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Abstract

The attention of a deep neural network obtained by back-

propagating gradients can effectively explain the decision

of the network. They can further be used to explicitly ac-

cess to the network response to a specific pattern. Consid-

ering objects of the same category but from different do-

mains share similar visual patterns, we propose to treat the

network attention as a bridge to connect objects across do-

mains. In this paper, we use knowledge from the source do-

main to guide the network’s response to categories shared

with the target domain. With weights sharing and do-

main adversary training, this knowledge can be successfully

transferred by regularizing the network’s response to the

same category in the target domain. Specifically, we trans-

fer the foreground prior from a simple single-label dataset

to another complex multi-label dataset, leading to improve-

ment of attention maps. Experiments about the weakly-

supervised semantic segmentation task show the effective-

ness of our method. Besides, we further explore and vali-

date that the proposed method is able to improve the gener-

alization ability of a classification network in domain adap-

tation and domain generalization settings.

1. Introduction

Since Convolutional Neural Networks (CNN) have

achieved a lot of progress in many areas, various meth-

ods have been proposed recently to explain how they work

[3, 37, 49]. Visual attention [35, 50] is one effective method

to locate image regions that contribute to the final predic-

tion of the network. Attention maps can be obtained for a

given input with back-propagation of the decision signal on

a CNN [35]. They act as an effective way to analyze the

network response and explain its decision.

Due to the close correlation with the network decision

and response, attention maps can further be used to explic-

itly access to the network’s response to a specific pattern or

category. Considering objects of the same category but from

different domains share similar visual patterns, the network

is likely to have similar responses to them. We are will-
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Figure 1. The proposed Attention Bridging Network (AttnBN)

transfers the foreground prior from a simple single-label dataset

(source domain) to another complex multi-label dataset (target do-

main), resulting in significant improvements of attention maps. By

covering more complete regions of objects, these maps 1) help

boost the performance of weakly-supervised semantic segmenta-

tion, and 2) guide the classification network to learn complete vi-

sual patterns of objects leading to better generalization ability.

ing to explore the possibility of using network attention as a

bridge to connect objects from different domains and trans-

fer knowledge through it.

Domains here could be datasets with different knowl-

edge or priors. Transferring useful knowledge from one to

the other could benefit the task of interest. Suppose there

are two domains, the source and the target. Based on the

understanding of the network attention mechanism, we can

use knowledge from the source domain to guide the net-

work’s response to categories that are also included in the

target domain. With weights sharing and domain adversary

training, this knowledge can be successfully transferred by

regularizing the network’s response to the same category

in the target domain. We define this property as attention

bridging mechanism and apply it in our model design.

We rely on two roles of network attention to design ex-

periments accordingly to validate the effectiveness of the

attention bridging mechanism. (1) On the one hand, using
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image-level labels for training, attention maps of a classi-

fication network can provide localization information with-

out extra labeling efforts. However, these attention maps

often only cover most discriminative regions of target ob-

jects [15, 23, 39, 42, 45]. While these attention maps can

still serve as reliable localization cues for tasks like weakly-

supervised semantic segmentation [16], having integral at-

tention maps that cover the target foreground objects com-

pletely have potential to further improve the performance.

(2) On the other hand, network attention reflects the net-

work’s response and is related to the network’s decision.

integral attention, which covers complete regions of objects

of interest, can guide the network to learn complete visual

patterns of the objects. This leads to the potential of boost-

ing generalization ability of a classification network in both

domain adaptation and domain generalization settings.

To this end, we propose Attention Bridging Network

(AttnBN) for knowledge transfer across domains. As shown

in Figure 1, taking weakly-supervised semantic segmenta-

tion as a task of interest, we aim to transfer useful informa-

tion from a single-label dataset (simple source domain) to

another multi-label dataset (complex target domain) to im-

prove the attention maps. In the source domain, foreground-

background prior, such as saliency information, can almost

represent complete regions of objects in an image. How-

ever, this is not applicable for the target domain with multi-

label images, whose foreground map may include multiple

objects from different categories. Therefore, the foreground

prior is regarded as advantageous knowledge in the source

domain. AttnBN can transfer this knowledge across do-

mains, resulting in a significant improvement of attention

maps. By covering more complete regions of objects, these

maps can act as better localization cues and help boost the

performance of weakly-supervised semantic segmentation

methods. Besides, they can also guide a classification net-

work to learn more complete visual patterns of objects lead-

ing to better generalization ability.

To summarize, our contributions are: (1) We propose At-

tnBN that transfers knowledge across domains using net-

work attention as a bridge. (2) Specifically, we transfer the

saliency prior from a simple single-label dataset to another

complex multi-label dataset to improve attention maps, so

that these maps can cover the object holistically. (3) Exper-

iments on PASCAL VOC benchmark [6] show that the im-

proved attention maps can serve as better localization cues

for weakly-supervised semantic segmentation models. (4)

We also validate that AttnBN can improve the generaliza-

tion ability of a classification network in both domain adap-

tation and domain generalization settings.

2. Related work

Network attention. Since Convolutional Neural Net-

works (CNN) have achieved great progress in many areas

[20, 21, 48], a lot of methods have been proposed to an-

alyze and explain deep neural networks [3, 25, 37, 49].

Based on them, visual attention is proposed to locate im-

age regions that can contribute to the final prediction of the

network. Inspired by a human visual attention model, [46]

proposes a new back propagation method, Excitation Back-

prop, to hierarchy pass top-down signals downwards in the

network. In [37, 40], error back-propagation based meth-

ods are proposed to visualize relevant regions for the acti-

vation of a hidden neuron or the network decision. CAM

[50] shows that using an average pooling layer instead of

fully-connected layers can help obtain attention maps which

highlight task-related regions. Recently, CAM is extended

by Grad-CAM [35] to various commonly used network ar-

chitectures for tasks like visual question answering, image

captioning and image classification. It generates reasonable

visual explanations for various kinds of model decisions.

Inspired by these methods that successfully model the re-

sponse of the network, we explore the possibility of taking

network attention as an interface to regularize the network’s

learning and response to a specific pattern.

Knowledge transfer. Transferring knowledge across

datasets to benefit the task of interest has been widely stud-

ied in tasks of domain adaptation and transfer learning

[22, 30]. Domain adaptation aims to solve the mismatch

problem that data in different domains is sampled from dif-

ferent distributions. According to the specific application

case, the transferred knowledge could be in the form of

model parameters, feature representation or instances [30].

Different from these existing methods, we are trying to ex-

plore using attention of deep neural network as a bridge to

transfer knowledge across domains. This is based on the

hypothesis that objects of the same category but from dif-

ferent domains share similar visual patterns, therefore, the

network is likely to have similar responses to them.

Weakly-supervised methods. Weakly-supervised

learning [3, 37] aims to address the problem about labeled

data scarcity and has recently attracted a lot of attention.

Learning from only image-level labels, attention maps of

a classification network can provide localization informa-

tion without extra labeling efforts for weakly-supervised se-

mantic segmentation [2, 16, 23, 24, 45], object localization

[47, 50], object detection [44] and etc. However, the atten-

tion map of a trained classification network only cover most

discriminative regions of target objects, which is not good

enough for these tasks that aim to localize complete, inte-

rior and dense regions. To reduce this gap, [39] proposes

to randomly hide patches in each training image, so that the

network would be forced to discover other relevant regions

when the discriminative parts are missing. It can be treated

as a useful data augmentation method. However, it relies on

a strong assumption that foreground objects would not be

completely hidden by patches. More recently, [23, 42, 47]
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Figure 2. AttnBN includes one discriminator network and two streams of classification networks. Attention map are end-to-end trainable

and jointly optimized by four loss functions. Advantageous knowledge (saliency prior here) from the source domain guides the network’s

response to categories shared with the target domain. With weights sharing and domain adversary training, this advantageous knowledge

can be successfully transferred by regularizing the network’s response to the same category in the target domain.

use the adversarial erasing strategy to guide the attention

maps to cover more complete foreground objects. In [45],

dilated convolutional blocks with various dilation rates are

added to a classification network. Experiments validate

that different dilation rates could help transfer the surround-

ing discriminative information to non-discriminative object

parts. Different from these approaches, we explore the at-

tention bridging mechanism to transfer knowledge across

domains to get more complete attention maps, which can

benefit the semantic segmentation task.

3. Attention Bridging Network

Foreground-background priors as well as the scene com-

plexity are unequal for the single-label dataset and the

multi-label dataset. The foreground part of a single-label

image can almost represent complete regions for the par-

ticular class. While a multi-label image is more complex

and may include multiple objects from different classes in

its foreground. Therefore, transferring this advantageous

knowledge across domains is strongly motivated. In this

section, we describe our Attention Bridging Network (At-

tnBN) to achieve this goal. Network attention acts as a

bridge to connect objects from different domains.

Overview of the proposed model. Suppose we have

two datasets, Ds including images of single-label as the

source domain and Dm including images with multi-label

as the target domain. They are composed of Ks and Km

images from N classes respectively. We aim to transfer

knowledge about foreground-background priors and bound-

ary constrains from the source domain to the target domain.

As shown in Figure 2, our AttnBN includes one discrimi-

nator network and two streams of classification networks,

Source Stream Ssource for the source domain and Target

Stream Starget for the target domain, which share parame-

ters with each other. Domain advantage knowledge in Ds

(saliency map here) is used to directly guide Stream Ssource

to focus on more complete regions of salient foregrounds

when learning to recognize classes. This will simultane-

ously regularize the Stream Starget’s response to the same

class in the target domain during the training process ben-

efit from the weight sharing and attention mechanism. Be-

sides, since network attention is a reflection of the network

response, it is closely related to the learned feature space.

Therefore, we integrate the adversarial learning scheme to

encourage the network to learn domain-invariant features,

which has potential to boost the effect of attention bridging.

Obtain trainable attention maps. To make sure the

guidance from saliency maps can directly regularize the

network response to both domains, we first generate train-

able attention following [23, 35, 47]. Specifically, in stream

Ssource, for a input image I , Fi represents the activation of

feature map i in the last convolutional layer whose features

have better trade-off between detailed spatial information

and high-level semantics [37]. Class specific attention maps

can be obtained by computing the gradient of the score yc

for class c, with respect to activation maps Fi(x, y). A

global average pooling operation is then performed on these

gradients [26] to get importance weights wc
i for neurons as

follows,

wc
i =

1

H

∑

x,y

∂yc

∂Fi(x, y)
, (1)

where H is the size of the convolutional feature map Fi

(equals to 196, 14× 14 in the case of VGG [38]).
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Based on the recent work [50], each unit Fi is expected

to be activated by specific visual patterns within its recep-

tive field. Therefore, as shown in Eq. 2, the class atten-

tion map M c is a weighted wc
i sum of these visual patterns

presence at different locations Fi followed by a ReLU op-

eration. This is equivalent to treating weight matrix wc as

a kernel and doing a 2D convolution operation over feature

maps Fi [23]:

M c = σ(
∑

i

wc
iFi) = σ (Conv (F,wc)) , (2)

where σ(·) represents the ReLU operation.

Attention bridging. In the source domain, we have

saliency maps A for these single-label images to provide

knowledge about foreground-background priors and bound-

ary constrains. A will constrain the network attention learn-

ing and encourage it to focus on more complete regions of

salient foregrounds when recognizing classes. As shown in

Eq. 3, L2 loss is adopted to calculate the attention constrain

loss Lac for stream Ssource to achieve this goal.

Lac = (M c −A)
2
, (3)

where A is the saliency map for a given image, M c is the

attention map towards its single-label ground-truth class c.

For the classification component in Ssource, the single-

label of the source domain image is converted to one-hot

vector l = {l1, l2, ..., lN}, where N is the number of ground

truth classes. Then, a multi-label soft margin loss is used

here as Ls−cl to make sure regions within the network at-

tention will help to recognize classes. We use the same loss

denoted as Lt−cl for target domain stream Starget.

Ls−cl(o, l) = −
∑

j

lj log(pj) + (1− lj) log(1− pj), (4)

where pj = (1 + e−oj )−1, oj is the output of last fully-

connected layer for the classification component of Ssource.

For the adversarial learning part, the training objective is

to learn domain-invariant features, which can boost the ef-

fect of attention bridging. Since network attention is closely

related to the network response especially the feature map

of the last convolutional layer F in our current implementa-

tion, we forward the Fs of stream Ssource and Ft of stream

Starget to a fully-convolutional discriminator D. Then a

cross-entropy loss Ld for the two classes (source and tar-

get) is adopted to train D.

Ld = −(1− d) log(D(Fs))− d log(D(Ft)), (5)

where d = 0 if the sample comes from the target domain

and d = 1 if it is from the source domain.

Then, when training the classification network, for the

samples It from the target domain, we forward the feature

map of the last convolutional layer Ft of stream Starget to

the discriminator and use following adversarial loss to help

learn domain-invariant features by fooling the discriminator

network:

Ladv = − log(D(Ft)). (6)

Our final attention bridging loss Lab is the weighted sum

of the classification loss Ls−cl, Lt−cl and attention con-

strain loss Lac as defined in Eq. 7.

Lab = Ls−cl + λ1Lac + Lt−cl + λadvLadv, (7)

where Lt−cl is the classification loss for target domain

stream Starget which uses the same function with Ls−cl.

Hyper-parameters λ1 and λadv balance the four losses. We

set λ1 = 2 and λadv = 10−3 in all of our experiments.

Based on weights sharing and attention mechanism, Lab

can transfer knowledge from the source domain to the target

domain to improve attention maps.

4. Experiments for semantic segmentation

The proposed AttnBN transfers knowledge across do-

mains to improve attention maps, so that these maps can

cover more complete object of interest. To verify this, we

take the semantic segmentation as the task of interest to

validate the effectiveness of AttnBN. (1) We first conduct

ablation studies to incrementally validate each component

of AttnBN (Eq. 7). To directly evaluate attention maps of

each ablation model, we combine attention maps of differ-

ent classes as semantic segmentation results (Section 4.2).

(2) We also take attention maps as localization cues to train

weakly-supervised semantic segmentation models and gen-

erate results for further evaluation (Section 4.3).

4.1. Experimental setup

Datasets. We use PASCAL VOC 2012 segmentation

dataset as the target domain dataset which includes multi-

label images of 20 categories. The images are split into

three sets: training, validation, and testing (denoted as train,

val, and test) with 1464, 1449, and 1456 images, respec-

tively. Following the common setting [5, 16], we use the

augmented training set provided by [9], which leads to

10582 weakly annotated images for the training set of the

target domain. Then, subsets of Caltech-256 [8] and Ima-

geNet CLS-LOC [34] within these 20 VOC categories are

combined together, resulting in around 20K single-label im-

ages as the source domain dataset. We train our model using

images in both source and target domain with only image-

level class labels and evaluate it on PASCAL VOC 2012

segmentation benchmark val. and test sets. The standard

5201



Grad-CAM AttnBN (Ours) Grad-CAM Grad-CAM

Image Image Image

AttnBN (Ours) AttnBN (Ours)

bottle bottle

dog dog

tv tv

catcat

dog dog

dog dog

carcar

plan
e

plan
e

person person

chair chair

person person

sofa sofa

Figure 3. Qualitative results of attention maps. AttnBN focuses on more complete regions belonging to the class of interest than the baseline

model Grad-CAM [35].

Methods b.g. plane bike bird boat bott. bus car cat chair cow table dog hors. moto. pers. plant sheep sofa train tv mIoU

Results on the val. set:

Lt−cl (Grad-CAM) [35] 74.0 34.2 19.5 33.1 18.6 25.0 41.7 27.9 36.1 11.4 26.3 20.7 30.4 29.0 41.5 40.2 21.6 32.8 18.2 23.6 35.3 30.2

Lt−cl + Ls−cl 74.9 38.1 20.3 34.2 21.1 26.8 38.5 31.6 34.9 10.0 31.7 25.5 29.1 30.7 41.0 41.2 21.9 32.5 19.7 23.5 37.5 31.7

Ls−cl + Lac, Lt−cl 80.5 60.9 26.5 47.5 37.9 37.8 51.3 46.1 36.9 11.1 34.4 13.3 37.1 37.7 43.8 36.5 19.9 40.2 19.6 41.3 31.0 39.4

Ls−cl + Lac + Lt−cl 82.8 64.4 26.8 59.7 44.0 48.5 65.1 56.3 58.8 10.3 53.8 17.2 59.6 50.3 49.5 54.9 27.3 60.1 25.4 56.7 38.6 46.2

AttnBN 83.7 68.6 25.4 62.3 47.4 52.4 66.9 61.7 63.2 10.5 57.3 18.7 62.8 53.1 52.3 58.2 30.2 63.9 28.1 60.7 42.2 50.9

Results on the test set:

Lt−cl (Grad-CAM) [35] 76.2 36.6 20.0 32.3 15.6 30.8 39.3 26.1 37.6 12.3 25.0 27.7 30.3 30.6 43.8 41.2 24.7 35.7 23.4 19.8 38.5 31.7

Lt−cl + Ls−cl 76.9 36.8 19.9 34.8 15.0 29.2 38.1 28.0 35.8 12.7 32.2 30.5 29.6 31.0 38.4 41.3 27.6 35.2 25.0 18.9 38.3 32.2

Ls−cl + Lac, Lt−cl 82.3 60.0 25.5 52.4 33.7 34.7 50.6 46.8 39.7 10.3 36.1 16.4 40.7 34.5 43.1 38.6 21.0 40.7 20.8 47.0 31.1 39.8

Ls−cl + Lac + Lt−cl 83.4 60.2 27.5 60.8 35.2 49.2 65.7 56.9 59.2 11.0 50.2 17.8 59.2 51.5 52.1 55.4 29.8 57.8 29.4 57.2 38.9 47.5

AttnBN 84.7 63.3 26.8 63.0 39.2 51.6 68.9 60.9 62.1 13.0 52.7 18.8 62.2 59.3 56.4 57.7 34.3 59.5 34.5 62.4 43.4 51.2

Table 1. Ablation studies on VOC 2012 segmentation val. and test sets. We directly evaluate attention maps of each ablation model. This

is achieved by combining attention maps of predicted classes as semantic segmentation results for evaluation (Section 4.2).

mean intersection-over-union (mIoU) metric is used to re-

port quantitative results.

Implementation details. We use VGG Net [38] pre-

trained from the ImageNet [34] as the backbone classifi-

cation network for the proposed AttnBN. For the discrim-

inator network, we adopt a similar architecture from [33]

but use all fully-convolutional layers to retain the spatial

information. An up-sampling layer with a scale factor of

5 is used to re-scale the last convolutional layer features

from both domains as the input to the discriminator. We

use λ1 = 2 and λadv = 10−3 in Eq. 7 in all of our exper-

iments and jointly train the discriminator with the AttnBN

network. Saliency maps for the source domain dataset are

obtained by using the method and trained model provided

by [27]. We use Pytorch [1] to implement our model and

adopt the stochastic gradient descent (SGD) to train it for

30 epochs. We start training with learning rate of 10−4 for

20 epochs, and then lower the learning rate to 10−5 for the

rest 10 epochs.

4.2. Ablation studies with direct evaluation

Quantitative results. To directly evaluate the quality

of attention maps, we combine attention maps of classes

which are predicted by the trained model as semantic seg-

mentation maps. When there are overlaps between attention

maps of different classes in a single image, we choose the

one with the largest prediction score. No post-processing

is used. Better segmentation results are expected to be ob-

tained when complete and accurate attention maps are com-

bined, which is the assumption here.

Ablation studies on PASCAL VOC 2012 segmentation

val. set and segmentation test. set are shown in Table 1.

We start from the baseline model that only uses classifi-

cation loss Lt−cl and the target domain data for training.

This is actually Grad-CAM [35] model. It achieves mIoU

of 30.2 on val. set and 31.7 on test set. We then add clas-

sification losses Ls−cl and source data for training. The

improvement is only around 1% of mIoU. This shows that

a mere increasing of data from the source domain only is
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Figure 4. Qualitative results of attention maps obtained by the

baseline model Grad-CAM [35] and AttnBN. AttnBN can guide

the network focus less on the background contents that always

come together with the objects and are helpful for the recognition,

like water with boats, the rail with trains and road with cars.

Methods Training Set val. test

AttnBN 10K (T) + 2K (S) 45.1 45.7

AttnBN 10K (T) + 10K (S) 49.2 50.3

AttnBN 10K (T) + 20K (S) 50.9 51.2

Table 2. Direct evaluation of AttnBN on Pascal VOC 2012 dataset

with different amount of source domain data available. T and S

denote target and source domain respectively. Numbers are mIoU.

of trivial benefit. We then test models trained with attention

constrain loss Lac and take use of data from both source

and target domains. Specially, we perform ether fine-tuning

(noted as Ls−cl + Lac, Lt−cl) or two-domain joint train-

ing (noted as Ls−cl + Lac + Lt−cl). They achieve much

better improvements than previous settings, which mainly

benefit from the guided attention learning mechanism in our

model. The performance gap between the fine-tuning and

the joint training validates the importance of joint training

and weight sharing strategies in attention bridging mech-

anism. Finally we add adversary training Ladv (noted as

AttnBN in the table) to further help learn domain-invariant

features and boost the effect of attention bridging. AttnBN

trained with Ls−cl+Lac+Lt−cl + Ladv achieves mIoU of

50.9 on val. set and 51.2 on test set, which shows a huge

improvement upon the baseline model Grad-CAM by suc-

cessfully transferring knowledge across domains.

Qualitative results. As shown in Figure 3, AttnBN fo-

cuses on more complete regions belonging to the class of in-

terest than the baseline model Grad-CAM [35]. This mainly

because AttnBN learns concepts of integral objects from

the images with simple scenes in the source domain, and

successfully transfers this knowledge to the target domain,

where images include complex scenes.

Analysis of classes with huge improvements. We fur-

ther analyze the detailed quantitative results for each class

and get some interesting findings. For classes with huge

improvements like boat (28.8% for val.), train (37.1%) and

car (33.8%). We show several qualitative results in Figure

4 and find that Grad-CAM would focus on background con-

tents when predicting classes. That is because these back-

Method Supervision Sal. val. test

MIL-seg(CVPR′15) [31] 700K W ✗ 40.6 42.0

SEC(ECCV′16) [16] 10K W ✗ 50.7 51.7

STC(PAMI′16) [43] 50K W ✓ 49.8 51.2

TransNet(CVPR′16) [10] 10K W+60K P ✗ 52.1 51.2

AF-MCG(ECCV′16) [32] 10K W+1.4K P ✗ 54.3 55.5

TPL(ICCV′17) [15] 10K W ✗ 53.1 53.8

AE-PSL(CVPR′17) [42] 10K W ✓ 55.0 55.7

Oh et al.(CVPR′17) [29] 10K W ✓ 55.7 56.7

CrawlSeg(CVPR′17) [11] 970K W ✗ 58.1 58.7

WebS-i2(CVPR′17) [14] 19K W ✗ 53.4 55.3

DCSP(BMVC′17) [4] 10K W ✓ 58.6 59.2

MEFF(CVPR′18) [7] 10K W ✗ - 55.6

AffinityNet(CVPR′18) [2] 10K W ✗ 58.4 60.5

Shen et al.(CVPR′18) [36] 86.7K W ✗ 58.8 60.2

DilConv(CVPR′18) [45] 10K W ✓ 60.4 60.8

GAIN(CVPR′18) [23] 10K W ✓ 55.3 56.8

MCOF(CVPR′18) [41] 10K W ✓ 56.2 57.6

DSRG(CVPR′18) [13] 10K W ✓ 59.0 60.4

AttnBN (ours) 12K W ✓ 61.7 62.3

AttnBN (ours) 30K W ✓ 62.1 63.0

Table 3. Comparison with state-of-the-art weakly-supervised se-

mantic segmentation methods on Pascal VOC 2012 dataset. “W”

means weak supervision from image-level labels and “P” means

strong supervision from pixel-level labels. “Sal.” represents using

saliency prior. Results shown are based on VGG backbone.

ground contents always come together with the objects and

are helpful for the recognition, like water with boats, the

rail with trains and road with cars. With these bias informa-

tion within the dataset, only constrained by classification

loss will make the network consider these background con-

tents as one of the most prominent feature characterizing

the classes. Our AttnBN can well handle this problem by

transferring knowledge of foreground prior from the source

domain to guide the network to learn the correct concept.

Using different amount of source domain data. We

are also interested in finding out the influence of using dif-

ferent amount of source domain data. Therefore, we ran-

domly sample from the source domain dataset with a ratio

of 0.1 and 0.5 to obtain two new source domain subsets. We

train AttnBN on these two subsets separately. Following

directly evaluation mentioned before, we still combine at-

tention maps as semantic segmentation results and do eval-

uations. Quantitative results on PASCAL VOC 2012 are

shown in Table 2. We find that the performance of AttnBN

improves when more source domain data is available. Be-

sides, only using 10% source domain data with about 2K

images can already improve upon Grad-CAM by 14.9% and

14.0% of mIoU on the val. and test sets. This shows the ef-

fectiveness of AttnBN for transferring advantageous knowl-

edge (foreground prior here) across domains.

4.3. Act as priors for weakly­supervised framework

In the weakly-supervised setting, recent methods [13,

15, 16, 42, 45] mainly rely on localization cues obtained

by Grad-Cam [35] or CAM[50], and consider other con-
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Methods b.g. plane bike bird boat bott. bus car cat chair cow table dog hors. moto. pers. plant sheep sofa train tv mIoU

SEC [16] 82.4 62.9 26.4 61.6 27.6 38.1 66.6 62.7 75.2 22.1 53.5 28.3 65.8 57.8 62.5 52.5 32.5 62.6 32.1 45.4 45.3 50.7

TransferNet [10] 85.3 68.5 26.4 69.8 36.7 49.1 68.4 55.8 77.3 6.2 75.2 14.3 69.8 71.5 61.1 31.9 25.5 74.6 33.8 49.6 43.7 52.1

AE-PSL [42] 83.4 71.1 30.5 72.9 41.6 55.9 63.1 60.2 74.0 18.0 66.5 32.4 71.7 56.3 64.8 52.4 37.4 69.1 31.4 58.9 43.9 55.0

DilConv [45] 89.5 85.6 34.6 75.8 61.9 65.8 67.1 73.3 80.2 15.1 69.9 8.1 75.0 68.4 70.9 71.5 32.6 74.9 24.8 73.2 50.8 60.4

GAIN [23] 86.9 69.3 29.7 64.0 49.1 51.4 65.8 67.8 73.4 22.0 57.4 20.0 68.7 60.4 63.9 68.1 34.2 63.1 30.0 63.6 52.4 55.3

DSRG [13] 87.5 73.1 28.4 75.4 39.5 54.5 78.2 71.3 80.6 25.0 63.3 25.4 77.8 65.4 65.2 72.8 41.2 74.3 34.1 52.1 53.0 59.0

AttnBN 89.5 82.0 30.1 76.2 57.9 65.3 80.7 75.6 79.5 16.8 68.9 19.7 76.4 70.4 67.7 71.8 40.1 72.1 37.2 73.1 53.7 62.1

Table 4. Detailed results of state-of-the-art weakly-supervised semantic segmentation methods on VOC 2012 segmentation val. set.

Methods b.g. plane bike bird boat bott. bus car cat chair cow table dog hors. moto. pers. plant sheep sofa train tv mIoU

SEC [16] 83.5 56.4 28.5 64.1 23.6 46.5 70.6 58.5 71.3 23.2 54.0 28.0 68.1 62.1 70.0 55.0 38.4 58.0 39.9 38.4 48.3 51.7

TransferNet [10] 85.7 70.1 27.8 73.7 37.3 44.8 71.4 53.8 73.0 6.7 62.9 12.4 68.4 73.7 65.9 27.9 23.5 72.3 38.9 45.9 39.2 51.2

AE-PSL [42] 85.3 66.9 32.2 77.8 39.1 59.2 63.5 61.4 73.1 17.3 60.9 36.4 70.2 56.8 75.9 52.8 38.7 68.5 34.6 51.2 48.5 55.7

DilConv [45] 89.8 78.4 36.2 82.1 52.4 61.7 64.2 73.5 78.4 14.7 70.3 11.9 75.3 74.2 81.0 72.6 38.8 76.7 24.6 70.7 50.3 60.8

GAIN [23] 88.0 67.0 30.0 66.3 41.4 60.4 66.8 65.1 71.7 25.5 58.7 22.4 72.3 65.8 68.0 72.0 39.9 64.1 33.4 62.2 52.7 56.8

DSRG [13] 87.9 69.5 32.1 74.2 33.7 59.4 74.9 71.5 80.1 21.9 66.8 32.7 76.4 72.5 76.6 73.4 49.9 73.8 43.4 42.0 55.2 60.4

AttnBN 89.9 75.7 32.9 73.5 49.9 60.4 78.1 76.5 77.4 19.9 72.0 27.4 73.8 72.7 77.2 72.3 51.2 77.3 37.9 73.5 53.6 63.0

Table 5. Detailed results of state-of-the-art weakly-supervised semantic segmentation methods on VOC 2012 segmentation test set.

Ground Truth DSRG OursImage

Figure 5. Qualitative weakly-supervised semantic segmentation

results of DSRG and our method.

straints like object boundaries to train a segmentation net-

work. The performance of these methods is highly influ-

enced by the quality of localization cues. Compared with

attention maps obtained by Grad-Cam and CAM that only

cover small and the most discriminative regions, attention

maps of AttnBN can locate more complete regions belong-

ing to the class of interest. Therefore, they have poten-

tial to help improve the performance of weakly-supervised

segmentation methods. To validate this, we take attention

maps from AttnBN as foreground localization cues for the

existing weakly-supervised semantic segmentation method

DSRG [13] and use [12] to obtain background cues. We

then train DSRG with VGG as the backbone to generate

segmentation results using the same inference procedure,

as well as parameters of CRF [17].

We report quantitative results on Pascal VOC 2012

dataset in Table 3. Our results are noted as AttnBN. We

make extensive comparisons with state-of-the-art weakly-

supervised semantic segmentation methods with different

configurations. From the results, we can find AttnBN ob-

tains the best performance with 62.1% and 63.0% in mIoU

on val. and test sets respectively. Compared with baseline

model DSRG, AttnBN provides a performance gain with

3.1% on val. set and 2.6% on test set. Note that our training

of semantic segmentation network follows the same setting

and training data (only PASCAL VOC 2012) with DSRG

as well as other recent works. Different amount of source

data is only used when training the attention map genera-

tion model (AttnBN). Consider ablation studies in Table 1,

results of Lt−cl + Ls−cl show that a mere increasing of data

from the source domain only is of trivial benefit. The main

improvement is due to effectiveness of knowledge transfer

and better attention maps. This verifies that AttnBN can

generate high quality attention maps as cues to improve the

performance of weakly-supervised methods.

Besides, comparing with methods also focusing on

knowledge transfer, such as Shen et al. [36], CrawlSeg [11],

WebS-i2 [14], TransNet [10], our methods achieve better
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Methods Setting mAP on Target test

Ls−cl Generalization 61.3

Ls−cl + Lac Generalization 66.7

Ls−cl + Ladv Adaptation 64.5

Ls−cl + Lac + Ladv Adaptation 71.0

Table 6. Quantitative results for classification in unsupervised

domain adaptation and domain generalization settings between

single-label domain and multi-label domain. “Target test” repre-

sents the PASCAL VOC 2012 testing set.

Methods
Source: C I V I V C

Target: I C I V C V

Training setting: Generalization

Ls−cl 0.77 0.98 0.87 0.83 0.97 0.62

Ls−cl + Lac 0.83 0.99 0.90 0.88 0.98 0.71

Training setting: Adaptation

Ls−cl + Ladv 0.81 0.98 0.88 0.85 0.98 0.67

Ls−cl + Lac + Ladv 0.87 0.99 0.91 0.89 0.99 0.74

Table 7. Quantitative results for classification in domain adaptation

and domain generalization settings between PASCAL VOC2007,

Caltech-101 (C), and ImageNet (I). Numbers shown are accuracy.

performance using less extra data. Furthermore, AttnBN

outperforms AE-PSL [42] by 7.1% and 7.3%, DilConv [45]

by 1.7% and 2.2%, GAIN [23] by 6.8% and 6.2% on val

and test set respectively. These methods are also proposed

to generate better attention maps and they also take use of

saliency priors.

Table 4 and Table 5 show detail results of each class on

PASCAL VOC 2012 segmentation val. set and segmenta-

tion test. set. Figure 5 shows qualitative results of seman-

tic segmentation obtained by DSRG and AttnBN. We find

that AttnBN can help to generate better segmentation re-

sults based on more complete attention maps. For the re-

sults of classes like “train”, “car” and “boat”, our results

include less background than DSRG. It is mainly because

AttnBN can guide the network focus less on the background

contents that always come together with the objects and are

helpful for the recognition, such as water with boats, the rail

with trains. This is consistent with the analysis in Figure 4.

5. Experiments for domain adaptation and do-

main generalization

In addition to serving as localization cues for weakly-

supervised methods, attention maps also reflect the network

responses and are related to network’s predication. Having

integral attention maps can help to learn the complete visual

pattern of objects and has potential to boost generalization

ability of the network. Therefore, we further validate this

by designing experiments for the classification task in both

domain adaptation and domain generalization settings.

For the domain generalization setting, we treat one of

the dataset as the source domain and the other two unseen

datasets as unseen domains. Only data and label in the

source domain are available during training. For the domain

adaption setting, we take one of the dataset as the source do-

main and one of the other two datasets as the target domain.

Only data and labels in the source domain as well as data in

the target domain are available during training, no labels in

the target domain are used.

We first do experiments using the two domains as de-

scribed in Section 4.1 to explore the domain adaptation and

generalization from the single-label domain to the multi-

label domain. The baseline model here is VGG [38] trained

with the classification loss Ls−cl defined in Eq. 7. We test

our model trained with Ls−cl and attention constrain loss

Lac for domain generalization setting. We also report re-

sults of the models trained with Ls−cl+Lac+Ladv or with

Ls−cl+Ladv for the domain adaptation setting, where Ladv

is the adversary training loss. For all these four models, no

labels in the target domain are used during training. From

Table 6, we find AttnBN can help learn domain invariant

features benefiting from an integral attention.

We further validate the effectiveness of AttnBN in an-

other dataset. Following [18, 19, 28], we use images of 5

common object categories (bird, car, chair, dog, and person)

of the PASCAL VOC 2007 (V) [6], Caltech-101 (C) [8],

and ImageNet (I) [34] datasets to design experiments in two

settings. We test the same four models defined in our last

experiment and report results in Table 7. We find AttnBN

helps to improve the generalization ability of the classifica-

tion network. This validates the advantage of the integral

attention and the strength of attention bridging mechanism.

6. Conclusion

We propose AttnBN that can transfer knowledge across

domains using network attention as a bridge. This is based

on our understanding that network attention can be used to

explicitly access to the network response to objects of the

same category but from different domains. Experiments for

weakly-supervised semantic segmentation demonstrate the

effectiveness of the proposed method. We also validate that

our method can help improve the generalization ability of

a classification network in both domain adaptation and do-

main generalization settings. In the future, since the source

domain is quite simple in our case, we will try to use unsu-

pervised or weakly-supervised saliency detection methods

to generate foreground prior for the source domain. We will

also explore more knowledge transfer scenarios that are re-

lated to the network attention.
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