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Abstract

The ability to navigate from visual observations in un-

familiar environments is a core component of intelligent

agents and an ongoing challenge for Deep Reinforcement

Learning (RL). Street View can be a sensible testbed for

such RL agents, because it provides real-world photo-

graphic imagery at ground level, with diverse street ap-

pearances; it has been made into an interactive environ-

ment called StreetLearn and used for research on naviga-

tion. However, goal-driven street navigation agents have

not so far been able to transfer to unseen areas without ex-

tensive retraining, and relying on simulation is not a scal-

able solution. Since aerial images are easily and globally

accessible, we propose instead to train a multi-modal policy

on ground and aerial views, then transfer the ground view

policy to unseen (target) parts of the city by utilizing aerial

view observations. Our core idea is to pair the ground view

with an aerial view and to learn a joint policy that is trans-

ferable across views. We achieve this by learning a similar

embedding space for both views, distilling the policy across

views and dropping out visual modalities. We further re-

formulate the transfer learning paradigm into three stages:

1) cross-modal training, when the agent is initially trained

on multiple city regions, 2) aerial view-only adaptation to

a new area, when the agent is adapted to a held-out region

using only the easily obtainable aerial view, and 3) ground

view-only transfer, when the agent is tested on navigation

tasks on unseen ground views, without aerial imagery. Ex-

perimental results suggest that the proposed cross-view pol-

icy learning enables better generalization of the agent and

allows for more effective transfer to unseen environments.

1. Introduction

Stranded on Elephant Island after the shipwreck of the

Endurance expedition, Ernest Shackleton, Frank Worsley

and their crew attempted, on 24 April 1916, a risky 720-
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Figure 1. The street navigation agent observes both ground and

aerial views in the training phase. The agent learns a view-

invariant policy to associate the two views. Once the policy is

learned, the agent becomes capable of continual training with in-

terchangeable viewpoints. When being transferred to an unseen

area, the agent is adapted using only the aerial view observations,

which are easily accessible. The agent is then transferred to the

ground view environment (without access to aerial-view images)

for testing. Images: Google Maps and Street View.

mile open-boat journey to South Georgia. They had duly

studied the trajectory using nautical maps, but the latter

froze and became illegible. It is only through their ex-

traordinary navigation skills, memory, and by transferring

knowledge derived from a top-view representation to vi-

sual and compass observations as they sailed, that they ulti-

mately reached the shores of South Georgia two weeks later.

Such a feat has been cited as a prime example of complex

human spatial navigation in unknown environments [10]:

having gained expertise in navigating using both maps and

sea-level observations, they could adapt to an unknown en-

vironment by studying maps and then transfer that knowl-

edge on their new journey.

The ability to navigate in familiar and unfamiliar envi-

ronments is a core component of animal and artificial intelli-

gence. The research on artificial agent navigation can be ap-

plied to real world domains ranging from the neuroscience

of grid and place cells in mammals [3, 9] to the autonomy

of indoor and outdoor mobile robots [49, 39, 31, 38, 45, 32].
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We focus on the visual navigation task that trains an

agent to navigate in a specific area by using a single sensory

modality, integrates visual perception and decision making

processes, and typically does not rely on maps. A challeng-

ing question arises: how to efficiently transfer the agents to

new or previously unseen areas? In the absence of extra in-

formation, existing solutions typically require to retrain the

agent on that unseen area, which is computationally expen-

sive [6]. Alternatively, one can simplify navigation tasks

so as not to require local knowledge [49] or to rely on ad-

ditional navigation instructions [8, 15]. Generalization to

unseen environments can be obtained by approaching navi-

gation as a one-shot learning task with an auxiliary memory

in simple and procedurally generated environments [43, 47]

or by building complex simulators for more complex envi-

ronments [31, 39]. It is however expensive to build a sim-

ulator for offline retraining (especially in the case of un-

constrained outdoor environments) and street-level images

are expensive to collect as one has to drive everywhere to

take panoramic photographs. As a consequence, enabling

an agent to navigate in unseen locations, without fully re-

training it from scratch, is still a challenging problem.

Inspired by the observation that humans can quickly

adapt to a new city simply by reading a map, we explore

the idea of incorporating comparable top-down visual infor-

mation into the training procedure of navigation agents, in

order to help them generalize to previously unseen streets.

Instead of using a human-drawn map, we choose aerial im-

agery, as it is readily available around the world. Moreover,

humans can easily do without maps once they become fa-

miliar with an environment. This human versatility moti-

vates our work on training flexible RL agents that can per-

form using both first-person and top-down views.

We propose a novel solution to improve transfer learning

for visual navigation in cities, leveraging easily accessible

aerial images (Figure 1). These aerial images are collected

for both source (training) and target (unseen or held-out) re-

gions and they are paired with ground-level (street-level or

first-person) views based on their geographical coordinates.

We decompose the transfer task into three stages: training

on both ground-view and aerial-view observations in the

source regions, adaptation using only the aerial-view obser-

vations in the target region, and transfer of the agent to the

target area using only ground-view observations. Note that

our goal remains to train agents to navigate from ground-

view observations. The RL agent should therefore have ac-

cess to the aerial views only during the first (training) and

second (adaptation) stages, but not during the third (trans-

fer) stage when it is deployed in the target area.

The gist of our solution is transfering the agent to an un-

seen area using an auxiliary environment built upon a dif-

ferent but easily accessible modality – the aerial images.

This requires the agent to be flexible at training time by re-

lying on interchangeable observations. We propose a cross-

view framework to learn a policy that is invariant to dif-

ferent viewpoints (ground view and aerial view). Learning

view-invariant policy relies on three main ingredients: (a)

an L2 distance loss to minimize the embedding distance be-

tween the two views, (b) a dual pathway, each with its own

policy, with a Kullback-Leibler (KL) loss on the policy log-

its to force these two policies to be similar, and (c) a dropout

module called view dropout that randomly chooses the pol-

icy logits from either view to select actions. The proposed

architecture naturally works with interchangeable observa-

tions and is flexible for training with both views jointly or

with only view at a time. This makes it a flexible model that

can be shared across the three stages of transfer learning.

We build our cross-view policy architecture by extending

the RL agents proposed in [29] into a two-stream model that

corresponds to the two views. Our agents are composed of

three modules: a convolutional network [22] responsible for

visual perception, a local recurrent neural network (RNN)

or Long Short-Term Memory (LSTM) [17] for capturing

location-specific features (locale LSTM), and a policy RNN

producing a distribution over the actions (policy LSTM).

We build our testbed, called StreetAir (to the best of

our knowledge, the first multi-view outdoor street envi-

ronment), on top of StreetLearn, an interactive first-person

street environment built upon panoramic street-view pho-

tographs [27]. We evaluate it on the same task as in [29],

namely goal driven navigation or the courier task, where

the agent is only given the latitude and longitude coordi-

nates of a goal destination, without ever being given its cur-

rent position, and learns to both localize itself and plan a

trajectory to the destination. Our results suggest that the

proposed method transfers agents to unseen regions with

higher zero-shot rewards (transfer without training in the

held-out ground-view environment) and better overall per-

formance (continuously trained during transfer) compared

to single-view (ground-view) agents.

Contribution. Our contributions are as follows.

1. We propose to transfer the ground-view navigation task

between areas by leveraging a paired environment based

upon easily accessible aerial-view images.

2. We propose a cross-view policy learning framework to

encourage transfer between observation modalities via

both representation-level and policy-level associations,

and a novel view dropout to force the agent to be flexible

and to use ground and aerial views interchangeably.

3. We propose a three-stage procedure as a general recipe

for transfer learning: cross-modal training, adaptation

using auxiliary modality, and transfer on main modality.

4. We implement and evaluate our agents on StreetAir, a re-

alistic multi-view street navigation environment that ex-

tends StreetLearn [27].
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2. Related Work

2.1. Visual Navigation

Zhu et al. [49] proposed an actor-critic model whose pol-

icy was a function of the goal as well as of the current state,

both presented as images. Subsequent work on Deep Re-

inforcement Learning focused on implicit goal-driven vi-

sual navigation [28, 7, 39, 46] and addressed generaliza-

tion in unseen environments through implicit [33, 43] or

explicit [47, 36] map representations. Gupta et al. [13]

introduced landmark- and map-based navigation using a

spatial representation for path planning and a goal-driven

closed-loop controller for executing the plan. A successor-

feature-based deep RL algorithm that can learn to trans-

fer knowledge from previously mastered navigation tasks to

new problem instances was proposed in [46]. However, the

above works either relied on simulators or attained naviga-

tion in simple, unrealistic, or limited indoor environments.

There has been a growing interest in building and bench-

marking visual navigation using complex simulators [21,

38] or photorealistic indoor environments [31]. By con-

trast, we built our work on the top of a realistic environ-

ment StreetLearn [29, 27], made from Google Street View

imagery and Google Maps street connectivity.

2.2. Cross­View Matching

Matching street viewpoints with aerial imagery has been

a challenging computer vision problem [23, 20, 25, 34]. Re-

cent approaches include geometry-based methods and deep

learning. Li et al. would extract geometric structures on the

ground between street and ortho view images, and measure

the similarity between modalities by matching their linear

structures [23]. Bansal et al. [4] proposed to match lines on

the building facades. Lin et al. proposed to learn a joint em-

bedding space using a deep neural network between street

views and aerial views [25, 41]. All these works aim at uti-

lizing cross-view matching to achieve image-based geolo-

cation - specifically, finding the nearest neighbors, in some

embedding space, between the query street image and all

the geo-referenced aerial images in the database. Our work

is closely related to cross-view matching, but instead of su-

pervised learning, we study how cross-view learning could

improve RL-based navigation tasks.

2.3. Multimodal Learning

Our work is also generally related to multimodal learn-

ing since street views and aerial views are not taken from

the same type of cameras; they are basically from two dif-

ferent modalities. Many of the existing multimodal learn-

ing works focus on merging language and visual informa-

tion. In the visual navigation domain, Hermann et al. built

upon the StreetLearn environment [29] with additional in-

puts from language instructions, to train agents to navigate

in a city by following textual directions [15]. Anderson

et al. proposed the vision-and-language navigation (VLN)

task based upon an indoor environment [1]. Wang et al.

[42] proposed to learn, from paired trajectories and instruc-

tions, a cross-modal critic that provides intrinsic rewards to

the policy and utilizes self-supervised imitation learning.

2.4. Knowledge Distillation

Our work is related to Network Distillation [16, 2] and

its many extensions [30, 24, 48, 37], as one way to trans-

fer knowledge. A student network tries to indirectly learn

from a teacher network by imposing a Kullback-Leibler

(KL) loss between its own and the teacher’s softened logits,

i.e., trying to mimic the teacher’s behavior. In [14] Gupta

et al. generalize knowledge distillation for two modalities

(RGB and depth) at the final layer by minimizing the L2

loss for object and action detection. The hallucination net-

work in [18] was trained on an existing modality to regress

the missing modality using L2 loss, and leveraged multiple

such losses for multiple tasks. This work has been extended

by Garcia et al. by adding L2 losses for reconstructing all

layers of the depth network and a cross entropy distillation

loss for a missing network [12]. Finally, Luo et al. [26]

learned the direction of distillation between modalities, con-

sidering a cosine distillation loss and a representation loss.

Our work differs in three ways: First, distillation has

been applied to either classification or object/activity detec-

tion, while our work focuses on transferring knowledge in

a control problem by distilling both image representations

and RL policies. Second, distillation has so far been ap-

plied from a teacher network to a student network, while we

choose to transfer between the auxiliary task (aerial view)

and the main task (street view), sharing the local and pol-

icy modules in the network. Third, we employ a novel view

dropout to further enhance the transferablity.

2.5. Transfer Learning

Our work is related to transfer learning [35] in visual do-

mains. The very basic approach to transfer learning is to

pretrain on an existing domain or task and fine-tune on the

target ones. Luo et al. [26] proposed a method to transfer

multimodal privileged information across domains for ac-

tion detection and classification. Chaplot et al. [6] studied

the effectiveness of pretraining and fine-tuning for transfer-

ring knowledge between various environments for 3D nav-

igation. Kansky et al. [19] proposed Schema Networks to

transfer experience from one scenario to other similar sce-

narios that exhibit repeatable structure and sub-structure.

Bruce et al. [5] leverage an interactive world model built

from a single traversal of the environment, a pretrained vi-

sual feature encoder, and stochastic environmental augmen-

tation, to demonstrate successful transfer under real-world

environmental variations without fine-tuning.
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Figure 2. Overview of Cross-view Policy Learning: Ground-view and aerial-view inputs are passed into separate Convolutional Neural

Networks for embedding. An L2 embedding loss is used to constrain the similarity between the two latent spaces. The embeddings are

passed to a locale LSTM (region-specific) and a global policy LSTM (shared across all regions). Both LSTMs are shared across the two

views. A KL policy loss is used to constrain the policy logits between the two views. View dropout (gating) selects either of the two views

and the final action is sampled according to a multinomial distribution over the logits. This figure shows n regions (gray boxes) for training

and one target region (red box) for transfer. Goals are represented by lat/long coordinates. a, r represent the action and reward respectively.

3. Approach: Cross-view Policy Learning

The full model of our navigation agent is illustrated on

Figure 2. Both ground-level and aerial view images are fed

into the corresponding representation networks, Convolu-

tional Neural Networks (CNN) [22] without weight sharing

across the two modalities. The image embeddings, output

by the CNNs, are then passed into a locale-specific LSTM,

whose output is then fed into the policy LSTM together with

the visual embedding. The policy LSTM produces logits of

a multinomial distribution over actions. As there are two

pathways (for ground-level and aerial views) with two sets

of policy logits, an additional gating function decides the

final set of logits (either by choosing or merging the two

policies) from which to sample the action.

In order to bind the two views and to allow for learning

a policy that is interchangeable across views, we proposed

to incorporate three ingredients as part of this cross-view

policy learning framework: an embedding loss, a policy

distillation loss and view dropout, which we detail in the

subsequent sections.

3.1. Reinforcement Learning

We follow [29] and employ the policy gradient method

for training the navigation agents, learning a policy π that

maximizes the expected reward E[R]. In this work, we use

a variant of the REINFORCE [44] advantage actor-critic al-

gorithm Eat∼πθ
[
∑

t ∇θ log π(at|st,g; θ)(Rt − Vπ(st))],

where Rt =
∑T−t

j=0
γjrt+j , rt is the reward at time t, γ

is a discounting factor, and T is the episode length. In this

work, instead of representing the goal g using distances to

pre-determined landmarks, we directly use latitude and lon-

gitude coordinates.

We specifically train the agents using IMPALA [11], a

distributed asynchronous actor-critic implementation of RL,

with 256 actors for single-region and 512 actors for multi-

region experiments, relying on off-policy minibatches re-

weighted by importance sampling. Curriculum learning and

reward shaping are used in the early stage of agent training

to smooth out the learning procedure, similarly to [29].

3.2. Joint Multi­View Embedding

There are two reasons why we need to learn a joint rep-

resentation between the two views in order to exploit the

auxiliary aerial view. First, learning a joint embedding en-

ables us to substitute aerial views for ground-level views at

transfer time, once we have adapted the agent to the unseen

area using aerial views only. Secondly, enforcing the em-

beddings to be similar could potentially make model train-

ing faster and more robust. The original representation is

only learned through interactions with the environment so

ideally such representation should not be dissimilar when

one uses signals from different modalities. Motivated by

these, we introduce an embedding loss that enforces learn-

ing a joint embedding space between the two views:

ℓembed = ‖fg(xground)− fa(xaerial)‖2 , (1)

where fg and fa are the CNN modules corresponding to

ground-level and aerial view inputs, respectively.
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Figure 3. Transfer learning procedure including 3 stages: training, adaptation and transfer. The agent is trained with both ground and aerial

view observations in the training city regions. Part of the agent is adapted to the held-out city region, using only aerial view observations.

The agent is transferred to the target city region and continuously trained using only ground-view observations.

3.3. Policy Distillation

Simply minimizing the L2 distance between embeddings

may not be sufficient since in practice it is impossible to ex-

actly match one with the other. The small errors between

the two representations could be amplified dramatically as

they propagate into the policy networks. So we further pro-

pose to match the logits between the policy outputs from

the two modalities. In other words, although the embed-

ding between the two modalities may be slightly different,

the policy should always try to generate the same actions at

the end. Specifically, a Kullback-Leibler divergence loss is

added to the total loss, i.e.,

ℓpolicy = −
∑

x

pg(x) log

(

pa(x)

pg(x)

)

, (2)

where, pg is the softmax output of ground-view policy logits

and pa is the softmax output of aerial-view policy logits. In

this way, the learned policy could be less sensitive to differ-

ences in representation made by the convolution networks.

3.4. View Dropout
While there are two pathways and thus two sets of pol-

icy logits, the agent can sample only one action at a time.

We propose to fuse the policy outputs of the two modalities

through a dropout gating layer, that we call view dropout

since it chooses over modalities instead of over individual

perceptual units. This dropout layer aims at enforcing the

cross-modal transferability of the agent.

3.5. Total Loss Function
The final objective is

ℓtotal = ℓRL + λℓembed + γℓpolicy (3)

where ℓRL is the reinforcement learning loss. λ and γ are co-

efficients indicating the importance of embedding and dis-

tillation loss terms respectively. They can be set according

to some prior or domain knowledge, or be the subject of

hyper-parameter search.

3.6. Transfer Learning with Cross­View Policy

We present in this section that a cross-view policy can

be used for transfer learning. Figure 3 illustrates the three

stages of the transfer learning setting: training, adaptation

and transfer. The details of each stage are explained below.

• Training: The agent is initially trained on n regions us-

ing paired aerial and ground view observations with L2

loss, KL loss and view dropout. All modules (two paral-

lel pathways of CNN, local RNNs and the policy RNN)

are trained in this stage.

• Adaptation: At the adaptation stage, only the aerial

images in the target region are used and only the lo-

cale LSTM (red box) is trained on the aerial-view en-

vironment. Since the ground-level view and the aerial

view pathways have been already trained to share simi-

lar representations and policy actions, this stage makes

the agent ready for substituting the aerial view for the

ground-level view during for next phase.

• Transfer: During transfer, the convolution networks and

policy LSTM of the agent are frozen, with only the target

locale LSTM being retrained, solely on ground-view ob-

servations. The reason why the CNN and policy LSTM

are frozen is because this modular approach efficiently

avoids catastrophic forgetting in already trained city ar-

eas (as their corresponding modules are left untouched).
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4. Experiments

In this section, we present our experiments and results,

study the effect of curriculum and heading information, per-

form an ablation study for two components of the loss func-

tion, and demonstrate the need for the adaptation stage.

4.1. Setup

Goal-Driven Navigation (Courier Task). Following [29],

the agent’s task consists in reaching, as fast as possi-

ble, a goal destination specified as lat/long coordinates, by

traversing a Street View graph of panoramic images that

cover areas between 2km and 5km a side. Panoramas are

spaced by about 10m; the agent is allowed 5 actions: move

forward (only if the agent is facing another panorama, oth-

erwise that action is wasted), turn left/right by 22.5 degrees

and turn left/right by 67.5 degrees. Upon reaching the goal

(within 100m tolerance), the agent receives a reward pro-

portional to the bird flight distance from the starting po-

sition to the goal; early rewards are given if the agent is

within 200m of the goal. Episodes last for 1000 steps and

each time a goal is reached, a new goal location is sampled,

encouraging the agent to reach the goals quickly.

Multimodal Egocentric Dataset. We build a multiview en-

vironment by extending StreetLearn [29]. Aerial images

are downloaded that cover both New York City and Pitts-

burgh. At each lat/long coordinate, the environment returns

an 84 × 84 aerial image centered at the location, of same

size as the ground view image, and rotated according to

the agent’s heading towards North. Aerial images cover

roughly 0.001 degree spatial differences in latitude and lon-

gitude. The training set is composed of four regions: Down-

town NYC, Midtown NYC, Allegheny district in Pittsburgh

and CMU campus nearby in Pittsburgh, while the testing

region is a held-out set and located around the NYU cam-

pus and Union Square in NYC, which does not overlap with

training areas (see Figure 1 for their approximate locations).

Transfer Learning Setup. The real transfer task includes

three stages, i.e., training, adaptation and transfer. The

agent is trained in one area using both ground-view and

aerial-view observations during the training stage with 1 bil-

lion steps. In the adaptation stage, the agent only takes in

the aerial-view observations and retrains the local LSTM in

the target transfer area with 500 million steps. Then the

agent navigates in the transfer area with only ground-view

observations and is continuously trained. Note that with-

out additional aerial-view observations, an agent cannot be

transferred in such a 3-stage setup.

We conduct ablation studies by skipping the adaptation

phase (see Section 4.5). In that case, the agent is trained

on both views in the training regions and learns to navigate

in the target region using only ground-view observations.

During the transfer stage, it is fine-tuned in the target region.

Figure 4. Rewards gained by the agent at the transfer stage in a

fixed target city region. The agent is continuously trained during

transfer. Higher rewards are better. The proposed cross-view ap-

proach significantly outperforms single-view baseline in terms of

initial and convergence rewards. The left figure magnifies the re-

wards within 350M steps, which shows the zero-shot reward and

learning speed are both improved significantly.

Architecture. Our model is an extension of the model used

in [29] which considered only the ground-view modality. To

gain intuition from results effectively, we use the same type

of architectures for all networks as in [29], and compare our

cross-view learning approach with the multi-city navigation

agent proposed in [29] (the latter architecture corresponds

to the ground-view pathway in our architecture on Figure 2).

Parameter Selection. As in [29], the batch size is 512,

RMSprop is used with an initial learning rate of 0.001 and

with linear decay; the coefficient of embedding and policy

distillation losses were set to λ = 1 and γ = 1.

4.2. Cross­View vs. Single­View

We start by presenting the rewards in transfer stage

gained by the proposed cross-view method and the base-

line single-view method in Figure 4. The cross-view agent

leveraged the aerial images in the adaptation stage to adapt

better to the new environment. However, in transfer stage,

both agents only observe the ground-view. This aligns with

real world scenarios well as the top-down aerial-view is not

always available in an online manner. The locale LSTM

of the agents are being retrained during the transfer stage;

all other components such as CNN and policy LSTM are

frozen. The target region is fixed and goals are randomly

sampled from this region. Heading information is not used

since a “compass” is not always guaranteed in navigation.

Figure 4 shows the rewards obtained by cross-view and

single-view methods in the transfer phase. We magnify the

rewards within 350M steps because we are more interested

in early stage performance of transfer learning. The cross-

view method achieves around 190 reward at 100M steps and

280 reward at 200M steps, both of which are significantly

higher than the single-view method (50 @ 100M and 200

@ 200M). We can see on the figure that the cross-view ap-

proach significantly outperforms the single-view method in
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terms of learning speed at the early stage.

Besides retraining, we conduct an experiment to evaluate

the zero-shot reward or jumpstart reward [40], which is ob-

tained by testing the agent in the target region without any

additional retraining. The zero-shot reward is averaged over

350M steps. The proposed cross-view method achieves a

zero-shot reward of 29, significantly higher than the reward

of 5 obtained by the single-view method. We notice that

the success rate is non-linearly correlated with the reward.

So we also count the corresponding success rate, defined as

the number of goals successfully reached within a thousand

steps divided by the total number of goals. The cross-view

agent achieves 34.5% zero-shot success rate, more than 3x

the success rate of a single-view agent (10.5%). We at-

tribute this to the adaptation phase using the aerial-view im-

agery. It is worth noting that the convergence reward of the

cross-view method is also significantly higher than that of

the single-view method (580 vs. 500) which shows that the

cross-view method learns a better representation.

The above results suggest that the proposed transfer

learning allows the agent to gain knowledge about the target

city region so that the subsequent navigation can start from a

good initial status and such knowledge can significantly im-

prove the continual learning of the agents. The results also

suggest that the proposed cross-view learning approach is

able to significantly improve the generalization of the rep-

resentation and the transferability of the street-view agent.

4.3. Curriculum and Heading

As we mentioned earlier, both the training and

adaptation stages utilize a pre-defined curriculum and

environment-provided heading information, following [29].

The curriculum increases the distance to goals over time; so

that the agent always starts from easier tasks (closer to the

goals). This time, we incorporate extra heading informa-

tion during training, by adding an auxiliary supervised task

that consists in predicting the heading from observations.

Previous transfer experiments did not utilize them because

heading may not be available in a real world scenario; in

this section, we examine how the curriculum and heading

information could affect the performance of the agents.

Figure 5 compares transfer phase rewards for four dif-

ferent methods: single/cross views with curriculum, and

single/cross views with both curriculum and heading pre-

diction auxiliary tasks. The results suggest that with

the heading auxiliary task, the agents can achieve signif-

icantly higher performance (approximately 450 reward at

step 350M). In addition, the gap between single-view and

cross-view is smaller with heading information.

We also observed that cross-view methods manage to

learn irrespective of the curriculum design. In other words,

our cross-view architecture compensates for the lack of cur-

riculum by transferring knowledge between cities. Rewards
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Figure 5. Transfer rewards of agents with curriculum and heading

prediction auxiliary task. The performance gap between single-

view and cross-view methods are smaller when heading informa-

tion is used. Heading prediction also leads to higher rewards.

in the cross-view approach grow linearly and reach around

290 at 200M steps, which is comparable with the results

shown in Figure 4. However, the performance of single-

view agents degrades significantly without training curricu-

lum. It fails to reach over 50 reward within 100M steps

(dark blue curve in Figure 4), 30 less than the one trained

with curriculum (dark blue curve in Figure 5). Without cur-

riculum learning, the single-view agent learns slowly.

4.4. Adaptation Using Aerial Views

An important question is how much improvement is

brought by aerial-view based transfer learning. Figure 6

compares transfer phase rewards between 1) cross-view

agents that are transferred with aerial-view and 2) agents

that skipped the adaptation stage. All transfers are under

done using the curriculum. We also compare agents with

and without heading prediction.

Figure 6 suggests that the adaptation stage is impor-

tant and leads to a higher zero-shot reward, faster learning

progress in the initial phase and better overall performance

of the agent. The effect of adaptation becomes more signifi-

cant when heading information is dropped during the adap-

tation stage (which fits better to real world situations). Un-

surprisingly, as the agents are fully retrained, their perfor-

mances become comparable after a sufficiently large num-

ber of training steps.

4.5. Ablation Study

The proposed cross-view policy learning is composed of

multiple components: L2 embedding similarity loss, KL

policy distillation loss and view dropout. In this section, we

evaluate the contribution of each one of those components.
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Figure 6. Rewards at the transfer phase (with curriculum learning)

for cross-view agents going or not through the adaptation stage.

In order to show the strength of view dropout, we im-

plement another approach which uses the same L2 distance

loss between embeddings and KL divergence loss between

policy logits but always taking the street-view policy logits

for action selection (instead of randomly dropping either of

the views). In this case, the aerial-view policy logits are not

involved in decision making. We name this method “view

distillation” (in short, distill) as an additional baseline since

it reflects the setting of model distillation – one model is

optimized for the main objective while the other one is op-

timized only to match the logits of the former.

Figure 7 shows the rewards for transfer with curriculum

and heading auxiliary loss1. Three cross-view methods are

compared: (a) full model without KL loss, (b) full model

with view dropout replaced with view distillation, and (c)

the full model.

According to the figure, simply using L2 embedding loss

without KL policy loss is insufficient to learn a good trans-

ferrable representation across views. Its result is signifi-

cantly worse than the full model. This is probably because

the discrepancy between the two views makes it impossi-

ble to project them into the same space. There are always

differences in their representations and such differences are

enlarged after passing through the policy networks. Hav-

ing an additional KL policy loss would allow the learned

policy to be more robust (or less sensitive) to such small

differences in feature representations.

One may also notice that the agent (distill) that al-

ways uses the street-view policy for action selection could

achieve decent performance but still is non-trivially worse

than the agent that uses view dropout. Such results suggest

that the L2 embedding loss and the KL policy loss are able

to distill a street-view agent into a good aerial-view agent.

1The trend for transfer without heading information is very similar.
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Figure 7. Ablation Study: Transfer the agents under curriculum

with heading prediction auxiliary task.

However, that distilled policy is not interchangeable across

views. Training an agent with view dropout can be seen as

replacing the navigation task by a more difficult task where

the agent has to learn to quickly switch context at every sin-

gle step. An agent trained on this harder task generalizes

across observation modalities.

5. Conclusion

We proposed a generic framework for transfer learning

using an auxiliary modality (or view), composed of three

stages: (a) training with both modalities, (b) adaptation us-

ing an auxiliary modality and (c) transfer using the major

modality. We proposed to learn a cross-view policy includ-

ing learning a joint embedding space, distilling the policy

across views and dropping out modalities, in order to learn

representations and policies that are inter-changeable across

views. We evaluated our approach on a realistic navigation

environment, StreetLearn, and demonstrated its effective-

ness by transferring navigation policies to unseen regions.

One interesting future work would be scaling up the sys-

tem to cover not only urban areas but also rural areas in dif-

ferent countries. Another extension would consist in pro-

viding the agent with the start position in addition to the

goal position, so that the problem simplifies to learning to

find the optimal path from A to B, without the need for

learning to relocalize and to find A. After all, as it happened

during the successful journey through unknown seas made

by the crew of the Endurance, the navigator often knows

their starting position, and the interesting question is how to

reach the destination.
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