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Abstract

6-DoF object pose estimation from a single RGB image

is a fundamental and long-standing problem in computer

vision. Current leading approaches solve it by training

deep networks to either regress both rotation and transla-

tion from image directly or to construct 2D-3D correspon-

dences and further solve them via PnP indirectly. We argue

that rotation and translation should be treated differently

for their significant difference. In this work, we propose a

novel 6-DoF pose estimation approach: Coordinates-based

Disentangled Pose Network (CDPN), which disentangles

the pose to predict rotation and translation separately to

achieve highly accurate and robust pose estimation. Our

method is flexible, efficient, highly accurate and can deal

with texture-less and occluded objects. Extensive experi-

ments on LINEMOD and Occlusion datasets are conducted

and demonstrate the superiority of our approach. Con-

cretely, our approach significantly exceeds the state-of-the-

art RGB-based methods on commonly used metrics.

1. Introduction

Object pose estimation is essential for a variety of appli-

cations in real world including robotic manipulation, aug-

mented reality and so on. In this work, we focus on esti-

mating 6-DoF object pose from a single RGB image, which

is still a challenging problem in this area. The ideal solu-

tion should be able to deal with texture-less and occluded

objects in cluttered scenes with various lighting conditions

and meet the speed requirement for real-time tasks.

Traditionally, this task was considered as a geometric

problem and solved by matching feature points between 2D

images and 3D object models. However, they require rich

textures to detect features for matching. Thus, texture-less

objects cannot be handled. Benefiting from the rise of deep

learning [7], plentiful data-driven approaches emerge and a

large improvement has been achieved. Current leading ap-

I. Coordinates-based pose estimation II. Disentangled

Figure 1: I. We propose a novel coordinates-based pose es-

timation approach. From top to bottom (left), we show the

query image, 3D object coordinates we estimate and the

2D projection of object model using the predicted 6-DoF

pose. However, the translation shows unbalance perfor-

mance across objects (middle). II. We further propose dis-

entangled pose estimation approach, which is able to han-

dle this problem and show robust and accurate translation

across objects (right).

proaches either directly regress 6-DoF object pose from im-

age [8, 28] or predict 2D keypoints in image and indirectly

solve the pose via PnP [20, 19]. However, for the direct ap-

proaches, they relies heavily on elaborate post refinement

steps with 3D information to improve the accuracy of the

estimated pose. For the indirect approaches, the sparse 2D-

3D correspondences make them sensitive to partial occlu-

sions. Also, they still need pose refinement to achieve a bet-

ter performance. Except for these approaches, another way

is coordinates-based approach, which has been confirmed

to be robust to heavy occlusion [9, 18]. It predicts the 3D

location in the object coordinate system for each pixel of

the object to build dense 2D-3D correspondences to solve

the pose. However, existing coordinates-based methods rely
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heavily on depth information and are inefficient, failing in

implementing on RGB-only cases and hard to satisfy the

real-time requirement.

Existing approaches leverage deep networks either to di-

rectly estimate rotation R and translation T from image or

to construct 2D-3D correspondences and indirectly solve

them via PnP. However, rotation and translation have sig-

nificantly different properties and are affected by different

factors. For example, the size and location of the object in

image have little influence to rotation but affect translation

a lot. On the contrary, the appearance of the object in image

affects rotation a lot while only slightly influences transla-

tion. Thus, the same treatment may bring distinct effects on

R and T , and thus we need to solve R and T separately.

In this work, we aim to develop a highly accurate, robust

and efficient pose estimation approach for RGB-only cases.

We follow the idea of coordinates-based approaches to es-

timate rotation since their dense correspondences show ro-

bustness towards occlusion and clutter. However, the trans-

lation solved in this way tends to yield distinct performance

across objects and even fails in some cases (see Sec. 3.4

for details). We propose Coordinates-based Disentangled

Pose Network (CDPN) to disentangle the rotation and trans-

lation, allowing that the former is indirectly solved from co-

ordinates via PnP while the latter is directly estimated from

image.

Our contributions are summarized as follows:

• For 6D pose estimation, we propose Coordinates-

based Disentangled Pose Network (CDPN) to effi-

ciently characterize object’s rotation and translation.

To the best of our knowledge, we are the first to

unify the indirect PnP-based strategy and the direct

regression-based strategy to estimate the object pose.

• We propose Dynamic Zoom In (DZI) to make pose es-

timation robust to detection errors and moreover, in-

sensitive to any specified detector.

• To afford real-time application, in terms of rotation

estimation, we propose a two-stage object-level co-

ordinates estimation, accompanied with the proposed

Masked Coordinate-Confidence Loss (MCC Loss) to

overcome the influence from the non-object region.

• For translation, to avoid the influence from coordi-

nates, we propose Scale-Invariant Translation Estima-

tion (SITE) to achieve robust and accurate translation

estimation.

• Our approach is highly accurate, fast and scalable.

We achieve the state-of-the-art performance on

LINEMOD dataset. The system is fast enough

(⇠30ms per image, which can be further shortened by

utilizing faster detectors) to achieve the real-time re-

quirement. Our approach is scalable and can work with

various detectors without re-training.

2. Related Work

The approaches of solving pose from a single image can

be divided into direct approaches and PnP-based ones.

Direct approaches. Direct approaches were initially

proposed in some works on 6-DoF camera pose estima-

tion and viewpoint estimation [22, 11, 10, 16, 23, 14].

Then, similar ideas appear in the domain of 6-DoF ob-

ject pose estimation. [8] discretized the 3-DoF rotation

space into classifiable viewpoint bins and solved it by train-

ing a classifier built on a SSD-based [15] detection frame-

work, whereas the 3-DoF translation was obtained from the

2D bounding boxes. [28] proposed a regression-based ap-

proach PoseCNN, where the 6-DoF pose parameters, i.e.,

quaternion and distance were directly regressed from the

input image. [6] resorted to regressing the Lie algebra for

rotation, and further combined the predicted distance and

instance bounding box to get the 6-DoF pose. These di-

rect approaches often further utilize depth information and

the ICP [1] (Iterative Closest Point) algorithm for pose re-

finement. However, they still suffer from some challenging

issues such as the viewpoints ambiguity problem [14].

PnP-based approaches. Another line of works resorts

to intermediate representations to solve 6-DoF object poses

indirectly. [20] proposed to detect the projections of corners

of 3D bounding box from image and further solved the 6-

DoF pose using the PnP algorithm. They also need ICP for

more accurate estimation. With similar idea, [25] developed

YOLO6D based on the lightweight detector YOLOv2 [21].

Additionally, some others detected object keypoints from

images to solve the pose. [19, 29] predicted semantic key-

points for pose and viewpoint estimation with an hourglass-

based network [17, 5]. Except for these sparse keypoints-

based methods, another type of indirect pose estimation is

coordinates-based approaches. Based on RGB-D images,

[2] predicted dense 3D-3D correspondences using a ran-

dom forest and then optimized the 6-DoF pose hypothe-

ses through RANSAC. [12] replaced the energy function in

[2] by a CNN to handle more complicated conditions. [3]

further extended this idea to RGB-only 6-DoF pose estima-

tion. An auto-context random forest was proposed to jointly

predict object labels and coordinates. However, the perfor-

mance is still limited. [4] used a fully convolutional net-

work to predict 3D coordinates of scenes for 6-DoF camera

pose estimation. [18] predicted 6D object poses based on

a 3D coordinates regression CNN after obtaining the object

of interest via a semantic segmentation CNN, while actually

they reformatted the problem as a classification problem by

discretizing the coordinates into bins. More recently, [26]

introduced a Normalized Object Coordinate Space (NOCS)

for category-level 6D object pose estimation, whereas depth

information was needed to estimate the full 6-DoF pose.

Different from these works, we treat the rotation and

translation separately. For rotation, compared with exist-
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Figure 2: Overview of our approach. Given an input image, we first zoom in on target object, and then, the rotation and

translation are disentangled for estimation. Concretely, the rotation is solved by PnP from predicted 3D coordinates, while

the translation is estimated directly from image.

ing coordinates-based approaches, our well-designed local-

region based paradigm makes the estimation more accurate

and efficient. For translation, we directly estimate it from

local image patches. We merge these tasks and solve them

in a unified network. Our work achieves the state-of-the-art

performance on common benchmarks.

3. Method

3.1. Framework

We adopt coordinates-based approach to estimate rota-

tion for the dense correspondences show robustness towards

occlusion and clutter. To build 2D-3D correspondences, we

need to extract the exact object region. Some approaches

[18, 28] train a semantic segmentation network for this task,

however, they are inconvenient to deal with multiple iden-

tical objects in an image. Instance segmentation such as

Mask-RCNN [27, 26] can handle it, however, the slow in-

ference makes it hard to meet the real-time requirement.

Contrast to them, we adopt a two-step pipeline: First, a fast,

lightweight detector (e.g. tiny YOLOv3) is employed for

coarse detection; Second, a fixed size segmentation is im-

plemented to extract the object pixels. For detection, our

pose estimation system can tolerate detection errors to a

large extent attributing to the proposed Dynamic Zoom In

(Sec. 3.2), so a fast but less-precise detector is enough. For

segmentation, it can be merged into coordinates regression

(Sec. 3.3) to make system enough light and fast. Compared

with existing segmentation-based approaches, our two-step

pipeline can efficiently extract exact object region in various

situations.

In terms of translation, to achieve more robust and accu-

rate estimation, we predict it from the image instead of 2D-

3D correspondences to avoid the influence from the scale

error in the predicted 3D coordinates. Instead of regress-

ing translation from the whole image, we propose Scale-

Invariant Translation Estimation to estimate it from the de-

tected object region. In this way, the disentangled processes

regarding rotation and translation are unified into a sin-

gle network, namely Coordinates-based Disentangled Pose

Network (Fig. 2).

3.2. Dynamic Zoom In (DZI)

The object size in image can change arbitrarily along

with the distance to camera, which greatly increases the dif-

ficulty of regressing coordinates. It is also hard for the net-

work to extract useful features when objects in image are

small. To solve these problems, we zoom in on the object

to a fixed size according to the detection.

On the other hand, our unified pose network should be

robust to any detectors, which means the detection error "

must be taken into consideration. Although it is fine to di-

rectly train the pose network on a specific detector, how-

ever, the network will be closely related to the detector. We

propose a better solution Dynamic Zoom In (DZI) for this

problem. Given an image containing the target object with

position Cx,y and size S = max(h,w), we sample posi-

tion C̃x,y and size S̃ from the truncated normal distribution

defined in Eq. 1. The sampling range depends on the ob-

ject height h, width w and coefficients ↵,�, �, ⇢. Then, we

extract the object using C̃x,y and S̃ and resize it to a fixed

size while keeping the aspect ratio unchanged via padding
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when necessary. DZI has several merits: 1) It makes the

pose estimation model robust with detection errors ". 2) it

improves the system’s scalability regarding detector for the

training process is independent with it, and we can use a fast

single-stage detector to accelerate the system during test. 3)

It improves the pose estimation performance by providing

more training samples. 4) It keeps the consuming time of

network inference and calculation of PnP with RANSAC

constant due to the fixed size output.
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where (x, y) and (h,w) are the location of the object’s cen-

ter and the size of the ground-truth bounding box respec-

tively. s = max(h,w). � is standard normal distribution

and Φ is its cumulative distribution function. ↵,�, �, ⇢ are

coefficients to limit the sampling range. �x,�y,�s are used

to control the distribution shape.

3.3. Continuous Coordinates Regression

Coordinates-Confidence Map Unlike those ap-

proaches [9, 18] extract image patches and predict the

coordinates for the center pixel, we predict 3D coordinates

for all object pixels in one-shot to achieve high efficiency.

Additionally, the network predicts a confidence value for

each pixel to indicate whether it belongs to object. Instead

of utilizing an additional network branch, we merge this

task into coordinates regression based on the fact that both

of them have the same output size and their values have ex-

act positional correspondences. In implementation, we first

use a backbone network to extract features from the object

region. Then, a rotation head consists of convolutional and

deconvolutional layers are introduced to process and scale

up the features to a four-channel Coordinates-Confidence

Map (H ⇥ W ⇥ 4), including a three-channel coordinates

map Mcoor and a single-channel confidence map Mconf .

They share all features in the network. In Mcoor, each pixel

encodes a 3D coordinate and each channel represents an

axis of the object coordinate system.

Masked Coordinates-Confidence Loss The ground-

truth coordinates of background pixels are unknown. Most

approaches [2, 18] assign a special value for them. It works

for these approaches because they predict coordinates via

classification instead of regression. Since our approach di-

rectly regresses the continuous coordinates, it impels the

network to predict a sharp edge on the object boundary of

the coordinates map, which is challenging and tends to yield

erroneous coordinates. To solve this problem, we propose

Masked Coordinates-Confidence Loss (MCC Loss). Con-

cretely, in terms of the coordinates map, we only compute

the loss on foreground regions. While for the confidence

map, we apply the loss to all areas (Eq. 2). This mechanism

avoids the influence from non-object region and facilitates

the network to provide more accurate coordinates. We adopt

L1 loss in training.

LCCM =↵ · `1(

nc
X

j=1

(Mconf � (Mcoorj � M̃coorj )))

+ � · `1(Mconf � M̃conf )

(2)

where nc = 3 is the channel number of coordinates map,

M i
⇤

and M̃ i
⇤

represent the ground-truth map and the pre-

dicted map respectively. � is the Hadamard product.

Building 2D-3D Correspondences The object pixels

can be extracted from confidence map by setting a thresh-

old. However, the size of object in RGB image is usu-

ally different from that in coordinates map due to the zoom

in. To build the 2D-3D correspondences, we map the pixel

from the coordinates map to RGB image without loss of

precision. We designate the object center and size in RGB

image as (cu, cv) and (S̃x, S̃y), and in coordinates map as

(ci, cj) and (Sx, Sy). For pixel (i, j) in coordinates map,

the corresponding pixel (û, v̂) in RGB image can be com-

puted as Eq. 3.
⇢

û = {cu + Sx/S̃x · (i� ci)}

v̂ = {cv + Sy/S̃y · (j � cj)}
(3)

where {} represents no rounding operation. The rotation

can be solved easily from the correspondences by PnP with

RANSAC.

3.4. Analysis on Translation

Training the network using Dynamic Zoom In with

Masked Coordinates-Confidence Loss, our approach

achieves high accuracy 94.27% (state of the art) on metric

“5cm 5�” while achieves modest accuracy 75.04% on

metric “ADD” (Table 2 in Sec. 5). The former metric

mainly focuses on rotation while the latter concentrates

on translation in terms of LINEMOD dataset. 1 It means

the approach is more suitable for rotation estimation. See

Fig. 3(a), the results of “ADD” show extremely unbalanced

performance across objects and are highly correlated

with translation, which restricts the application a lot. In

our approach, both of pixels Pu,v and corresponding 3D

coordinates Qx,y,z are estimated from network and they

affect translation T solved by PnP (Eq. 4). We perform

comprehensive analysis and find out the problem is mainly

caused by the scale factor error �scale in 3D coordinates

1For metric “5cm 5
�”, 5cm is a large range for objects in LINEMOD

dataset; While for metric “ADD”, compared with translation, the precision

requirement of rotation is lenient. Take the ‘ape’ for instance, the maxi-

mum acceptable rotation bias is 23� while the translation error should be

smaller than 1cm.
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(a) Accuracy of ADD (left) and translation (right).

(b) Accuracy of each translation component.

Figure 3: The accuracy of ADD (for 6-DoF pose) and trans-

lation. (Note: both rotation and translation are solved from

coordinates via PnP.)

Qx,y,z . �scale affects the depth component Tz of translation

a lot (Fig. 3(b)). Different �scale of different objects yields

the unbalanced translation performance. Detailed analysis

and experiments can be found in supplementary.

To achieve more robust and accurate translation estima-

tion, we propose to directly learn translation T from image

to avoid the influence from �scale of Qx,y,z (Eq. 5). Es-

timating T from image is promising and reasonable con-

sidering the fact that the object position and size directly

reveal its direction and distance to camera. This strategy

has been employed in several approaches. For instance, Xi-

ang et al. [28] train a semantic segmentation network to si-

multaneously learn translation and rotation from image. It

achieves remarkable performance on “ADD” while the re-

sult on “5cm 5�” is poor (Table 1). It verifies that directly re-

gressing translation from image can provide accurate trans-

lation. Starting from this point, we unify the different solv-

ing strategies into a single model, namely Coordinates-

based Disentangled Pose Network (CDPN), in which the

rotation is indirectly estimated from coordinates while the

translation is directly regressed from image. Our approach

is able to achieve highly accurate, robust estimation on both

translation and rotation. To the best of our knowledge, we

are the first to unify the indirect PnP-based strategy and the

direct regression-based strategy to estimate object poses.

T = F(K, Pu,v, Qx,y,z) (4)

T = Gw(I) (5)

where K is camera intrinsic parameters, F is the PnP algo-

rithm, I is image and Gw is network with parameters w.

3.5. Scale-invariant Translation Estimation

Existing approaches [10, 28, 8, 24] that directly regress

translation from image are mainly based on the whole im-

age. This strategy requires a separate network based on the

whole image for translation, which is quite inefficient. Es-

timating the translation directly from the detected object is

more efficient, but unfortunately, it is problematic. Here,

we propose Scale-Invariant Translation Estimation (SITE)

to achieve highly accurate and efficient translation estima-

tion based on the local image patches. We first calculate the

global image information TG ( including position Cx,y and

size (h,w)) of sampled local patch. Then, additional trans-

lation head net is introduced on the backbone to predict the

scale-invariant translation TS = (∆x,∆y, tz). ∆x and ∆y

reveal the offset from the bounding box center to the object

center. Instead of regressing the absolute offset, the net-

work is trained to predict the relative offset (Eq. 6), which

is constant (i.e. scale-invariant) to Dynamic Zoom In . tz
is zoomed depth. Finally, the translation T = (Tx, Ty, Tz)
can be solved by combining TS with TG (Eq. 7).

8

>

<

>

:

∆x = Ox�Cx

w
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Oy�Cy

h

tz = Tz

r

(6)

8

>

<

>

:

Tx = (∆x · w + Cx) ·
Tz

fx

Ty = (∆y · h+ Cy) ·
Tz

fy

Tz = r · tz

(7)

where (Ox, Oy) and (Cx, Cy) are the projection of object

center and the center of the patch in original image. (h,w)
is the size of sampled object in original image. r is the

resize ratio in DZI. We show the training loss of translation

head net in Eq. 8.

LSITE = `2(�1 · (∆x � ∆̃x) + �2 · (∆y � ∆̃y)+

�3 · (tz � t̃z))
(8)

where ⇤ and ⇤̃ represent the predicted and ground-truth

value respectively. Our SITE can deal with the case that

bounding box center does not coincide with the object cen-

ter and can handle occlusion situation.

3.6. Training Strategy

We find that the rotation head is more difficult to train

compared with translation head. So, we adopt an alternative

training strategy: First, we train rotation head with back-

bone to predict coordinates-confidence map. The backbone

is initialized with the weights trained on ImageNet while

the head is trained from scratch. Then, we train the transla-

tion head from scratch while fixing the backbone. Finally,

we finetune the backbone with two heads together.
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w/o Refinement w/ Refinement

Method
BB8 YOLO6D PoseCNN SSD6D AAE Brachmann Nigam Ours BB8 SSD6D Brachmann AAE

[20] [25] [28] [8] [24] [3] [18] [20] [8] [3] [24]

5cm 5
� - - 19.4 - - - 43.7† 94.31 69.0 - 40.6 -

ADD 43.6 55.95 62.7 2.42 31.41 32.3 - 89.86 62.7 79 50.2 -

2D Proj. 5px. 83.9 90.37 70.2 - - 69.5 - 98.10 89.3 - 73.7 64.67

Table 1: Comparison with state-of-the-art RGB-only methods on LINEMOD using different metrics. (Note: † they only

report results on 8 objects.)

4. Data Preparation

Dataset Our experiments are conducted on the

LINEMOD dataset and Occlusion dataset. LINEMOD

dataset is the de facto standard benchmark for 6-DoF object

pose estimation of textureless objects in cluttered scenes.

We split it into training and test sets according to [3]. The

Occlusion dataset is proposed by [3], and it shares the same

images with LINEMOD. 8 objects in one video sequence

that are heavily occluded are annotated for testing purpose.

We follow [13] to split the dataset. Concretely, the test set

consists of all occluded images and objects in other video

sequences without occlusion constitute the training set.

Synthetic Training Data LINEMOD dataset supplies

around 200 training images per class, which is relatively

small for training a deep neural network. We randomly ren-

dered 1000 images for each class according to the pose dis-

tribution of the training set. Concretely, we calculated the

angle range EC in the training set for each class C and ran-

domly generated rotation RC in EC . The translation TC

was randomly generated according to the mean and vari-

ance calculated from the training set. The synthetic image

can be rendered using RC and TC . For Occlusion dataset,

the training images are highly related and lack occlusions

while the test images are heavily occluded. To bridge the

domain gap, we also rendered images in the similar way ex-

cept that we chose 3-8 objects to render one image in order

to introduce occlusions among objects. For all synthetic im-

ages, the backgrounds were randomly replaced with indoor

images in the PASCAL VOC2012 dataset during training.

5. Experiments

5.1. Metrics

In our experiments, we use three common metrics for

evaluation: 2D Projection, 5cm 5� and ADD. For metric

2D Projection, a pose is considered correct if the average

2D projection error of the object’s vertices is smaller than

5 pixels. For 5cm 5�, a pose is considered correct if the

errors of the translation and rotation are less than 5cm and

5� respectively. The ADD calculates the error in the 3D

object space. The prediction is considered correct if the av-

erage distance ADD (Eq. 9) of the object’s vertices between

the predicted pose and the ground-truth pose is below 0.1d,

where d is the diameter of the object model. For symmet-

ric objects, the closest model point is used to compute the

average distance (Eq. 10).

ADD =
1

n

n
X

i=1

||(Rxi + T)� (R̃xi + T̃)|| (9)

ADD-S =
1

n

n
X

i=1

min
xj2V

||(Rxi + T)� (R̃xj + T̃)|| (10)

where n is the number of object’s vertices. xi is the i-th

vertice in 3D model. [R T] and [R̃ T̃] are the ground-truth

pose and predicted pose respectively.

5.2. Experiments on LINEMOD dataset

Ablation Study on Dynamic Zoom In and Masked

Coordinates-Confidence Loss. We conduct comprehen-

sive evaluation for Dynamic Zoom In and Masked

Coordinates-Confidence Loss on LINEMOD dataset. Ta-

ble 2 shows the results obtained from the coordinates-

confidence map via PnP (without Scale-invariant Trans-

lation Estimation). Training solely on real images, our

approach significantly improves the performance from

62.89% to 84.01% on 5cm 5�. And with real+synthetic

images, we also surpass the baseline with a large margin

(our 94.27% vs. 78.31% on 5cm 5�). We also evaluate the

contribution of each component in Table 2. For Dynamic

Zoom In , we also evaluate the scalability of the network.

See the rows 9, 10 in Table 2, utilizing YOLOv3 to provide

detections during test, the performance is almost the same

with Faster-RCNN. On Tiny YOLOv3, the accuracy only

drops a little. We can see that DZI makes our pose network

highly modularized and flexible, which can work robustly

with quite a lot of detectors without re-training.

Detection VS. Segmentation. Here, we compare

our detection-based framework with segmentation-based

framework regarding both performance and speed. To build

the segmentation-based baseline, we train a Mask-RCNN

to provide object segmentation mask. Then, we use this

mask to zoom in on the object during training and also use

it as confidence map to build 2D-3D correspondences dur-

ing test. The results are shown in Table 3. Training with

DZI, our detection-based framework achieves better perfor-

mance than segmentation-based one.

Ablation Study on Scale-invariant Translation Esti-

mation (SITE). The evaluation results of SITE is shown
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Row
Methods

5cm 5
� ADD 2D Proj.

Syn DZI MCC Loss Detector (test)

1 7 7 7 F-RCNN 62.89 50.71 87.04

2 7 7 3 F-RCNN 68.51 58.87 88.94

3 7 3 7 F-RCNN 69.61 57.90 89.68

4 7 3 3 F-RCNN 84.01 70.24 94.94

5 3 7 7 F-RCNN 78.31 67.69 92.76

6 3 7 3 F-RCNN 81.75 65.92 94.08

7 3 3 7 F-RCNN 88.71 73.94 95.34

8 3 3 3 F-RCNN 94.27 75.04 96.93

9 3 3 3 YOLOv3 94.02 74.99 96.76

10 3 3 3 Tiny YOLOv3 93.69 74.70 96.82

Table 2: Ablation study on Dynamic Zoom In and Masked

Coordinates-Confidence Loss. (Note: without using Scale-

invariant Translation Estimation. F-RCNN is Faster-

RCNN. When DZI is unemployed, the detections in training

are from Faster-RCNN).

Row
Methods

5cm 5
� ADD 2D Proj. Speed

Arch. DZI MCC Loss

1 Seg. - 7 81.58 66.46 94.24 ∼ 76ms

2 Seg. - 3 85.69 68.42 94.81 ∼ 76ms

3 Det. 3 3 94.02 74.99 96.76 ∼ 30ms

Table 3: Detection vs. segmentation. (Note: without using

Scale-invariant Translation Estimation. Seg. is segmenta-

tion from Mask-RCNN. Det. is detection from YOLOv3)

in Table 4. Using SITE instead of coordinates to estimate

translation, the accuracy on ADD improves significantly,

from 75.04 to 89.86 . The comparison of each object is

shown in Table 5. SITE achieves not only better but also

more balanced performance on all objects. For translation,

our SITE provides highly accurate estimation on all ob-

jects. It fully demonstrates the advantages of our disentan-

gled pose estimation strategy. More detailed and visualized

comparison of translation is shown in Fig. 1(b)(c).

Comparison with the State-of-the-art Methods Ta-

ble 1 summarizes the comparison results between our ap-

proach and current State-Of-The-Art (SOTA) RGB-based

approaches with and without refinement. We achieve SOTA

result and outperform others with a large margin. Com-

pared with coordinates-based methods[3, 18], we surpass

them with a significant margin (94.31 vs. 43.7 on 5cm

5� and 89.86 vs. 32.3 on ADD). Even without disentan-

gled translation estimation (i.e. solving 6-DoF from co-

ordinates), our proposed DZI and MCC loss are still able

to endow the model with strong coordinates learning abil-

ity to achieve remarkable performance (Table 2). Com-

pared with current leading approaches SSD6D[8], BB8[20],

PoseCNN[28] and AAE[24], we achieve significantly bet-

ter performance on all metrics. It is worth noting that even

without refinement, our approach still outperforms those ap-

Row
Methods

5cm 5
� ADD 2D Proj.

SITE Detector(Test)

1 7 F-RCNN 94.27 75.04 96.93

2 3 F-RCNN 94.31 89.86 98.10

2 3 YOLOv3 94.11 89.80 97.57

Table 4: Ablation study on SITE (Note: without SITE, the

translation is solved from coordinates via PnP).

Metric ADD (Rot.&Trans.) 2cm (Trans.)

Method w/o SITE w/ SITE w/o SITE w/ SITE

ape 11.43 64.38 45.90 90.29

benchvise 95.05 97.77 92.05 96.31

camera 75.49 91.67 82.45 95.49

can 89.57 95.87 89.57 95.77

cat 51.50 83.83 66.57 92.81

driller 93.76 96.23 85.73 91.48

duck 23.19 66.76 60.09 89.77

eggbox 99.53 99.72 83.47 94.84

glue 94.21 99.61 61.87 89.86

holepuncher 68.22 85.82 86.96 92.58

iron 93.77 97.85 81.10 94.48

lamp 97.02 97.89 90.69 93.57

phone 82.72 90.75 78.94 89.24

Average 75.04 89.86 77.34 92.81

Table 5: Evaluate SITE for each object on metric ADD (for

6-DoF pose) and 2cm (for translation). (Note: w/o SITE,

the translation is solved from coordinates via PnP.)

proaches [20, 8, 3] refined with depth and ICP.

5.3. Experiments on Occlusion dataset

The comparison results on Occlusion dataset are shown

in Figure 4. Here we compare with others on 2D Projection

for some approaches ([25], [20]) only report results on this

metric. For strict threshold (e.g. projection error should be

less than 5 pixels), our approach performs pretty well on all

objects and surpass the competitors by a large margin. It is

worth noting that coordinates-based approach NOCS [26]

utilizes Mask-RCNN to predict coordinates from RGBD

image. Though they use depth, we still outperform them

solidly. Despite the fact that BB8[20] leverages the ground-

truth bounding box on this task, we still surpass them on

most objects.

5.4. Running Time

On a desktop with an Intel 2.0 GHz CPU and a TITAN

Xp GPU, given a 640⇥480 image and utilizing YOLOv3

as detector, our approach takes 30ms to complete pose esti-

mation. It includes: 4ms for data loading, 15ms for detec-

tion, 7ms for a forward propagation of CDPN and 4ms for

building correspondences and solving pose. Note that our

system can be accelerated by utilizing faster detectors. For
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Figure 4: Comparison with state-of-the-art RGB or RGB-D-based methods on the Occlusion dataset [3]. Metric used is 2D

Projection.
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Figure 5: Qualitative results for 6-DoF pose estimation and 3D coordinates regression. For each category, we show: the query

object in RGB image; the pose estimation result and the estimated 3D coordinates. The pose result is shown by projecting

the model using the estimated pose. For the first row, we also show the generated 3D coordinates in various views from front,

back, top, bottom, left and right respectively.

Tiny YOLOv3 detector, the detection only takes 3ms. Thus,

the total time can be shortened to18ms.

6. Conclusion

In this work, we develop a coordinates-based 6-DoF

pose estimation approach by disentangling the rotation

and translation. We propose Dynamic Zoom In , Masked

Coordinates-Confidence Loss and Scale-invariant Transla-

tion Estimation to achieve highly accurate, robust and ef-

ficient pose estimation. Our method is able to deal with

texture-less and occluded objects and achieves state-of-the-

art results on all commonly used metrics on LINEMOD. For

the future, we expect our approach to be applied to other re-

lated domains (e.g. camera localization).
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regression using convolutional neural networks. In Pro-

ceedings of International Conference on Computer Vision

(ICCV), 2017.

[17] Alejandro Newell, Kaiyu Yang, and Jia Deng. Stacked hour-

glass networks for human pose estimation. In Proceedings

of European Conference on Computer Vision (ECCV), 2016.

[18] Apurv Nigam, Adrian Penate-Sanchez, and Lourdes

Agapito. Detect globally, label locally: Learning accurate

6-dof object pose estimation by joint segmentation and co-

ordinate regression. IEEE Robotics and Automation Letters

(RAL), 2018.

[19] Georgios Pavlakos, Xiaowei Zhou, Aaron Chan, Konstanti-

nos G Derpanis, and Kostas Daniilidis. 6-dof object pose

from semantic keypoints. In Robotics and Automation

(ICRA), 2017 IEEE International Conference on, 2017.

[20] Mahdi Rad and Vincent Lepetit. BB8: A scalable, accu-

rate, robust to partial occlusion method for predicting the 3D

poses of challenging objects without using depth. In Pro-

ceedings of the IEEE International Conference on Computer

Vision (ICCV), 2017.

[21] Joseph Redmon and Ali Farhadi. YOLO9000: better, faster,

stronger. In Proceedings of the IEEE Conference on Com-

puter Vision and Pattern Recognition (CVPR), 2017.

[22] Torsten Sattler, Qunjie Zhou, Marc Pollefeys, and Laura

Leal-Taixe. Understanding the limitations of cnn-based ab-

solute camera pose regression. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition

(CVPR), 2019.

[23] Hao Su, Charles Ruizhongtai Qi, Yangyan Li, and

Leonidas J. Guibas. Render for CNN: viewpoint estimation

in images using cnns trained with rendered 3d model views.

In Proceedings of International Conference on Computer Vi-

sion (ICCV), 2015.

[24] Martin Sundermeyer, Zoltan-Csaba Marton, Maximilian

Durner, Manuel Brucker, and Rudolph Triebel. Implicit 3d

orientation learning for 6d object detection from rgb images.

In Proceedings of The European Conference on Computer

Vision (ECCV), 2018.

[25] Bugra Tekin, Sudipta N. Sinha, and Pascal Fua. Real-Time

Seamless Single Shot 6D Object Pose Prediction. In Pro-

ceedings of the IEEE Conference on Computer Vision and

Pattern Recognition (CVPR), 2018.

[26] He Wang, Srinath Sridhar, Jingwei Huang, Julien Valentin,

Shuran Song, and Leonidas J Guibas. Normalized object

coordinate space for category-level 6d object pose and size

estimation. In Proceedings of the IEEE Conference on Com-

puter Vision and Pattern Recognition (CVPR), 2019.

[27] Yaming Wang, Xiao Tan, Yi Yang, Xiao Liu, Errui Ding,

Feng Zhou, and Larry S Davis. 3d pose estimation for fine-

7686



grained object categories. In Proceedings of The European

Conference on Computer Vision Workshop (ECCVW), 2018.

[28] Yu Xiang, Tanner Schmidt, Venkatraman Narayanan, and

Dieter Fox. Posecnn: A convolutional neural network for

6d object pose estimation in cluttered scenes. In Robotics:

Science and Systems (RSS), 2018.

[29] Xingyi Zhou, Arjun Karpur, Linjie Luo, and Qixing Huang.

Starmap for category-agnostic keypoint and viewpoint esti-

mation. In Proceedings of European Conference on Com-

puter Vision (ECCV), 2018.

7687


