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Figure 1: With our capture setup (left), we collected a large-scale, conversational motion and audio dataset of 50 people (right).

Participants often make pointy gestures with high pitch emphasis when referring to a place or asking a question.

Abstract

We present a 16.2-million-frame (50-hour) multimodal

dataset of two-person face-to-face spontaneous conversa-

tions. Our dataset features synchronized body and finger

motion as well as audio data. To the best of our knowledge,

it represents the largest motion capture and audio dataset

of natural conversations to date. The statistical analysis

verifies strong intraperson and interperson covariance of

arm, hand, and speech features, potentially enabling new

directions on data-driven social behavior analysis, predic-

tion, and synthesis. As an illustration, we propose a novel

real-time finger motion synthesis method: a temporal neu-

ral network innovatively trained with an inverse kinematics

(IK) loss, which adds skeletal structural information to the

generative model. Our qualitative user study shows that

the finger motion generated by our method is perceived as

natural and conversation enhancing, while the quantitative

ablation study demonstrates the effectiveness of IK loss.

1. Introduction

Real-time motion synthesis in conversational settings is

becoming more important with the increased demand for

telepresence through virtual/augmented reality and appli-

cations in 3D animation and social games. Motion syn-

thesis is commonly done via physics-based trajectory opti-

mization [17], data-driven generative models [20, 16], or a

combination of the two [24]. In the latter two approaches,

the availability of high-quality data is crucial for the qual-

ity of synthesized motion. Recent advancement in deep

learning provides many advanced temporal generative mod-

els [11, 5, 23]. In leveraging such powerful models, the

scale of the training dataset is important. However, when it

comes to conversational settings, high-quality, large-scale

motion capture dataset is not available due to the challenges

involved in capturing face-to-face conversations in a holistic

manner: the dataset must capture the complex multimodal

interaction including spontaneous verbal and nonverbal ges-

tures and voice, and must be captured across many subjects

for diversity.

We introduce a large-scale, multimodal (body, finger, and

audio) dataset of two-person conversations. Our dataset

consists of 50-hour motion capture of two-person conversa-

tional data, which amounts to 16.2 million frames. To the

best of our knowledge, our dataset is the largest dataset of

conversational motion and voice, and has unique content:

1) nonverbal gestures associated with casual conversations
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Ours CMU Mocap [1] Panoptic [14] MMAC [2] BigHand [33] FM [15] Human3.6M [13]

# of subjects 50 108 - 25 10 2 3

# of hours 50 - 5.5 15 20 0.5 20

# of frames 16.2M - 1.5M 6.3M 2.2M 54K 3.6M

# of sequences 200 2605 65 125 - 56

Seq. Length (min) 7-20 0.1-1 0.5-25 3-10 - 2-4 -

Audio Yes No Yes - No No No

Captured parts Body, Hand Body Body, Hand Body Hand Body, Hand Body

Content Conversation Jog, walk Dance, game Cook Schemed, random Conversation Talk, eat

Multi-subjects Yes Few Yes No No No No

Table 1: Comparisons of our dataset with publicly available motion capture datasets. Ours is unique in its scale, content, and

multimodality. For other databases, we approximated the number of hours and frames based on the number of sequences and

lengths when it was not directly available. Note that the content row shows only a few example motion types in each dataset.

without any scripted motions, 2) full body as well as finger

motions, and 3) synchronized audio data, separately cap-

tured for each participant with directional microphone (i.e.,

no audio bleeding). Our dataset will enable many future re-

searches in multimodality analysis, modeling, and synthesis

of social communication behaviors, especially in utilizing

advanced deep learning models.

Comparisons of our dataset with some widely used mo-

tion capture datasets are given in Table 1. Our dataset excels

in multiple dimensions: in scale, it is 2.5 times larger than

[13] and many more times larger than others; in complete-

ness, it simutaneously captures two people’s body and finger

motion instead of capturing just one person [2, 8, 25, 13],

capturing just body [1, 2, 8, 25, 13] or not capturing au-

dio [1, 8, 25, 13]. Our dataset is in 90 fps, which is 1.8

times higher frame rate than [13] (50 fps). The high frame

rate is especially beneficial for fine-grained motion predic-

tion. Moreover, the length of each captured sequence is 7-20

minutes, much longer than most compared datasets. Such

lengths are closer to real world conversations and therefore

more diverse and spontaneous human behaviors may natu-

rally emerge. Furthermore, to facilitate future study of both

person-specific model and generic model, we intentionally

include both deep capture – two participants participate in

many capture sessions resulting in a large amount of data for

each, and wide capture – in total we have approximately 50

participants mostly recruited through public advertisements.

As highlighted in Figure 1, our dataset captures expres-

sive gestures and voice variations that arise during conversa-

tions. Based on a statistical analysis, we found that paired

participants covary their voices or motions to agree with

their counterparts’ statements or answer questions. Further,

our data reveals strong covariance between a participant’s

own two hands as well as strong covariance of paired par-

ticipants’ arm joints and voice features (Section 3). These

findings suggest that we can utilize various intrapersonal and

interpersonal features to generate rich and realistic gestures

in conversational settings.

To showcase the usage of our large-scale dataset, we train

deep temporal neural network models to synthesize natural

finger motion from upperbody joint angles and audio in real

time. We choose finger motion as the synthesizing target

because it contains rich social signals and is critical in social

interaction setting. However, it has been rarely studied with

deep learning models, mainly due to the lack of large-scale

multimodal data. We tackle this problem in this paper as

proof of the benefits of our dataset.

To ensure the synthesis of expressive gestures (e.g., point-

ing index finger), we propose to use inverse kinematics (IK)

loss, which incorporates kinematic constraints into the train-

ing of a temporal neural network. IK loss can be used with

any generative models that output joint angles. It is formed

using forward kinematics operations, so gradients taken on

it penalize each joint angle according to how much it af-

fects the target pose, e.g., fingertip pose. Although IK loss

has been commonly used in motion synthesis and recon-

struction [27, 28], its usage in the end-to-end training of a

temporal neural network is unseen.

We apply IK loss to temporal neural networks such as

Long Short-Term Memory (LSTM) [11], Variational Recur-

rent Neural Network (VRNN) [5], and Temporal Convolu-

tional Network (TCN) [23]. All our models meet the real-

time constraint: they generate every frame in less than 0.002

seconds. Our qualitative user study shows that our model can

generate natural looking and informative finger motions dur-

ing conversations. Our quantitative ablation study indicates

that training with IK loss causes smaller fingertip position

error with negligible effect on joint angle error.

The key contributions of this paper are summarized as:

• the largest currently available face-to-face multimodal

conversation dataset that contains body and finger mo-

tions as well as audio;

• a statistical analysis of combined body, hand, and acous-

tic features during face-to-face converations that veri-

fies previously used heuristics in gesture synthesis;

• the innovative application of IK loss to train temporal

neural network to synthesize realistic finger motion.
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2. Related Work

2.1. Human Motion Capture Datasets

There exist many 3D human motion datasets using

marker-based, markerless, and depth sensor-based tracking

systems. Our dataset contains 50-hour, two-person, face-to-

face social conversational interactions, capturing body and

finger motions as well as speech. This unique focus and large

scale clearly differentiate our work from existing datasets.

Single Person Motion Datasets The CMU motion cap-

ture dataset [1] is one of the most widely used motion cap-

ture datasets in the research community. It contains both

single-person and two-person interactions, and its diverse

motions range from locomotion to sport activities. Although

large scale, its number of sequences per motion type is rel-

atively small. This contrasts with our dataset, which pro-

vides a large number of sequences of one kind: two-person

conversational motion. The CMU Multi-Modal Activity

Database (MMAC) [2], closer in spirit to ours, captures a

large amount of multimodal human motion sequences, all

related to kitchen activities.

In the HumanEVA dataset [25], 3D motion capture data

is accompanied by synchronized video clips, which may be

useful for human pose estimation from videos. In the Hu-

man3.6M dataset [13], human daily activities such as eating

were captured. Multimodal human actions were captured

in [22] using an optical motion capture system, multiple

cameras, depth sensors, IMUs, and microphones. The Uni-

versity of Edinburgh Interaction Database [3] includes both

body and finger motion, but it focuses only on human-object

interactions. Some datasets are dedicated to 3D hand pose

capture [7, 33]. The Finger Motion (FM) [15] dataset is

closest to ours in terms of its content, as it contains full body

and hand motions in conversational settings. However, the

dataset contains only scripted motions by actors and has only

single-person data without audio.

Multi-Person Interaction Datasets Similar to our ap-

proach, Lu et al. [18] also used a marker-based motion cap-

ture system to capture two-person interactions. Their action

categories include object handovers and conversations. How-

ever, the activities are scripted. Ye et al. [32] captured human

interactions using three hand-held Kinects. Their capture

setting is much simpler than ours, allowing interactions in a

natural environment, but they do not capture finger motion.

The Utrecht Multi-Person Motion dataset [29] provides syn-

chronized video and 3D motion capture data of multi-person

interactions. Recently, Joo et al. [14] captured human social

interactions in a sophisticated dome called Panoptic Studio,

which mounted many RGB cameras, depth sensors, and mi-

crophones. While the available data types are similar, ours

is much larger than these datasets.

2.2. Finger Motion Synthesis

Physics-based approaches combine various kinematic,

task-specific, and style constraints. Liu [17] optimizes tra-

jectories using contact and kinematic constraints for object-

hand interaction. Pollard et al. [24] and Zhao et al. [34]

combine a small dataset with physical simulation to generate

grasping motions. These methods are effective when task-

specific constraints or external contact constraints are clear,

but cannot be immediately applied to verbal and nonverbal

gesture synthesis.

The key of data-driven hand motion synthesis is inter-

polation among nearest neighbor trajectories from motion

libraries. The quality and computational tractability of these

approaches largely depend on the quality of the motion li-

brary, the motion query algorithm, and the objective function.

The collected trajectories are segmented [19, 15, 21, 20, 26]

by some predefined gesture phases. Combination of several

cost terms are used for interpolation such as proximity of

the pose to the data [15], smoothness of the motion [19] or

transition likelihood between segments [26].

Another common approach is to learn probabilistic gener-

ative models for hand motions. Generative models are useful

in real-time motion synthesis, as it can generate motions

given history of observations without requiring the whole

trajectory. Levine et al. [16] use a Hidden Markov Model

(HMM) to generate arm motions given speech, though fin-

ger motinos are not considered in this work. Mousas et

al. [20] use an HMM to generate finger motions given wrist

poses of a performer. Analogous to interpolation-based meth-

ods, these methods require clustering the database to similar

states in order to train discrete HMMs.

We encourage interested readers to refer to a survey pa-

per [31] for more comprehensive overview.

2.3. Temporal Generative Models

Recent advancement of deep learning resulted in many

models with high capacity. Oord et al. [23] proposed a

dilated temporal convolutional network for generating raw

audio. Holden et al. [12] use an autoencoder to find low

dimensional manifold for human motions. Walker et al. [30]

use Variational AutoEncoder (VAE) to encode past poses and

decode future poses, while using a Generative-Adversarial

Network to generate fully rendered images. Habibi et al. [9]

combines VAE with LSTM [11] to generate human motions.

With our large-scale dataset, many of these methods could

be readily applied to finger motion synthesis.

3. Dataset Construction

Our dataset consists of 50 sessions of two-people con-

versations. Each session is approximately one hour and has

4-6 subsessions, either free-talking or video retelling (Sec-

tion 3.2). We provide body and hand poses, raw audio data,
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Figure 2: Location of the 24 cameras: 14 cameras were

placed on each side of the participants to best capture fingers.

and acoustic features. All data is processed in 90 fps except

for raw audio.

3.1. Capture System

Our capture system included 24 OptiTrack Prime 17W

cameras surrounding a capture area of approximately 3m×
3 m (Figure 2) and two directional microphone headsets.

Ten of the 24 cameras were placed at 1.6 m height. The

remaining 14 cameras were placed at each side of the two

participants, ten for bottom-to-top views and four for top-

to-bottom views, to get the best capture of the finger mo-

tions. Participants wore marker-attached suits and gloves.

We followed the standard marker arrangement provided by

OptiTrack for body capture and glove marker arrangement

suggested in Han et al. [10].

Before the actual data capture each participant was asked

to follow a recorded video of gestures and large body move-

ments, which helped the participant to familiarize with the

motion capture setup and the suit. The recorded body and

finger motions were used to calibrate the bone lengths and

translations per participant.

All motion capture data was converted to a joint angle

representation. All joints are represented by local transforms

with respect to parent joints; a global pose of the pelvis is

provided with respect to a fixed frame, which can be used to

track the global movement of the subject as well as to mea-

sure the distance between the two subjects. We processed

finger motion capture data using Han et al.’s method [10],

which automatically labels finger markers and computes

joint angles via optimization based on inverse kinematics.

We provide raw audio of each person, which was synchro-

nized with motion data by BrightEye 56 Pulse Generator

and recorded by OctaMic XTC. In addition, we provide the

Geneva Minimalistic Acoustic Parameter set (GeMAPS) [6],

a comprehensive set of acoustic features that captures various

aspects of vocal expressions. The features include frequency

(e.g., pitch, jitter), energy, amplitude (e.g., shimmer, loud-

ness), and spectral features.

3.2. Conversational Tasks

To inspire spontaneous conversations, we experimented

with various conversational tasks, from which we learned

two lessons. First, the conversational tasks should provide

sufficient context to engage the participants. Second, to

accommodate a wide variety of participants, the task should

not require too much background knowledge. Therefore, we

chose two main tasks for our participants: free conversation

around a given topic and video retelling.

Free conversation topics were chosen from a compre-

hensive set originally designed for casual conversations in

English classes [4]. Some example topics are:

• Where are you planning to go for your next vacation?

• What good restaurants do you know of around here?

In each capture session, the pair of participants engaged in

2-3 such conversations. We told participants to freely drift

from the topic, similar to how people segue topics in casual

conversation.

In addition, participants engaged in two subsessions of

video retelling. To start, one participant watched a 5-minute

video while the other waited outside the room. Then the

participant who watched the clip told the story to the other

participant, during which the other person could interrupt

for clarification questions. After the telling, the participant

who heard the story retold the story to the first participant,

during which the first participant could interrupt to correct

the retelling. This design was to engage participants in

spontaneous conversational behaviors such as explaining,

active listening, interruptions, and questions.

If participants were highly engaged, we let the conver-

sation continue until it ended naturally. As a result, the

conversations ranged in length from 7 to 20 minutes.

3.3. Captured Data Analysis

We first investigate what correlates between how people

speak and how they use their hands by evaluating the covari-

ance of the upper body, finger joints, and acoustic features.

Figure 3a and 3b show intraperson and interperson covari-

ance. We take the average joint angle per finger. For visual

simplicity, we grouped the fingers into left and right hands

and grouped wrist, elbow, and shoulder joints into left and

right arms. Among the possible covariance pairs, we use the

maximum values to represent each cell: e.g., the covariance

of left index finger and right wrist may correspond to the cell

(LHand, RArm) in Figure 3a.

Our statistical findings are coherent with heuristics used

in the previous gesture synthesis work. Jörg et al. [15] em-

pirically noted that wrist joints were strongly correlated with

finger motions. Indeed, strong covariance exists between
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(a) Intraperson covariance (b) Interperson covariance
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Figure 3: (a) Single-person covariance among joints and pitch. Strong off-diagonal covariances among the two arm and hand

joints indicate that the two hand motions are correlated. (b) Strong covariance is found between the pitch of one participant

and the pitch and arm motion of the other. (c) Acoustic features and proximal joints are temporally correlated.

the arm and finger joints of the same side. Our analysis

further shows that the two hands are strongly correlated, im-

plying that people often move both hands together. Levine

et al. [16] noted pitch, loudness, and duration as key fea-

tures contributing to gestures. Likewise, we observe that

pitch covaries with both left and right arm joints (Figure 3a).

Our analysis further indicates that the audio features covary

with the other person’s arms (Figure 3b). Qualitatively, we

observed that while one person talks and makes gestures,

the other person often verbally responds, such as answer-

ing questions or agreeing to the other’s comments, which

accounts for the covariance.

Figure 3c shows that the velocities of the proximal finger

joints are temporally correlated with two audio features:

loudness and pitch. We measure temporal correlation using

the Pearson cross-correlation coefficients1.

4. Real-Time Finger Motion Synthesis

To illustrate the use of our dataset on data-driven motion

synthesis, we train temporal generative models using our

dataset to synthesize finger motion. We also propose to use

inverse kinematics loss, described below.

Formally, generative models learn the probability func-

tion p(rt|r<t,y≤t), where rt is the joint angles of the fingers

at time t, and y≤t is the history of observations. We assume

that the joint angles and angular velocities of upper body

joints and acoustic features are observed. Partial observa-

tion of body joints is commonly assumed in finger motion

synthesis [15, 19, 21] where the goal is to fill in the finger

pose to match the context of the body pose. For acoustic

features, we use loudness and alpha-ratio, which is the ratio

1 For two stochastic processes (Xt, Yt) that are jointly wide-sense

stationary, the cross correlation with timelag τ is given by ρXY (τ) =
1

σXσY

E[(Xt−µX)(Yt+τ−µY )], where σX , σY are standard deviations,

and µX , µY are the means of X and Y .

of the summed energy from 50–1000 Hz and 1–5 kHz. For

body features, we use upper body joints as well as relative

transforms of wrist joints with respect to a root joint.

4.1. Inverse Kinematics (IK) Loss

Many temporal generative models [11, 12, 23] can pro-

duce complex motions. However, the structures in data

are implicitly learned by the model and cannot be directly

regulated, even when prior knowledge is available. The hu-

man skeleton, in fact, has a rich set of kinematic constraints

that place different weights to different joints. For example,

moving a shoulder results in a larger wrist movement than

moving an elbow by the same amount because of the ad-

ditional transform between the shoulder and elbow. When

generating joint motions for a human skeleton, the learner

must take into account the cascaded effects across joints.

We use IK loss (Figure 4) to incorporate this kinematic

structural knowledge. To compute it, we first form a kine-

matic chain by combining the output joint angles of the

generative model with the bone translations. Let r̂ be the

joint angles generated by the temporal model a particular

timestep, and let r̂n,i be the angles of the joints for finger

n. We augment these joint angles with bone translations tn,i
and form homogenous transformation matrices. Finally, we

multiply them in the order given by the skeletal structure,

starting from the base joint to the distal joint. The forward

kinematics of finger n can be represented as:

T̂n = fk(r̂n,1, · · · r̂n,kn
) =

kn
∏

i=1

[

R(r̂n,i) tn,i
0 1

]

where kn is the number of joints on finger n and R is a

function that maps a rotation vector r̂ to a 3 × 3 rotation

matrix. In our implementation, r̂ is a quaternion.

The pose difference between T̂n and the true Tn corre-

sponds to the pose difference of fingertip n (Figure 4b),
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(a) Training scheme with forward kinematics (FK) chain (b) IK loss

Figure 4: (a) Given observations of body pose and audio features yt, a temporal generative model predicts joint angles r̂t,

which undergoes forward kinematics operations only during training. (b) The output of the FK chain forms IK loss.

which we call the IK loss:

LIK(r, r̂) =

N
∑

n=1

dTip(Tn, T̂n)

where dTip is a distance metric of our choice on the SE3

space. Intuitively, having LIK helps the network learn what

matters more, i.e., fingertip poses. We use only the posi-

tional difference in our implementation. This loss is used in

addition to the joint angle loss:

LJoint(r, r̂) =

N
∑

n=1

kn
∑

i=1

dJoint(rn,i, r̂n,i)

where dJoint is a distance metric of our choice on the SO3

space. Here, we take mean squared error on quaternions.

Finally, the overall loss is a weighted combination of these

terms, with a manually tuned weight λ:

Ldata(r, r̂) = LIK(r, r̂) + λLJoint(r, r̂)

Ldata can be combined with other loss terms needed by the

generative models. For example, when using a variational

model, we combine it with a distributional loss.

The forward kinematics chain operation is performed only

during training. Note that the loss for joint angles and IK

loss are complementary: if LJoint is zero, then LIK is zero.

4.2. Temporal Generative Models

IK loss can be applied to any generative models that

output joint angles. We implemented three models: LSTM,

VRNN, TCN. Here we discuss the high-level implementation

and leave the detail to the supplementary material.

Long Short-Term Memory LSTM [11] maintains a

hidden state ht that encodes the history of previously gen-

erated states r<t and conditions y<t. At each timestep,

condition yt is encoded through two encoders before being

passed to a stacked LSTM of five layers. Each encoder con-

sists of layers of linear and Rectified Linear Units (ReLUs).

The output of the LSTM goes through two decoders, com-

posed similarly to the encoders. We connect encoder outputs

to decoders: the first decoder inputs the second encoder’s

and the LSTM’s output. To generate rt, the second decoder

inputs the first decoder’s and the first encoder’s output.

Variational Recurrent Neural Network VRNN [5]

follows a Bayesian perspective and assumes that a latent

space Z controls hand skeleton motions. We assume

that the latent distribution is unit Gaussian. To encode

r<t, z<t, and y≤t, a recurrent neural network is used:

ht = RNN(ht−1, rt−1, zt−1,yt). Our implementation

uses a stacked LSTM of 5 layers. During training, we

follow the standard variational inference method by defin-

ing a proposal distribution (i.e., the encoder), and we maxi-

mize the evidence lowerbound (ELBO). During inference,

given conditional data y≤t and an initial prior distribution

p(z0) = N (0, I), our model first generates r0 by sampling

from p(z0) and p(r0|z0,h0). Subsequently, rt is generated

from the decoder, which defines p(rt|zt,ht).
Temporal Convolutional Network Our TCN [23]

takes one second of the observation history and previously

generated finger motions as input. It encodes the history

through three layers of batch normalization, fully connected

linear and ReLUs, and it decodes through three similar lay-

ers. Skip connections connect the first and second layers of

encoder outputs to decoder layers.

5. Experiments

For the training of the three generative models, we used

the data from one of the deep capture participants, who

participated in 11 sessions. We used only the portions where

at least one of the wrists were above pelvis – this was a good

indication of active gestures. In total, we used approximately

120 minutes of data.

All our implementation was made on an Intel CPU E5-
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Figure 5: Results of finger motion synthesis from body poses and audio by our model.

2630 with an NVDIA Titan Xp Graphics card with 12GB

memory. On this machine, RNN, VRNN, and TCN pro-

cessed one frame in 1.27 × 10−3s, 1.53 × 10−3s, and

1.16× 10−3s on average, respectively. This allows at most

500 fps.

Two important criteria for evaluating the quality of the

synthesized finger motion are 1) whether it looks like natural

human motion and 2) whether it reflects personal charac-

teristics. As these criteria are perceptual, we performed a

qualitative user study to evaluate them. We asked 18 partic-

ipants to evaluate the richness of motion, naturalness, and

personal motion characteristics.

For quantitative evaluation, we computed the mean

squared error between the generated motion and motion

capture on a left-out test set, for fingertip positions and joint

angles. Results demonstrate the effectiveness of IK loss.

Figure 5 shows some of the finger motions generated by

our model that were used for the user study.

5.1. Qualitative User study

Each participant first watched a reference motion capture

of the character and then watched a set of clips that were

generated by three methods: motion capture, static finger

motion, and our method. The joint angles in the static case

were fixed to be the mean angles of the corresponding joints

in each clip. Across all clips, the motion of body joints other

than fingers was taken from motion capture data.

Since our user study aimed to verify whether our method

produced motions that were natural, matched the audio, and

matched the person’s character, we asked participants to

score their agreement level via a five-point scale for the

following statements for a set of 24 clips:

1. The clip has enough motion to evaluate

2. The clip looks natural and matches the audio

3. The character acts like the same person in the refer-

ence

The clips shown were randomly ordered. Participants were

asked to evaluate only the finger motions.

We observed that the motion scores, i.e., the responses to

question 1, varied significantly across the clips. This varia-

tion implied that participants’ judgements may be heavily

influenced by how much motion they perceived in each clip.

Thus, for an in-depth analysis, we split the clips into two

groups according to the motion scores on the motion capture

clips. For the clips of low motion scores (below 3.7), our

method was comparable to the motion capture, while for

the clips of high motion scores (above 3.7), our proposed

method performed comparably to the static clips.

This result was initially counter-intuitive. However, as

we assessed the clips, we noticed that the clips with high

motion scores often contained large arm motions, while the

clips with low motion scores contained smaller arm motions

but distinctive finger motions, such as pointy gestures. That

is, when there were large arm motions, participants ended up

focusing on the arm motions instead of finger motions. This

implies that the participants’ responses on low motion clips

are more accurate evaluations of the finger motions. Since

the finger motion generated by our method were perceived to

be significantly better than the static clips for the low motion

clips, this evaluation shows that our method indeed produces

natural motions that match the personal characteristics.

Figure 6b shows the overall participant responses in this
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(a) User study responses per motion score group
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(b) Overall responses

Figure 6: (a) Analysis on participants’ responses, split into low and high motion groups. In the low motion group, our method

is comparable to the motion capture. (b) Our method produces clips with enough motions that look comparably to static clips.

Figure 7: Fingertip position RMSE (left) and normalized

joint angle RMSE (right) for models trained with IK loss

and without. Models trained with IK loss results in smaller

fingertip position errors.

user study. Due to the scores in the high motions clips,

overall, participants perceived the motion generated by our

model to be comparable to the static clips.

5.2. Effect of IK loss

We performed an ablation study to evaluate the benefit of

using IK loss in training, comparing models trained with IK

loss and joint angle loss to those trained only with the latter.

Figure 7 shows the normalized mean squared error of the

two models on fingertip positions and joint angles.

The model trained with IK loss reduced fingertip position

error to a greater extent than the one without it, and it did

not compromise joint angle error significantly. As discussed

in Section 4, IK loss and joint angle loss are complementary:

zero joint angle loss leads to zero IK loss. Our ablation study

indeed verifies this complementarity.

6. Conclusion

This paper described our new multimodal dataset of hu-

man face-to-face social conversations. Our dataset is in

large-scale: it consists of approximately one hour record-

ings for each of 50 two-person conversation sessions. Our

dataset captures the multimodality of conversations: both

body and finger motions, together with their individual au-

dio data, were captured. As with existing motion capture

datasets, the dataset currently lacks facial motion or gaze,

which were technically challenging given an optical motion

capture system or even with cameras at distance. Nonethe-

less, we believe that it contains sufficient and interesting

social interaction data to be of benefit, as we illustrated with

finger motion synthesis models trained with IK loss. Qualita-

tive evaluation by a user study suggests that our method can

generate natural looking and conversation enhancing finger

motions. We also showed the advantage of using IK loss to

train a generative motion sequence model in a quantitative

ablation study. By publicly releasing this dataset, we hope

to promote future research on analyzing, predicting, and

synthesizing human social behaviors.
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