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Abstract

As continuous-wave time-of-flight (C-ToF) cameras be-
come popular in 3D imaging applications, they need to con-
tend with the problem of multi-camera interference (MCI).
In a multi-camera environment, a ToF camera may receive
light from the sources of other cameras, resulting in large
depth errors. In this paper, we propose stochastic expo-
sure coding (SEC), a novel approach for mitigating. SEC
involves dividing a camera’s integration time into multiple
slots, and switching the camera off and on stochastically
during each slot. This approach has two benefits. First, by
appropriately choosing the on probability for each slot, the
camera can effectively filter out both the AC and DC com-
ponents of interfering signals, thereby mitigating depth er-
rors while also maintaining high signal-to-noise ratio. This
enables high accuracy depth recovery with low power con-
sumption. Second, this approach can be implemented with-
out modifying the C-ToF camera’s coding functions, and
thus, can be used with a wide range of cameras with min-
imal changes. We demonstrate the performance benefits of
SEC with theoretical analysis, simulations and real experi-
ments, across a wide range of imaging scenarios.

1. Introduction

Time-of-flight (ToF) cameras are fast becoming the
method of choice in various 3D imaging applications, such
as 3D mapping [8, 13], human-machine interaction [5], aug-
mented reality [11] and robot navigation [17]. ToF cameras
have compact form-factors and low computational com-
plexity, resulting in emergence of several commodity ToF
cameras [2, 1]. As these cameras become ubiquitous in mo-
bile devices and cell-phones, they will face an important
problem: multi-camera interference (MCI). This is espe-
cially critical for continuous wave ToF (C-ToF) imaging,
where the light source emits light continuously. When sev-
eral C-ToF cameras capture the same scene concurrently,
each sensor may receive light from the sources of other
cameras. This interfering signal prevents correct depth esti-
mation, resulting in potentially large, structured errors.

One way to address MCI is to use orthogonal coding
functions for different C-ToF cameras, for example, sinu-
soids of different frequencies or phases [23, 18, 16], or
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pseudo-random functions [6, 7, 10]. These approaches,
while theoretically capable of mitigating interference, have
a practical limitation. The intensity of light emitted by a
ToF camera’s source is positive, with both a constant (DC)
and an oscillating (AC) component; the depth information
is encoded in the time-shift of the AC component. Although
the orthogonal-coding approaches can remove the AC inter-
ference, the DC interference remains. The DC interference
acts as additional ambient light, resulting in higher photon
noise. As the number of interfering cameras increases, the
signal-to-noise ratio (SNR) can degrade considerably, mak-
ing it challenging to recover meaningful information.

We propose a novel MCI reduction technique with the
goal of mitigating both DC and AC interference. Our ap-
proach is based on time-division multiple access (TDMA),
a widely used scheme for facilitating multi-user access
of shared communication channels. In TDMA, a single,
shared communication channel is divided into multiple time
slots, one slot assigned to each user [21]. In order to pre-
vent interference, the timing across different users must be
synchronized, which is done by a central authority, e.g.,
base stations. Applying TDMA directly for addressing MCI
will require high-speed temporal synchronization of differ-
ent cameras, which, unfortunately, is challenging [7].

Stochastic exposure coding: Is it possible to implement
a TDMA-like approach without synchronization? Our key
idea is to leverage stochasticity to avoid explicit synchro-
nization. The proposed approach, called stochastic expo-
sure coding (SEC), divides the total exposure time of each
camera into multiple slots. In each slot, the camera and the
source are turned on with a certain probability pox. By
design, if a slot doesn’t have a clash, i.e., only one camera
is active during that slot, both DC and AC interference are
avoided since the camera receives light only from its own
source. Since the approach is stochastic, without explicit
synchronization, there may still be clashes. We design a
simple, light-weight clash-check algorithm to identify and
discard clash-slots so they do not affect depth estimation. !

I'This approach is similar to random-access protocols in communica-
tion such as ALOHA [3] and CSMA [14] in that packets are sent randomly.
However, while communication protocols need to re-send packets when-
ever collision happens, in our case, we can simply discard clashed slots.
This is because in communication, each packet has unique information,
whereas in our case, all slots have the same depth information.
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Figure 1. Layered C-ToF coding. The proposed approach oper-
ates in the exposure coding layer, where the camera and the source
are modulated at micro/millisecond time scales. In contrast, exist-
ing MCI reduction approaches operate in the lower depth coding
layer, where modulation is performed at nanosecond time scales.

What is the optimal po? This is a critical question that
must be addressed for the proposed approach to be success-
ful. A high poy will increase the likelihood of clashes
(multiple simultaneously active cameras), resulting in in-
terference and depth errors. On the other hand, if poy is
too low, although the clashes are avoided, the cameras are
inactive during most of the integration time, and thus, don’t
receive sufficient signal. We perform a detailed theoretical
analysis, and determine the optimal po v, given system con-
straints and the number of interfering cameras. This enables
each source to send light sufficiently sparsely to mitigate
interference without synchronization, while maintaining a
high SNR, for a fixed time and power budget.

Layered view of C-ToF coding: A key benefit of the pro-
posed SEC approach is that it does not need to modify the
C-ToF camera’s coding functions, and thus, can be imple-
mented without extensive hardware modifications. SEC can
be implemented by rapidly switching the camera off and on
during the integration time, in a way reminiscent of tempo-
ral exposure coding for motion deblurring [19]. This creates
a layered view of C-ToF camera coding, as shown in Fig-
ure 1. Existing approaches for MCI reduction operate in the
depth coding layer since they change the camera’s coding
functions at nanosecond time scales. In contrast, SEC op-
erates at a higher exposure coding layer by modulating the
camera and source at micro/millisecond scales.

Practical implications: SEC and existing MCI reduction
approaches can be used in a complementary manner be-
cause they operate in different layers. We show, via theo-
retical analysis, simulations and hardware experiments that
such combined multi-layer coding approaches significantly
outperform existing methods. The proposed approaches re-

duce both DC and AC interference, making it possible to
achieve high SNR while consuming low power. Because
they require minimal modifications to existing C-ToF sys-
tems, these approaches are broadly applicable for 3D imag-
ing in low-complexity, power-constrained mobile devices.

2. Related Work

Most existing approaches for MCI reduction rely on or-
thogonal functions, such as sinusoids of different modu-
lation frequencies for different cameras [20], and pseudo-
noise (PN) sequences [6, 7]. Other approaches divide the
total integration time into multiple time slots and randomly
assign one of predetermined phases to each slot [23, 18, 16].
While all these approaches reduce only AC interference, our
goal is to design methods that mitigate both AC and DC in-
terference. Another recent approach for handling MCI is
to project light only along a planar sheet which is scanned
over the scene. Since only a portion of the scene is illumi-
nated at a time, the chance of interference by other cameras
is reduced [4]. Although this approach can also reduce DC
interference, it requires mechanical scanning. In contrast,
our approach can be implemented without moving parts.

3. Mathematical Preliminaries

C-ToF Image Formation Model: A C-ToF camera
consists of a (typically co-located) camera and a light
source [15]. The intensity of the light source is temporally
modulated as a periodic function M (t), (M (t) > 0) with
period Ty. The light emitted by the source travels to the
scene of interest, and is reflected back toward the camera.
The radiance of the reflected light incident on a sensor pixel
p is a time-shifted and scaled version of M (t):

me—a&M(ﬁ—M>, ()

c

where d is the distance between the camera and the scene
point imaged at p, c is the speed of light. P, is av-
erage power of the light source with an assumption of
T%) fTo M(t)dt = 1. « is a scene-dependent scale fac-
tor that contains scene albedo, reflectance properties and
light fall-off. The camera then electronically computes the
correlation between R(p;¢) and a periodic demodulation
function D(t) (0 < D(t) < 1)? with the same frequency as
M (t). The intensity value C(p;d) measured at pixel p is
given as the correlation between R(p;t) and D(¢):

amazfﬁwm@+&ﬂwwu @)

2Several C-ToF camera architectures [15, 6] use a bipolar demodulation
functions (—1 < D(t) < 1). For ease of analysis, we consider unipolar
D(t) (0 < D(t) < 1). All the results and analysis in the paper can be
generalized to bipolar D(t).
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Figure 2. Multi-camera interference and interference reduction in C-ToF imaging. (a) In C-ToF imaging, depths are recovered from
the phases of the measured waveforms. (b) If there are multiple cameras, interfering sources corrupt the measured waveforms, resulting
in systematic depth errors. (c) Conventional MCI reduction approaches reduce systematic errors by removing AC interference, but DC
interference remains, resulting in lower SNR and random depth errors due to higher photon noise. (d) Our approach mitigates both AC and
DC interference, thus reducing both systematic and random depth errors.

where s is a camera-dependent scale factor encapsulating
sensor gain and sensitivity, 7 is the total integration time,
and P, is average power of ambient light incident on the
scene (e.g., due to sunlight in outdoor operation). In order
to estimate the scene depths, several (> 3) different C(p; d)
values are measured, by using different pairs of modulation
and demodulation functions [15].

3.1. Multi-Camera Interference in C-ToF Imaging

Consider a scenario where multiple C-ToF cameras are
simultaneously illuminating and imaging a scene point. The
total intensity measured by one of the cameras (referred to
as the primary camera) is given by:

n=1
——

multi-camera interference

where N is the number of interfering cameras, C'(d) is the
intensity measured by the primary camera due to its own
source (Eq. 2), and Cy,(d) = s [, R, (t)D(t)dt is the mea-
sured intensity due to the n'" source. R, (t) is the radi-
ance received by the primary camera due to light emitted
by the n' source. We drop the argument p for brevity. The
summation term in Eq. 3 corrupts the true correlation value
C'(d), thus resulting in erroneous depth estimates.

Example with sinusoid coding: In a C-ToF camera with
sinusoid coding, both modulation M (¢) and demodulation
D(t) functions are sinusoids of the same frequency (homo-
dyne). The camera takes K > 3 intensity measurements
(Eq. 2). Each measurement C*(d), k € {1,...,K} is
taken by shifting the demodulation function D(¢) by a dif-
ferent amount v, while M (t) remains fixed. For exam-
ple, if K = 4, [tp1,2,93,%4] = [0, 5,7, 37’7] The set of
measurements {C*(d)} , k € {1,..., K} is defined as the
measurement waveform. For sinusoid coding, the measure-
ment waveform is a sinusoid as a function of the shift v, as
shown in Fig. 2 (a). Let ¢ be the phase of the measurements
waveform sinusoid. Scene depth d is proportional to ¢, and
can be recovered by simple, analytic expressions [12].

If multiple cameras simultaneously image a scene point,
a camera receives light from the interfering sources as well
as its own source. Assuming all the sources use sinusoids of
the same frequency, the intensities {C%} | k € {1,..., K}
measured by the camera due to the n'" source also form a si-
nusoid. The total measurement {C¥ .}, k€ {1,..., K}
(Eq. 3) is the sum of these individual sinusoids, and thus,
also forms a sinusoid. This is shown in Fig. 2 (b). How-
ever, since the phases ¢,, of the individual sinusoids (one
due to each interfering source) may be different, the phase
of the total measurement waveform may differ from the true
phase, resulting in systematic, potentially large depth errors.

3.2. Orthogonal Coding for Mitigating Interference

One way to mitigate multi-camera interference (MCI)
is to ensure that the intensities {C*}, k € {1,...,K}
due to an interfering source form a constant waveform, i.e.,
C’ﬁ = C,, Vk. For example, in sinusoid coding, this can
be achieved by assigning a different modulation frequency
to each camera [20]. 3 As a result, the total measurement
waveform {C’fnult} sk e {1,...,K} has the same phase
as the sinusoid due to the primary source. This is because
the interfering components are constant waveforms, and
thus do not alter the phase, thereby preventing systematic
depth errors. This is shown in Figure 2 (c).

We call this AC-Orthogonal (ACO) approach, since it re-
duces the interference to constant waveforms by removing
the AC component. However, the offset (DC-component) of
the total waveform still increases, as shown in Figure 2 (c).
The extra offset acts as additional ambient light, and thus
lowers the SNR of the estimated depths due to increased
shot noise [23]. * For example, the depth standard deviation
for a 4-tap sinusoid-based ACO method is given as:

c ves +eq+ Ne;
0ACO = )
2\/§7Tf0\/T €s

where fo is the modulation frequency, 1" is the total cap-

“)

3Sinusoids of different frequencies are orthogonal functions, i.e., their
correlation is zero, or a constant if the sinusoids have a non-zero DC offset.
4With bipolar demodulation functions, although the DC-offset is re-
moved, the shot noise still increases. See technical report for a discussion.
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ture time for each measurement, and c is the light speed.
es = sabPs, e; = sa;Ps and e, = sP, are the average
number of signal photons (due to the primary camera’s own
source), interfering photons (due to an interfering source),
ambient photons (due to ambient source), respectively, in-
cident on the pixel per unit time. Without loss of generality,
we assume that e; is the same for all interfering cameras.
See technical report for derivation of Eq. 4.

Although an ACO approach prevents systematic errors
due to MCI, random errors due to photon noise increase as
the number of interfering cameras increases (Eq. 4). This is
because each interfering source has a non-zero DC compo-
nent, contributing additional photon noise to the intensity
measurements. Is it possible to design a DC-Orthogonal
(DCO) approach, that removes both the AC and DC com-
ponents of the interference, as shown in Figure 2 (d)?

4. Stochastic Exposure Coding

In this section, we describe the proposed stochastic ex-
posure coding (SEC) technique. SEC is a DC-orthogonal
approach since it can mitigate both DC and AC interfer-
ence. SEC is based on the principle of time-division mul-
tiple access (TDMA) used in communication networks to
facilitate simultaneous multi-user access to a shared chan-
nel. Consider a scenario where multiple ToF cameras are si-
multaneously imaging the same scene. One way to prevent
interference is to divide the capture time into multiple slots,
and ensure that exactly one camera (and its source) is on
during any given slot. However, assigning cameras to slots
deterministically requires temporal synchronization, which
may be challenging, perhaps even infeasible, especially in
uncontrolled consumer applications.

The key idea behind the SEC is that by performing
the slot assignment stochastically, interference can be pre-
vented without synchronization. SEC can be considered a
stochastic version of the TDMA described above, where in
each slot, every camera is turned on with a probability p.
The on-off decision is made independently for each slot,
for every camera, without synchronization. If a slot doesn’t
produce a clash, both DC and AC interference are avoided
since the camera receives light only from its own source, as
shown in Figure 3. Since the approach is stochastic, a slot
may have clashes, which can be identified and discarded
with a simple clash-check algorithm (Section 4.2).

4.1. Optimal Slot ON Probability

The performance of the SEC is determined by the slot
ON probability p (we will use p instead of pp v for brevity).
If p is high, each camera utilizes a larger fraction of the cap-
ture time, but may lead to more clashes. On the other hand,
for a low p, clashes may be minimized, but the cameras
incur a longer ‘dead time’ during which they are neither
emitting light, nor capturing measurements. Thus, a natural

Frame
Slot 1 Slot M

ToF
cameral

ON withp OFF with1—p
ToF
camera2

Figure 3. Concept of SEC. A frame, the most basic unit to esti-
mate the depth, is divided into M number of slots. Each slot is
activated with a probability p. A depth value is estimated from
non-clashed ON (activated) slots.

question is: What is the optimal p? To address this, we ex-
press the depth standard deviation of the SEC in terms of p.

Depth standard deviation of SEC: Consider a scene being
imaged by N + 1 C-ToF cameras. For ease of analysis, we
assume the cameras are identical. The capture time of each
camera is divided into slots of the same duration. For each
camera, it is turned on with a probability p in every slot.
In general, the boundaries of the slots may not be aligned
across cameras. Therefore, any given slot of a camera will
overlap with two slots of another camera. Thus, the proba-
bility ppocrsh that a given slot does not produce a clash, i.e.,
only one camera is active during that slot, is:

Pnoclsh = P (1 - P)QN . (5)

Assuming we can identify all the non-clash slots, the ef-
fective exposure time for each camera, on an average, is
T Procish, Where T' is the total capture time. In order to
compensate for the reduced exposure time, we assume that
the peak power of the source can be amplified. Let A be the
source peak power amplification. Theoretically, A should
be 1/p, so the total energy used during the capture time re-
mains constant. Practically, however, A is limited by device
constraints. Thus, A = min (1/p, Ag), where Ay is the up-
per bound of A determined by physical constraints.

Given the effective exposure time T p,,oc1sn and source
power amplification A, the depth standard deviation of SEC
can be derived from Eq. 4:

_ c VAes + e,
2\/§7Tf0 \% Tpnaclsh Aes ’

where A = min (1/p, Ag) and ppocisn = p (1 —p)
The optimal ON probability for SEC psgc is defined as:

OSEC

(6)

2N 5

1 1
PSEcC = argn;in OsEpc = min <2N—|—1’ AO> S0

See technical report for a derivation. As the number of in-
terfering cameras NV increases, the optimal ON probability

SStrictly speaking, randomness due to slot ON probability can influ-
ence the depth standard deviations. However, in practice, the effect of
randomness is relatively small if sufficient number of slots are used.
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decreases so that the number of clashes remains low. If p
is too small or large, the optimal SNR cannot be achieved
since the effective integration time is reduced.

4.2. Clash Check and Depth Estimation in SEC

Since SEC is a stochastic, asynchronized approach, a
fraction of the slots in each frame may still have clashes.
These clash slots need to be identified and discarded so
that they do not affect the depth computations. Our clash
check algorithm is based on the following, simple intuition:
In a clashed slot, the camera receives light from multiple
sources. Therefore, the total received intensity in that slot
is higher as compared to no-clash slots, with high probabil-
ity. Therefore, we compare the sum of all the correlation
values o = >  Ck in each slot to a threshold. If o is larger,
the corresponding slot is discarded. Finally, we compute a
depth value d,,, (m € {1,..., Myocsn} for each non-clash
slot, and the final depth value d for each frame is estimated
by averaging d,,,. See the technical report for details.

4.3. Practical Considerations and Limitations

Being a DC-orthogonal approach, SEC achieves higher
SNR than ACO (see Section 6 for details). On the other
hand, SEC has stronger requirements: (a) it requires higher
source peak power (for the same total energy) as compared
to ACO, and (b) it needs to capture more data (multiple slots
per frame). Fortunately, as we show below, there are rela-
tively small upper bounds on these requirements.

Required source peak power amplification: Since the ef-
fective integration time of SEC is shorter than ACO, the
SNR of SEC can be smaller than ACO if the source peak
power amplification A is not sufficiently large. The required
A for SEC to perform better than ACO in terms of SNR can
be estimated from csgc < daco:

1 VA o
AL r—— (8)
v/ Pnoclsh A

where r, = e,/es and r; = e;/e; are relative ambient
light strength and relative interfering light source strength,
respectively. Figure 4 shows the required peak power ampli-
fication A over different number of interfering cameras N
at different ambient light strengths. Although the required
A increases with N, it eventually converges, as stated in the
following result (see technical report for a proof):

Result 1. [f the source peak power amplification of SEC is

larger than (e +e(e+ 2rari)> /7i, the depth standard

deviation of SEC is always lower than ACO regardless of
the number of interfering cameras. For example, the re-
quired A =~ 6.3 whenr, =r; = 1.

Practicality of achieving high peak power: Two factors
should be considered regarding the practicality of increas-
ing source peak power. First, in power-constrained devices

7, =10
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Figure 4. Required source peak power amplification for SEC.
The required source peak power A increases with the number of
interfering cameras N, but eventually converges, for various rela-
tive ambient light strengths 7.
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Figure 5. Required number of ON slots for SEC. More number
of ON slots Moy is required if the number interfering cameras
N increases over various allowable peak power amplification Ao.
However, the required Mo n eventually converges.

= Psuc = 0.95 = Psuc = 0.90

(e.g., cell-phones), in order to minimize total energy con-
sumption, it may be desirable to operate the light source
with low average power despite availability of higher peak
power. Second, recent studies have shown the possibility of
driving low-cost sources typically used in C-ToF cameras
(e.g., laser diodes and LEDs) with high instantaneous peak
power [22]. For example, a laser diode emitting at NIR
(830nm) with 1.5 W optical output power was successfully
overdriven up to about 25 W [22].

Required number of slots: For correct depth estimation in
SEC, we need at least one non-clashed ON slot. Let pg,,. be
the probability of getting at least one non-clashed ON slots
during a frame. Then, the number of ON slots Mo that a
camera would need to capture per frame increases with N,
but, is eventually bounded, as stated in the following result:

Result 2. The required number of ON slots Mo N converges
to e (22/2 +1—222/4+ 1) regardless of the number
of interfering cameras, where z is the z-score value, and

is a function of psyc. For example, when ps,. = 0.9, the
required Mo N is upper bounded by 9.1.

See supplementary report for a proof. Figure 5 shows
Moy over the number of interfering cameras N with vari-
ous desired success probability ps,. and different allowable
source peak power amplification Ag. Moy increases with
N, but converges as N increases. The total number of slots
in a frame M = Moy /psgc can be large and affect the
frame rate. However, the more pertinent factor that limits
the frame rate is Moy (the number of on slots), which is
relatively small, thus making it possible to achieve suffi-
ciently high frame rate for capturing dynamic scenes. See
technical report for a detailed discussion and analysis.
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5. Multi-Layer Coding for Mitigating MCI

The proposed SEC creates a layered view of C-ToF cam-
era coding, as shown in Figure 1. Most existing approaches
for MCI reduction operate in the bottom depth coding layer
since they change the camera’s coding functions at nanosec-
ond time scales. In contrast, SEC operates at a higher ex-
posure coding layer by modulating the camera and source
at micro/millisecond time scales. Since SEC and conven-
tional ACO techniques operate in different layers, these are
orthogonal to each other, and, can be used in a complemen-
tary manner to combine the benefits of both. For example,
it is possible to use sinusoid coding with different modu-
lation frequencies for different cameras, while also using
SEC. In such a multi-layer integrated approach (CMB)), it is
no longer necessary to discard the clashed slots since they
do not introduce depth errors. This makes repeated clash
check unnecessary, leading to simpler depth estimation and
an efficient frame structure.

Depth standard deviation of CMB: Depth standard devi-
ation of CMB o¢ /5 can be easily derived from Eq. 4:

B c VAeg + e, + NpAe;
© 2\2rfo/Tp Aeg ’
where A = min (%, A0>.

Optimal slot ON probability: The optimal slot ON proba-
bility for CMB pc g is defined as p minimizing Eq. 9:

€))

OCMB

. 1
PcMB = argminocyp = ——- (10)
p AO

Note that poasp is independent of N. For derivation and
depth estimation algorithm, see technical report.

6. Theoretical Performance Comparisons

We present theoretical comparisons between ACO, SEC
and CMB in terms of 1) depth standard deviation at the
same energy consumption and 2) required energy to achieve
the same depth standard deviation. All comparisons are rel-
ative to an ideal ACO. We define the normalized inverse

depth standard deviations @' (higher value is better):

bl

Eilzo—ACO:(l—p )N A0(1+TG+NTZ')
OSEC SEe Ag+rq

(1)

and

, (12)

-1 _ 0Aco _ Ay pomp (1 +714 + Nry)
OCMB Aog + 14 +pomBN Agr;

for SEC and CMB, respectively. For ACO, T l=1

=ACO =SEC (proposed) == CMB (proposed)

25 L 25 25
22 = 22 | 22
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161/ 16 — 1.6
13 13 1.3
1
1 1
0 4 8 12 16 20 12345678910 10" 10° 10
N Ay T,
(a) Inverse depth standard deviation
1 1 1
0.8 0.8 \ 0.8
_0.6 0.6 0.6
EoalX 0.4 N 0.4
\\N
0.2 0.2 = 02
0 0 0 -1 0 1
0 4 8 12 16 20 12345678910 10 10 10
N 0 Ta

(b) Energy consumption
Figure 6. Theoretical comparison. Different approaches are com-
pared by (a) inverse depth standard deviation at the same energy
consumption, and (b) required energy to achieve the same depth
standard deviation. The relative performance of our approaches
improves with the number of interfering cameras IV, allowable
peak power amplification Ao, and relative ambient light power .

The required energy consumption to achieve the same
depth standard deviation is also compared. We define F as:

E - ESEC - 1 A() + 74
¢ Baco (1= pspe)™™ Ao (1474 + Nry)’
(13)
and
— E A » NAqgr;
Eonp = ZCME _ 0+ 7ra+DpcrmBNAor (4

Eaico o A0(1+TQ+N7’i)

for SEC and CMB, respectively. E = 1 for ACO.

Figure 6 shows (a) @ ! and (b) E of three approaches
as a function of the number of interfering cameras /N, al-
lowable peak power amplification Aj, and ambient light
strength r,. When one of these parameters varies, the other
parameters are fixedas N =5, Ag = 8,7, = 1,and r; = 1.
As can be seen from the figure, ! and E are closely re-
lated to each other. In general, 7! and E of SEC and CMB
improve when N increases due to DC interference reduc-
tion which cannot be achieved by ACO. Although the rel-
ative performance of SEC and CMB improves with Ay, it
saturates for SEC. Lower energy consumption is one of the
key benefits of our approaches, which is critical in power-
constrained applications. For additional comparisons with
the same total peak power, see technical report.

7. Validation by Simulations

7.1. Verification of Depth Standard Deviation

We confirm the derived depth standard deviation equa-
tions of ACO, SEC, and CMB by simulations. For each
approach, correlation values are computed, Poisson noise
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Figure 7. Inverse depth standard deviations by simulations and
equations. Simulation results match well with the derived equa-
tions over various parameters. The proposed approaches outper-
form existing methods over a range of imaging scenarios.

is added, and the depth value is estimated from the noisy
correlation values. This procedure is repeated 1000 times
to compute the depth standard deviations. We also include
the PN-sequence approach (PN) [6, 7] for simulations. We
modified the original depth estimation algorithm [6] to ac-
commodate unipolar demodulation functions and four cor-
relation values for fair comparisons with other approaches.

Figure 7 shows the inverse depth standard deviations
o~1 of PN, ACO, SEC, and CMB over the number of in-
terfering cameras NV, total integration time 7", and modula-
tion frequency fo when the depth value is 1 m. Solid and
dotted lines indicate the results by simulations and equa-
tions, respectively. All simulation results match well with
the derived depth standard deviation equations. The poor
performance of PN id due to non-zero AC interference and
relatively low modulation frequency to achieve the same
measurable depth range as other approaches. See technical
report for more details.

7.2. Simulations with a 3-D Model

Given a 3-D model, the depth values from a given cam-
era position to all vertices of the model are computed. For
each vertex, the correlation values are computed by 4 differ-
ent approaches (PN, ACO, SEC, and CMB), photon noise is
added, and the depth value is estimated from the corrupted
correlation values. Once the model is reconstructed, root-
mean-square error (RMSE) is computed for the objective
quality comparison as well. Figure 8 compares the simu-
lation results by different approaches over different num-
ber of interfering cameras N. RMSE values (in mm) are
shown below the results. Although absolute performance of
all approaches decreases with NV, the relative performance
of SEC and CMB increases compared to PN or ACO in both
objective and subjective quality.

8. Hardware Prototype and Experiments

We developed a proof-of-concept hardware prototype to
implement ACO, SEC, and CMB. Our setup consists of
four C-ToF cameras (OPT8241-CDK-EVM, Texas Instru-
ments [2]) and four microcontrollers (Arduino UNO) to
generate random binary sequences (Figure 9). The square
waves at 50% duty cycle are used as the modulation and

SEC (proposed)

CMB (proposed)

4.99

Figure 8. 3-D model reconstruction over different number of
interfering cameras. Our approaches achieve better performance
in both subjective and objective quality over different number of
interfering cameras N. The RMSE values (in mm) are shown.

demodulation functions. Since a frame is the most basic
structure of the camera to access depth values, we used a
frame as a slot. For ACO and CMB, four different mod-
ulation frequencies B = {18, 20, 22,24} (MHz) are used
for four different cameras. The depth values from all time
slots of a primary camera are averaged to obtain a depth
value for ACO. For SEC and CMB, the cameras operate in
the slave mode to be activated by external pulses generated
with an Arduino according to the given slot ON probability
by which the slot activation is determined. The depth values
from non-clashed ON slots and all ON slots are averaged to
obtain depth values for SEC and CMB, respectively. Since
it is challenging to amplify peak power of the light source
for SEC and CMB, we lower it for ACO instead using the
ND-filters (NE20A-B, Thorlabs) with an optical density fil-

7886



Front view

Top view

Figure 9. Hardware prototype. Front and top views of our setup
to implement ACO, SEC, and CMB. The setup consists of four C-
ToF cameras and four microcontrollers to generate random binary
sequences to activate the cameras by given slot ON probabilities.

Color Ground truth Interference
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Figure 10. Performance comparison via real experiments.
Multi-frequency coding is used in the three different approaches.
The % of inliers (non-black pixels) and RMSE values (in m) at the
inliers are represented for comparison between approaches.

ter, while keeping the total energy consumption the same.

Results with multi-frequency coding scheme: One of the
key benefits of our approach is its ability to be used with
any C-ToF coding scheme. To demonstrate this capabil-
ity, we used a multi-frequency coding scheme with two
frequencies [9]. We use the set of modulation frequen-
cies B = {18,20,22,24} (MHz) as the base frequencies,
and {27, 30, 33,36} (MHz) as the de-aliasing frequencies.
0.83 ms is used for slot integration time. Figure 10 shows
the color image and ground truth depth map of a face man-
nequin along with interference result and estimated depth
maps by three approaches. Depths at the regions with low-
est 1% number of photons are not recovered, and shown
in black as outliers. For each approach, % of inliers and
RMSE values (in m) for inliers are represented on the re-
sults. Although systematic depth errors are removed by
all approaches, our approaches show significantly reduced
noise compared to ACO.

Energy consumption comparison: We obtain depth esti-
mation results with different energy consumption and com-
pare them between different approaches. Different energy
consumption is achieved by changing slot integration time:
low energy (0.83 ms), medium energy (1.83 ms), and high

Color Ground truth Interference
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Figure 11. Depth estimation comparison over different energy
consumption. Our approaches show better performance at lower
energy consumption than the conventional approach. The % of
inliers (non-black pixels) and RMSE values (in m) at the inliers
are represented for comparison between approaches.

energy (2.83 ms). Multi-frequency mode is deactivated and
the set of modulation frequencies B3 are used as the base
frequencies. Figure 11 shows the depth estimation results
by different approaches over different energy consumption
along with color image, ground truth depth map and inter-
ference result. Our approaches can obtain better results than
ACO with only 30% of the energy consumed for ACO.

9. Discussion and Future Outlook

We propose stochastic exposure coding, a novel ap-
proach for mitigating both both AC and DC components of
multi-camera interference in C-ToF imaging. This capabil-
ity enables high precision depth estimation with low energy
consumption. We demonstrat the performance benefits of
the proposed approaches with theoretical analysis, simula-
tions and real experiments. The proposed approach operates
in an independent layer in C-ToF coding such that it can be
incorporated with wide range of C-ToF coding functions,
and various hardware platforms.
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