superiority of

the proposed methods over prior methods. In particular,

we show that the performance gain in the proposed meth-

ods is more significant when unlabeled external data are

available. For example, under our experiment setup on Im-

ageNet [6], our method with an external dataset achieves

15.8% higher accuracy and 46.5% less forgetting compared

to the state-of-the-art method (E2E) [3] (4.8% higher accu-

racy and 6.0% less forgetting without an external dataset).

2Out-of-distribution refers to the data distribution being far from those

of the tasks learned so far.

2. Approach

In this section, we propose a new learning method for

class-incremental learning. In Section 2.1, we further de-

scribe the scenario and learning objectives. In Section 2.2,

we propose a novel learning objective, termed global dis-

tillation. In Section 2.3, we propose a confidence-based

sampling strategy to build an external dataset from a large

stream of unlabeled data.

2.1. Preliminaries: Class­Incremental Learning

Formally, let (x, y) ∈ D be a data x and its label y in

a dataset D, and let T be a supervised task mapping x to

y. We denote y ∈ T if y is in the range of T such that

|T | is the number of class labels in T . For the t-th task Tt,
let Dt be the corresponding training dataset, and Dcor

t−1 ⊆
Dt−1∪Dcor

t−2 be a coreset3 containing representative data of

previous tasks T1:(t−1) = {T1, . . . , Tt−1}, such that Dtrn

t =
Dt ∪ Dcor

t−1 is the entire labeled training dataset available at

the t-th stage. Let Mt = {θ, φ1:t} be the set of learnable

parameters of a model, where θ and φ1:t = {φ1, . . . , φt}
indicate shared and task-specific parameters, respectively.4

The goal at the t-th stage is to train a model Mt to

perform the current task Tt as well as the previous tasks

T1:(t−1) without task boundaries, i.e., all class labels in T1:t
are candidates at test time. To this end, a small coreset Dcor

t−1

and the previous model Mt−1 are transferred from the pre-

vious stage. We also assume that a large stream of unla-

beled data is accessible, and an essential external dataset

Dext

t is sampled, where the sampling method is described

in Section 2.3. Note that we do not assume any correlation

between the stream of unlabeled data and the tasks. The

outcome at the t-th stage is the model Mt that can perform

all observed tasks T1:t, and the coreset Dcor

t for learning in

subsequent stages.

Learning objectives. When a dataset D is labeled, the stan-

dard way of training a classification model M = {θ, φ} is

to optimize the cross-entropy loss:

Lcls(θ, φ;D) =
1

|D|

∑

(x,y)∈D

[− log p(y|x; θ, φ)].

On the other hand, if we have a reference model R =
{θR, φR}, the dataset D does not require any label because

the target label is given by R:

Ldst(θ, φ;R,D)

=
1

|D|

∑

x∈D

∑

y∈T

[−p(y|x; θR, φR) log p(y|x; θ, φ)],

3Coreset is a small dataset kept in a limited amount of memory used to

replay previous tasks. Initially, Dcor

0
= ∅.

4If multiple task-specific parameters are given, then logits of all classes

are concatenated for prediction without task boundaries. Note that tasks

do not have to be disjoint, such that a class can appear in multiple tasks.
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where the probabilities can be smoothed for better distilla-

tion (see [11] or the supplementary material).

Previous approaches. At the t-th stage, the standard ap-

proach to train a model Mt is to minimize the following

classification loss:

Lcls(θ, φ1:t;D
trn

t ). (1)

However, in class-incremental learning, the limited size

of the coreset makes the learned model suffer from catas-

trophic forgetting. To overcome this, the previous model

Pt = {θP , φP
1:(t−1)} , Mt−1 has been utilized to generate

soft labels, which is the knowledge of Pt about the given

data [3, 12, 24, 33]:

t−1
∑

s=1

Ldst(θ, φs;Pt,D
trn

t ), (2)

where this objective is jointly optimized with Eq. (1). We

call this task-wise knowledge distillation as local distilla-

tion (LD), which transfers the knowledge within each of

the tasks. However, because they are defined in a task-wise

manner, this objective misses the knowledge about discrim-

ination between classes in different tasks.

2.2. Global Distillation

Motivated by the limitation of LD, we propose to distill

the knowledge of reference models globally. With the refer-

ence model Pt, the knowledge can be globally distilled by

minimizing the following loss:

Ldst(θ, φ1:(t−1);Pt,D
trn

t ∪ Dext

t ). (3)

However, learning by minimizing Eq. (3) would cause a

bias: since Pt did not learn to perform the current task Tt,
the knowledge about the current task would not be properly

learned when only Eq. (1)+(3) are minimized, i.e., the per-

formance on the current task would be unnecessarily sacri-

ficed. To compensate for this, we introduce another teacher

model Ct = {θC , φC
t } specialized for the current task Tt:

Ldst(θ, φt; Ct,D
trn

t ∪ Dext

t ). (4)

This model can be trained by minimizing the standard cross-

entropy loss:

Lcls(θ
C , φC

t ;Dt). (5)

Note that only the dataset of the current task Dt is used,

because Ct is specialized for the current task only. We revise

this loss in Section 2.3 for better external data sampling.

However, as Pt and Ct learned to perform only T1:(t−1)

and Tt, respectively, discrimination between T1:(t−1) and Tt
is not possible with the knowledge distilled from these two

reference models. To complete the missing knowledge, we

define Qt as an ensemble of Pt and Ct: let

pmax = max
y

p(y|x, θP , φP
1:(t−1)),

ymax = argmax
y

p(y|x, θP , φP
1:(t−1)).

Then, the output of Qt can be defined as:

p(y|x, θQ, φQ
1:t) =











pmax if y = ymax,
1−pmax−ε
1−pmax

p(y|x, θP , φP
1:(t−1)) elif y ∈ T1:(t−1),

εp(y|x, θC , φC
t ) elif y ∈ Tt,

(6)

such that
∑

y p(y|x, θ
Q, φQ

1:t) = 1. Here, ε adjusts the con-

fidence about whether the given data is in T1:(t−1) or Tt.
This information is basically missing, however, can be com-

puted with an assumption that the expected predicted prob-

ability is the same over all negative classes ∀y 6= ymax, i.e.,

Ey

[

pε(y|x, θ
P , φP

1:(t−1))
]

= Ey 6=ymax

[

pε(y|x, θ
C , φC

t )
]

:

ε =
(1− pmax)|Tt|

|T1:t| − 1
. (7)

Since the ensemble model Qt is able to perform all tasks,

all parameters can be updated:

Ldst(θ, φ1:t;Qt,D
ext

t ). (8)

Note that the labeled dataset Dtrn

t is not used, because it is

already used in Eq. (1) for the same range of classes.

Finally, our global distillation (GD) model learns by op-

timizing Eq. (1)+(3)+(4)+(8):

Lcls(θ, φ1:t;D
trn

t ) + Ldst(θ, φ1:(t−1);Pt,D
trn

t ∪ Dext

t )

+ Ldst(θ, φt; Ct,D
trn

t ∪ Dext

t )

+ Ldst(θ, φ1:t;Qt,D
ext

t ). (9)

We study the contribution of each term in Table 2.

Balanced fine-tuning. The statistics of class labels in the

training dataset is also an information learned during train-

ing. Since the number of data from the previous tasks is

much smaller than that of the current task, the prediction of

the model is biased to the current task. To remove the bias,

we further fine-tune the model after training with the same

learning objectives. When fine-tuning, for each loss with

D and T , we scale the gradient computed from a data with

label k ∈ T by the following:

w
(k)
D ∝

1

|{(x, y) ∈ D|y = k}|
. (10)

Since scaling a gradient is equivalent to feeding the same

data multiple times, we call this method data weighting.
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Algorithm 1 3-step learning with GD.

1: t = 1
2: while true do

3: Input: previous model Pt = Mt−1, coreset Dcor

t−1,

training dataset Dt, unlabeled data stream Dwild
t

4: Output: new coreset Dcor

t , model Mt = {θ, φ1:t}
5: Dtrn

t = Dt ∪ Dcor

t−1

6: NC = |Dcor

t−1|, ND = |Dtrn

t |
7: Sample Dext

t from Dwild
t using Algorithm 2

8: Train Ct by minimizing Eq. (12)

9: if t > 1 then

10: Train Mt by minimizing Eq. (9)

11: Fine-tune φ1:t by minimizing Eq. (9),

with data weighting in Eq. (10)

12: else

13: Mt = Ct
14: end if

15: Randomly sample Dcor

t ⊆ Dtrn

t such that

|{(x, y) ∈ Dcor

t |y = k}| = NC/|T1:t| for k ∈ T1:t
16: t = t+ 1
17: end while

We also normalize the weights by multiplying them with

|D|/|T |, such that they are all one if D is balanced.

We only fine-tune the task-specific parameters φ1:t with

data weighting, because all training data would be equally

useful for representation learning, i.e., shared parameters θ,

while the bias in the data distribution of the training dataset

should be removed when training a classifier, i.e., φ1:t. The

effect of balanced fine-tuning can be found in Table 4.

Loss weight. We balance the contribution of each loss by

the relative size of each task learned in the loss: for each

loss for learning T , the loss weight at the t-th stage is

wL =
|T |

|T1:t|
. (11)

We note that the loss weight can be tuned as a hyper-

parameter, but we find that this loss weight performs better

than other values in general, as it follows the statistics of the

test dataset: all classes are equally likely to be appeared.

3-step learning algorithm. In summary, our learning strat-

egy has three steps: training Ct specialized for the current

task Tt, training Mt by distilling the knowledge of the ref-

erence models Pt, Ct, and Qt, and fine-tuning the task-

specific parameters φ1:t with data weighting. Algorithm 1

describes the 3-step learning scheme.

For coreset management, we build a balanced coreset by

randomly selecting data for each class. We note that other

more sophisticated selection algorithms like herding [33]

do not perform significantly better than random selection,

which is also reported in prior works [3, 42].

Algorithm 2 Sampling external dataset.

1: Input: previous model Pt = {θP , φP
1:(t−1)},

unlabeled data stream Dwild
t , sample size ND,

number of unlabeled data to be retrieved Nmax

2: Output: sampled external dataset Dext

t

3: Dprev = ∅, DOOD = ∅
4: Nprev = 0.3ND, NOOD = 0.7ND

5: N(k) , |{(x, y, p) ∈ Dprev|y = k}|
6: while |DOOD| < NOOD do

7: Get x ∈ Dwild
t and update DOOD = DOOD ∪ {x}

8: end while

9: Nret = NOOD

10: while Nret < Nmax do

11: Get x ∈ Dwild
t and compute the prediction of P:

p̂ = maxy p
(

y|x; θP , φP
1:(t−1)

)

,

ŷ = argmaxy p
(

y|x; θP , φP
1:(t−1)

)

12: if N(ŷ) < Nprev/|T1:(t−1)| then

13: Dprev = Dprev ∪ {(x, ŷ, p̂)}
14: else

15: Replace the least probable data in class ŷ:

(x′, ŷ, p′) = argmin{(x,y,p)∈Dprev|y=ŷ} p
16: if p′ < p̂ then

17: Dprev = (Dprev\{(x′, ŷ, p′)}) ∪ {(x, ŷ, p̂)}
18: end if

19: end if

20: Nret = Nret + 1
21: end while

22: Return Dext

t = DOOD ∪ {x|(x, y, p) ∈ Dprev}

2.3. Sampling External Dataset

Although a large amount of unlabeled data would be eas-

ily obtainable, there are two issues when using them for

knowledge distillation: (a) training on a large-scale exter-

nal dataset is expensive, and (b) most of the data would not

be helpful, because they would be irrelevant to the tasks

the model learns. To overcome these issues, we propose

to sample an external dataset useful for knowledge distilla-

tion from a large stream of unlabeled data. Note that the

sampled external dataset does not require an additional per-

manent memory; it is discarded after learning.

Sampling for confidence calibration. In order to alleviate

catastrophic forgetting caused by the imbalanced training

dataset, sampling external data that are expected to be in

the previous tasks is desirable. Since the previous model

P is expected to produce an output with high confidence

if the data is likely to be in the previous tasks, the output

of P can be used for sampling. However, modern DNNs

are highly overconfident [8, 19], thus a model learned with

a discriminative loss would produce a prediction with high

confidence even if the data is not from any of the previous

tasks. Since most of the unlabeled data would not be rele-
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vant to any of the previous tasks, i.e., they are considered to

be from out-of-distribution (OOD), it is important to avoid

overconfident prediction on such irrelevant data. To achieve

this, the model should learn to be confidence-calibrated by

learning with a certain amount of OOD data as well as data

of the previous tasks [19, 20]. When sampling OOD data,

we propose to randomly sample data rather than relying on

the confidence of the previous model, as OOD is widely

distributed over the data space. The effect of this sampling

strategy can be found in Table 5. Algorithm 2 describes our

sampling strategy. The ratio of OOD data (Nprev : NOOD) is

determined by validation; for more details, see the supple-

mentary material. This sampling algorithm can take a long

time, but we limit the number of retrieved unlabeled data in

our experiment by 1M, i.e., Nmax = 1M.

Confidence calibration for sampling. For confidence cal-

ibration, we consider the following confidence loss Lcnf to

make the model produce confidence-calibrated outputs for

data which are not relevant to the tasks the model learns:

Lcnf(θ, φ;D) =
1

|D||T |

∑

x∈D

∑

y∈T

[− log p(y|x; θ, φ)].

During the 3-step learning, only the first step for train-

ing Ct has no reference model, so it should learn with the

confidence loss. For Ct, (x, y) is from OOD if y /∈ Tt.
Namely, by optimizing the confidence loss under the coreset

of the previous tasks Dcor

t−1 and the external dataset Dext

t , the

model learns to produce a prediction with low confidence

for OOD data, i.e., uniformly distributed probabilities over

class labels. Thus, Ct learns by optimizing the following:

Lcls(θ
C , φC

t ;Dt) + Lcnf(θ
C , φC

t ;D
cor

t−1 ∪ Dext

t ). (12)

Note that the model Mt does not require an additional con-

fidence calibration, because the previous model Pt is ex-

pected to be confidence-calibrated in the previous stage.

Therefore, the confidence-calibrated outputs of the refer-

ence models are distilled to the model Mt. The effect of

confidence loss can be found in Table 3.

3. Related Work

Continual lifelong learning. Many recent works have ad-

dressed catastrophic forgetting with different assumptions.

Broadly speaking, there are three different types of works

[41]: one is class-incremental learning [3, 33, 42], where

the number of class labels keeps growing. Another is task-

incremental learning [12, 24], where the boundaries among

tasks are assumed to be clear and the information about

the task under test is given.5 The last can be seen as data-

incremental learning, which is the case when the set of class

labels or actions are the same for all tasks [16, 35, 36].

5The main difference between class- and task-incremental learning is

that the model has single- and multi-head output layer, respectively.

These works can be summarized as continual learn-

ing, and recent works on continual learning have stud-

ied two types of approaches to overcome catastrophic for-

getting: model-based and data-based. Model-based ap-

proaches [1, 4, 14, 16, 21, 25, 27, 30, 34, 35, 36, 37, 43, 45]

keep the knowledge of previous tasks by penalizing the

change of parameters crucial for previous tasks, i.e., the up-

dated parameters are constrained to be around the original

values, and the update is scaled down by the importance of

parameters on previous tasks. However, since DNNs have

many local optima, there would be better local optima for

both the previous and new tasks, which cannot be found by

model-based approaches.

On the other hand, data-based approaches [3, 12, 13, 24,

33] keep the knowledge of the previous tasks by knowledge

distillation [11], which minimizes the distance between the

manifold of the latent space in the previous and new mod-

els. In contrast to model-based approaches, they require

to feed data to get features on the latent space. Therefore,

the amount of knowledge kept by knowledge distillation de-

pends on the degree of similarity between the data distribu-

tion used to learn the previous tasks in the previous stages

and the one used to distill the knowledge in the later stages.

To guarantee to have a certain amount of similar data, some

prior works [3, 30, 33] reserved a small amount of memory

to keep a coreset, and others [22, 32, 38, 41, 42] trained a

generative model and replay the generated data when train-

ing a new model. Note that the model-based and data-based

approaches are orthogonal in most cases, thus they can be

combined for better performance [15].

Knowledge distillation in prior works. Our proposed

method is a data-based approach, but it is different from

prior works [3, 12, 24, 33], because their model com-

monly learns with the task-wise local distillation loss in

Eq. (2). We emphasize that local distillation only preserves

the knowledge within each of the previous tasks, while

global distillation does the knowledge over all tasks.

Similar to our 3-step learning, [36] and [12] utilized the

idea of learning with two teachers. However, their strat-

egy to keep the knowledge of the previous tasks is different:

[36] applied a model-based approach, and [12] distilled the

task-wise knowledge for task-incremental learning.

On the other hand, [3] had a similar fine-tuning, but they

built a balanced dataset by discarding most of the data of

the current task and updated the whole networks. However,

such undersampling sacrifices the diversity of the frequent

classes, which decreases the performance. Oversampling

may solve the issue, but it makes the training not scalable:

the size of the oversampled dataset increases proportional

to the number of tasks learned so far. Instead, we propose

to apply data weighting.

Scalability. Early works on continual learning were not

scalable since they kept all previous models [2, 16, 24, 35,
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43]. However, recent works considered the scalability by

minimizing the amount of task-specific parameters [33, 36].

In addition, data-based methods require to keep either a

coreset or a generative model to replay previous tasks. Our

method is a data-based approach, but it does not suffer from

the scalability issue since we utilize an external dataset sam-

pled from a large stream of unlabeled data. We note that

unlike coreset, our external dataset does not require a per-

manent memory; it is discarded after learning.

4. Experiments

4.1. Experimental Setup

Compared algorithms. To provide an upper bound of

the performance, we compare an oracle method, which

learns by optimizing Eq. (1) while storing all training

data of previous tasks and replaying them during train-

ing. Also, as a baseline, we provide the performance of

a model learned without knowledge distillation. Among

prior works, three state-of-the-art methods are compared:

learning without forgetting (LwF) [24], distillation and ret-

rospection (DR) [12], and end-to-end incremental learning

(E2E) [3]. For fair comparison, we adapt LwF and DR

for class-incremental setting, which are originally evalu-

ated in task-incremental learning setting: specifically, we

extend the range of the classification loss, i.e., we optimize

Eq. (1)+(2) and Eq. (1)+(2)+(4) for replication of them.

We do not compare model-based methods, because data-

based methods are known to outperform them in class-

incremental learning [22, 41], and they are orthogonal to

data-based methods, such that they can potentially be com-

bined with our approaches for better performance [15].

Datasets. We evaluate the compared methods on CIFAR-

100 [18] and ImageNet ILSVRC 2012 [6], where all images

are downsampled to 32×32 [5]. For CIFAR-100, similar to

prior works [3, 33], we shuffle the classes uniformly at ran-

dom and split the classes to build a sequence of tasks. For

ImageNet, we first sample 500 images per 100 randomly

chosen classes for each trial, and then split the classes. To

evaluate the compared methods under the environment with

a large stream of unlabeled data, we take two large datasets:

the TinyImages dataset [40] with 80M images and the en-

tire ImageNet 2011 dataset with 14M images. The classes

appeared in CIFAR-100 and ILSVRC 2012 are excluded to

avoid any potential advantage from them. At each stage,

our sampling algorithm gets unlabeled data from them uni-

formly at random to form an external dataset, until the num-

ber of retrieved samples is 1M.

Following the prior works, we divide the classes into

splits of 5, 10, and 20 classes, such that there are 20, 10,

and 5 tasks, respectively. For each task size, we evaluate

the compared methods ten times with different class orders

(different set of classes in the case of ImageNet) and report

the mean and standard deviation of the performance.

Evaluation metric. We report the performance of the

compared methods in two metrics: the average incremen-

tal accuracy (ACC) and the average forgetting (FGT). For

simplicity, we assume that the number of test data is the

same over all classes. For a test data from the r-th task

(x, y) ∈ Dtest

r , let ŷ(x;Ms) be the label predicted by the

s-th model, such that

Ar,s =
1

|Dtest
r |

∑

(x,y)∈Dtest

r

I(ŷ(x;Ms) = y)

measures the accuracy of the s-th model at the r-th task,

where s ≥ r. Note that prediction is done without task

boundaries: for example, at the t-th stage, the expected ac-

curacy of random guess is 1/|T1:t|, not 1/|Tr|. At the t-th
stage, ACC is defined as:

ACC =
1

t− 1

t
∑

s=2

s
∑

r=1

|Tr|

|T1:s|
Ar,s.

Note that the performance of the first stage is not consid-

ered, as it is not class-incremental learning. While ACC

measures the overall performance directly, FGT measures

the amount of catastrophic forgetting, by averaging the per-

formance decay:

FGT =
1

t− 1

t
∑

s=2

s−1
∑

r=1

|Tr|

|T1:s|
(Ar,r −Ar,s),

which is essentially the negative of the backward transfer

[25]. Note that smaller FGT is better, which implies that

the model less-forgets about the previous tasks.

Hyperparameters. The backbone of all compared models

is wide residual networks [44] with 16 layers, a widen fac-

tor of 2 (WRN-16-2), and a dropout rate of 0.3. Note that

this has a comparable performance with ResNet-32 [10].

The last fully connected layer is considered to be a task-

specific layer, and whenever a task with new classes comes

in, the layer is extended to produce a prediction for the new

classes. The number of parameters in the task-specific layer

is small compared to those in shared layers (about 2% in

maximum in WRN-16-2). All methods use the same size of

coreset, which is 2000. For scalability, the size of the sam-

pled external dataset is set to the size of the labeled dataset,

i.e., ND = |Dtrn

t | in Algorithm 2. For validation, one split

of ImageNet is used, which is exclusive to the other nine

trials. The temperature for smoothing softmax probabilities

[11] is set to 2 for distillation from P and C, and 1 for Q.

For more details, see the supplementary material.

4.2. Evaluation

Comparison of methods. Table 1 and Figure 2 com-

pare our proposed methods with the state-of-the-art meth-

ods. First, even when unlabeled data are not accessible,
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Table 1. Comparison of methods on CIFAR-100 and ImageNet. We report the mean and standard deviation of ten trials for CIFAR-100

and nine trials for ImageNet with different random seeds in %. ↑ (↓) indicates that the higher (lower) number is the better.

Dataset CIFAR-100 ImageNet

Task size 5 10 20 5 10 20

Metric ACC (↑) FGT (↓) ACC (↑) FGT (↓) ACC (↑) FGT (↓) ACC (↑) FGT (↓) ACC (↑) FGT (↓) ACC (↑) FGT (↓)

Oracle 78.6 ± 0.9 3.3 ± 0.2 77.6 ± 0.8 3.1 ± 0.2 75.7 ± 0.7 2.8 ± 0.2 68.0 ± 1.7 3.3 ± 0.2 66.9 ± 1.6 3.1 ± 0.3 65.1 ± 1.2 2.7 ± 0.2

Baseline 57.4 ± 1.2 21.0 ± 0.5 56.8 ± 1.1 19.7 ± 0.4 56.0 ± 1.0 18.0 ± 0.3 44.2 ± 1.7 23.6 ± 0.4 44.1 ± 1.6 21.5 ± 0.5 44.7 ± 1.2 18.4 ± 0.5

LwF [24] 58.4 ± 1.3 19.3 ± 0.5 59.5 ± 1.2 16.9 ± 0.4 60.0 ± 1.0 14.5 ± 0.4 45.6 ± 1.9 21.5 ± 0.4 47.3 ± 1.5 18.5 ± 0.5 48.6 ± 1.2 15.3 ± 0.6

DR [12] 59.1 ± 1.4 19.6 ± 0.5 60.8 ± 1.2 17.1 ± 0.4 61.8 ± 0.9 14.3 ± 0.4 46.5 ± 1.6 22.0 ± 0.5 48.7 ± 1.6 18.8 ± 0.5 50.7 ± 1.2 15.1 ± 0.5

E2E [3] 60.2 ± 1.3 16.5 ± 0.5 62.6 ± 1.1 12.8 ± 0.4 65.1 ± 0.8 8.9 ± 0.2 47.7 ± 1.9 17.9 ± 0.4 50.8 ± 1.5 13.4 ± 0.4 53.9 ± 1.2 8.8 ± 0.3

GD (Ours) 62.1 ± 1.2 15.4 ± 0.4 65.0 ± 1.1 12.1 ± 0.3 67.1 ± 0.9 8.5 ± 0.3 50.0 ± 1.7 16.8 ± 0.4 53.7 ± 1.5 12.8 ± 0.5 56.5 ± 1.2 8.4 ± 0.4

+ ext 66.3 ± 1.2 9.8 ± 0.3 68.1 ± 1.1 7.7 ± 0.3 68.9 ± 1.0 5.5 ± 0.4 55.2 ± 1.8 9.6 ± 0.4 57.7 ± 1.6 7.4 ± 0.3 58.7 ± 1.2 5.4 ± 0.3

5 × 20 10 × 10 20 × 5
Task size × Number of tasks

50

55

60

65

70

Ac
cu

ra
cy

 (%
)

(a) ACC improvement by learning with external data
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(c) ACC with respect to the number of trained classes
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Figure 2. Experimental results on CIFAR-100. (a,b) Arrows show the performance gain in the average incremental accuracy (ACC) and

average forgetting (FGT) by learning with unlabeled data, respectively. (c,d) Curves show ACC and FGT with respect to the number of

trained classes when the task size is 10. We report the average performance of ten trials.

our method outperforms the state-of-the-art methods, which

shows the effectiveness of the proposed 3-step learning

scheme. Specifically, in addition to the difference in the loss

function, DR does not have balanced fine-tuning, E2E lacks

the teacher for the current task Ct and fine-tunes the whole

networks with a small dataset, and LwF has neither Ct nor

fine-tuning. Compared to E2E, which is the best state-of-

the-art method, our method improves ACC by 4.8% and

FGT by 6.0% on ImageNet with a task size of 5.

On the other hand, as shown in Figure 2(a)–2(b), learn-

ing with an unlabeled external dataset improves the perfor-

mance of compared methods consistently, but the improve-

ment is more significant in GD. For example, in the case of

ImageNet with a task size of 5, by learning with the exter-

nal dataset, E2E improves ACC by 3.2%, while GD does

by 10.5%. Also, the relative performance gain in terms of

FGT is more significant: E2E forgets 1.1% less while GD

does 43.1%. Overall, with our proposed learning scheme

and knowledge distillation with the external dataset, GD im-

proves its ACC by 15.8% and FGT by 46.5% over E2E.

Table 2. Comparison of models learned with different reference

models on CIFAR-100 when the task size is 10. “P ,” “C,” and “Q”

stand for the previous model, the teacher for the current task, and

their ensemble model, respectively.

P C Q ACC (↑) FGT (↓)

X 62.9 ± 1.2 14.7 ± 0.4

X X 67.0 ± 0.9 10.7 ± 0.3

X 65.7 ± 0.9 11.2 ± 0.2

X X X 68.1 ± 1.1 7.7 ± 0.3

Effect of the reference models. Table 2 shows an ablation

study with different set of reference models. As discussed

in Section 2.2, because the previous model P does not know

about the current task, the compensation by introducing C
improves the overall performance. On the other hand, Q
does not show better ACC than the combination of P and

C. This would be because, when building the output of Q,

the ensemble of the output of P and C is made with an as-

sumption, which would not always be true. However, the
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Table 3. Comparison of models learned with a different teacher

for the current task C on CIFAR-100 when the task size is 10.

For “cls,” C is not trained but the model learns by optimizing

the learning objective of C directly. The model learns with the

proposed 3-step learning for “dst.” The confidence loss is added

to the learning objective for C for “cnf.” We do not utilize Q for

this experiment, because “cls” has no explicit C.

C Confidence ACC (↑) FGT (↓)

✗ 62.9 ± 1.2 14.7 ± 0.4

cls 62.9 ± 1.3 14.5 ± 0.5

cls cnf 65.3 ± 1.0 11.7 ± 0.3

dst 66.2 ± 1.0 11.2 ± 0.3

dst cnf 67.0 ± 0.9 10.7 ± 0.3

Table 4. Comparison of different balanced learning strategies on

CIFAR-100 when the task size is 10. “DW,” “FT-DSet,” and “FT-

DW” stand for training with data weighting in Eq. (10) for the

entire training, fine-tuning with a training dataset balanced by re-

moving data of the current task, and fine-tuning with data weight-

ing, respectively.

Balancing ACC (↑) FGT (↓)

✗ 67.1 ± 0.9 11.5 ± 0.3

DW 67.9 ± 0.9 9.6 ± 0.2

FT-DSet 67.2 ± 1.1 8.4 ± 0.2

FT-DW 68.1 ± 1.1 7.7 ± 0.3

knowledge from Q is useful, such that the combination of

all three reference models shows the best performance.

Effect of the teacher for the current task C. Table 3 com-

pares the models learned with a different teacher for the

current task Ct. In addition to the baseline without Ct, we

also compare the model directly optimizes the learning ob-

jective of Ct in Eq. (5) or (12), i.e., the model learns with

hard labels rather than soft labels when optimizing that loss.

Note that introducing a separate model C for distillation

is beneficial, because C learns better knowledge about the

current task without interference from other classification

tasks. Learning by optimizing the confidence loss improves

the performance, because the confidence-calibrated model

samples better external data as discussed in Section 2.3.

Effect of balanced fine-tuning. Table 4 shows the effect

of balanced learning. First, balanced learning strategies im-

prove FGT in general. If fine-tuning in 3-step learning is

skipped but data weighting in Eq. (10) is applied in the main

training (DW), the model shows higher FGT than having

balanced fine-tuning on task-specific parameters (FT-DW),

as discussed in Section 2.2. Note that data weighting (FT-

DW) is better than removing the data of the current task to

construct a small balanced dataset (FT-DSet) proposed in

[3], because all training data are useful.

Effect of external data sampling. Table 5 compares dif-

ferent external data sampling strategies. Unlabeled data are

beneficial in all cases, but the performance gain is differ-

Table 5. Comparison of different external data sampling strate-

gies on CIFAR-100 when the task size is 10. “Prev” and “OOD”

columns describe the sampling method for data of previous tasks

and out-of-distribution data, where “Pred” and “Random” stand

for sampling based on the prediction of the previous model P and

random sampling, respectively. In particular, for when sampling

OOD by “Pred,” we sample data minimizing the confidence loss

Lcnf. When only Prev or OOD is sampled, the number of sampled

data is matched for fair comparison.

Prev OOD ACC (↑) FGT (↓)

✗ ✗ 65.0 ± 1.1 12.1 ± 0.3

✗ Random 67.6 ± 0.9 9.0 ± 0.3

Pred ✗ 66.0 ± 1.2 7.8 ± 0.3

Pred Pred 65.7 ± 1.1 10.2 ± 0.2

Pred Random 68.1 ± 1.1 7.7 ± 0.3

ent over sampling strategies. First, observe that randomly

sampled data are useful, because their predictive distribu-

tion would be diverse such that it helps to learn the di-

verse knowledge of the reference models, which makes the

model confidence-calibrated. However, while the random

sampling strategy has higher ACC than sampling based on

the prediction of the previous model P , it also shows high

FGT. This implies that the unlabeled data sampled based on

the prediction of P prevents the model from catastrophic

forgetting more. As discussed in Section 2.3, our proposed

sampling strategy, the combination of the above two strate-

gies shows the best performance. Finally, sampling OOD

data based on the prediction of P is not beneficial, because

“data most likely to be from OOD” would not be useful.

OOD data sampled based on the prediction of P have al-

most uniform predictive distribution, which would be lo-

cally distributed. However, the concept of OOD is a kind

of complement set of the data distribution the model learns.

Thus, to learn to discriminate OOD well in our case, the

model should learn with data widely distributed outside of

the data distribution of the previous tasks.

5. Conclusion

We propose to leverage a large stream of unlabeled data

in the wild for class-incremental learning. The proposed

global distillation aims to keep the knowledge of the refer-

ence models without task boundaries, leading better knowl-

edge distillation. Our 3-step learning scheme effectively

leverages the external dataset sampled by the confidence-

based sampling strategy from the stream of unlabeled data.
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