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Abstract

The fully-convolutional siamese network based on tem-

plate matching has shown great potentials in visual track-

ing. During testing, the template is fixed with the initial

target feature and the performance totally relies on the

general matching ability of the siamese network. How-

ever, this manner cannot capture the temporal variations

of targets or background clutter. In this work, we propose

a novel gradient-guided network to exploit the discrimi-

native information in gradients and update the template

in the siamese network through feed-forward and back-

ward operations. To be specific, the algorithm can uti-

lize the information from the gradient to update the tem-

plate in the current frame. In addition, a template gener-

alization training method is proposed to better use gradi-

ent information and avoid overfitting. To our knowledge,

this work is the first attempt to exploit the information in

the gradient for template update in siamese-based trackers.

Extensive experiments on recent benchmarks demonstrate

that our method achieves better performance than other

state-of-the-art trackers. The source codes are available at

https://github.com/LPXTT/GradNet-Tensorflow.

1. Introduction

Visual object tracking is an important topic in computer

vision, where the target object is identified in the initial

video frame and successively tracked in subsequent frames.

In recent years, deep networks [37, 3, 19, 44, 23, 39] have

significantly improved the tracking performance due to their

representation prowess.

There are two groups of deep-learning-based trackers.

The first group [36, 28, 32, 4] improves the discriminative

ability of deep networks by frequent online update. They

utilize the first frame to initialize the model and update it

∗Corresponding Author: Dr. Dong Wang

Figure 1. The motivation of our algorithm. Images in the first and

third column are target patches in SiameseFC. The other images

show absolute values of their gradients, where the red regions have

large gradient. As we can see, the gradient values can reflect the

target variations and background clutter.

every few frames. Timely online update enables trackers

to capture target variations but also requires more computa-

tional time. Therefore, the speed of these trackers generally

cannot meet the real-time requirements.

Siamese-based trackers are representative in the second

group [3, 44, 22] which is totally based on offline training.

They learn the similarity between objects in different frames

through massive offline training. During online testing, the

initial target feature is regarded as template and used to

search the target in the following frames. These methods

need no online updating, thus, they usually run at real-time

speeds. However, these methods cannot adapt to appear-

ance variations of target without important online adaptabil-

ity, thereby increasing the risk of tracking drift. To solve

this problem, many researches [16, 45, 40] present dif-

ferent mechanisms to update template features. However,

these methods only focus on combining the previous target

features, ignoring the discriminative information in back-

ground clutter. This results in a big accuracy gap between

the siamese-based trackers and those with online update.

Generally, gradients are calculated through the final

loss which considers both positive and negative candidates.
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Table 1. The number of backward iterations to update the template of SiameseFC. ‘LR’ means learning rate; ‘n×’ means n times the basic

learning rate; ‘ITERs’ means the needed iterations to converge. There is no proper step to converge by one iteration.

LR 1× 3× 5× 7× 9× 10× 30× 50× 70× 90× 100× 500× 1000× 3000× 5000×
ITERs 449 136 77 64 60 58 59 51 54 56 55 54 61 67 ∞

Thus, gradients contain the discriminative information to

reflect the target variations and distinguish the target from

background clutter. As shown in Figure 1, when objects

are occluded with noise or similar objects coexist at the

neighborhood of the target, the absolute value of gradi-

ents at these locations are prone to be higher. The high

value in gradients can force the template to focus on these

regions and capture the core discriminative information.

Most gradient-based trackers [36, 32] concentrate on hand-

designed optimization algorithms, such as momentum [34],

Adagrad [11], ADAM [20] and so on. These algorithms

need hundreds of iterations to converge, which lead to more

computation and a lower speed. How to take a trade-off

between the speed and accuracy of update is still a problem.

If we expect to reduce the number of training iterations

but still keep online update through gradients, the extreme

case is to adapt the template through one backward prop-

agation. However, training by one backward propagation

is a difficult task. As shown in Table 1, there is no proper

learning rate to make the template of SiameseFC converge

through one iteration. Generally, even with the optimal step

length, moving according to the gradient at only one itera-

tion cannot update the template properly, because the nor-

mal gradient-based optimization is a nonlinear process. On

the other hand, we can learn a nonlinear function by CNNs,

which simulates the non-linear gradient-based optimization

by exploring the rich information in gradients. Therefore,

we propose a gradient-guided network (GradNet) to per-

form gradient-guided adaptation in visual tracking. The

GradNet integrates the adaptation process that consists of

two feed-forward and one backward calculation, simplify-

ing the process of gradient-based optimization.

It is a very tough task to train a robust GradNet due to

two main reasons. The first reason is that the network is

prone to use the appearance of the template instead of us-

ing the gradient for tracking (details can be found in Sec-

tion 3.3), because learning to use the gradients is more dif-

ficult than learning to use appearance. The second reason

is that the network is prone to overfit. As shown in Fig-

ure 2, the model with normal training (Ours-T) can quickly

get a low distance error but its test accuracy is not promis-

ing, compared with our model. To handle these issues, we

propose a template generalization method to effectively ex-

plore gradient information and avoid overfitting.

The major contributions can be summarized as follows:

• A GradNet is proposed to conduct gradient-guided

template updating for visual tracking.
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Figure 2. The training and testing plots of models through normal

training (Ours-T) and our training method (Ours). The left map

shows the error between the predicted map and the real map during

training and the right map shows the accuracy during testing.

• A template generalization method is proposed to en-

sure strong adaptation ability and avoid overfitting.

• Extensive experiments conducted on four popular

benchmarks show that the proposed tracker achieves

promising results at a real-time speed of 80fps.

2. Related Work

2.1. Siamese Network based Tracking

SiameseFC [3] is the most representative trackers based

on template matching. Bertinetto et al. [3] present a siamese

network with two shared branches to extract features of

both the target and the search region. During online track-

ing, the template is fixed as the initial target feature and

the tracking performance mainly relies on the discrimina-

tive ability of the offline-trained network. Without online

updating, the tracker achieves beyond real-time speed. Sim-

ilarly, SINT [33] also designs a network to match the initial

target with candidates in a new frame. Its speed is much

lower because hundreds of candidate patches are sent into

the network instead of one search image. Another siamese-

based tracker is GOTURN [17] which proposes a siamese

network to regress the target bounding box with a speed

of 100fps. All these methods are lack of important on-

line updating. The fixed model cannot adapt to appear-

ance variations, which makes the tracker easily disturbed

by similar instances or background noise. In this paper,

we choose SiameseFC as our basic model and propose a

gradient-guided method to update the template.

2.2. Model Updating in Tracking

Timely updating is essential to keep trackers robust.

There are three main dominant strategies of model up-

dating, including template combination, gradient-descent

based and correlation-based strategies.
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Template Combination. Algorithms [16, 45] based on

template combination aim to effectively combine the target

features from previous frames. Guo et al. [16] propose a

fast transformation learning model to enable effective on-

line learning from previous frames. Zhu et al. [45] utilize

the optical flow information to convert templates and inte-

grate them according to their weights. All these methods

focus on using the information of templates, which ignore

the background clutter. Different from these methods, we

take full use of the discriminative information in backward

gradients instead of just integrating previous templates.

Gradient-descent based approaches. Deep trackers [36,

32] based on gradient descent explore the discriminative

information in backward gradients to update the model

through hundreds of iterations. Wang et al. [36] train two

separate convolutional layers to regress Gaussian maps with

the initial frame and update these layers every few frames.

Similarly, Song et al. [32] also utilize a number of gradient

descent iterations in initialization and online update proce-

dures. These trackers need many training iterations to cap-

ture the appearance variations of the target, which makes the

tracker less effective and far from real-time requirements.

We propose a GradNet that needs only one backward propa-

gation and two forward propagations to update the template

effectively. Besides, our template generalization method for

handling overfitting is not investigated in existing works.

Correlation based Tracking. Correlation based track-

ers [18, 26, 10, 43, 42, 6] train classifier through circular

convolution, which can be quickly calculated in Fourier do-

main. The final classifier is trained and updated by solving

the closed-form solution of the optimization function. The

classifier training cannot be simulated totally by deep net-

works, so most correlation based trackers just utilize deep

networks to extract robust features. Differently, our method

aims to update the template in an end-to-end network.

2.3. Gradient Exploiting

Currently, most deep neural networks adopt gradients in

offline training based on hand-designed optimization strate-

gies, such as momentum [34], Adagrad [11], ADAM [20]

and so on. These methods usually need expensive computa-

tion and large-scale data sets. How to accelerate the training

of deep networks is a hot topic in computer vision.

Meta Learning. Meta learning approaches can be broadly

divided into different categories, including optimization-

based methods [1], memory-based methods [31], variable-

based methods [14, 30, 24] and so on. Our algorithm can

be seen as an improved version of the optimization-based

method [1] to adapt to the update task in visual tracking.

Our approach has three main differences compared with [1].

First, ours only learns to update template, but not the net-

work branch of search region. This is specifically designed

for the tracking task. Second, our update process only con-

tains one iteration instead of multiple iterations. Finally,

our training of the optimizer includes second-order gradient

which is not used in [1].

Meta Learning for Tracking. Despite the popularity of

meta learning in many fields, there are few works [40, 29]

applying it to visual tracking. Yang et al. [40] design a

memory structure to dynamically write and read previous

templates for model updating. Differently, we focus on ex-

ploring the discriminative information of gradients. Eun-

byung et al. [29] train the initialization parameters of fil-

ters with pixel-wise learning rate offline and utilize a matrix

multiplication to update the filters. The update is a linear

process. While, our template update is a non-linear process

with convolutional layers and Relu. Besides, we use the tar-

get feature as the prior information to speed up the update

process by providing a good initial value.

3. Proposed Algorithm

The whole pipeline of GradNet is shown in Figure 3,

which consists of two branches. One branch extracts fea-

tures of the search region X and the other branch generates

the template according to the target information and gradi-

ents, detailed in Section 3.2. The template generation pro-

cess consists of initial embedding, gradient calculation and

template updating. First, the shallow target feature f2(Z)
is sent to one sub-net U1 (shown in purple in Figure 3) to

obtain an initial template β which is used to calculate the

initial loss L. Second, the gradient of the shallow target fea-

ture is calculated through backward propagation, and sent

to the other sub-net U2 (shown in orange in Figure 3) for

being non-linearly converted to better gradient representa-

tion. Finally, the converted gradient is added to the shallow

target feature to get an updated target feature which is sent

to the sub-net U1 again to output the optimal template. It

should be noted that the two sub-nets in the initial embed-

ding and template update process share parameters. The

optimal template is used to search targets on search regions

through cross correlation convolution.

3.1. Basic Tracker

We adopt SiameseFC [3] as the basic tracker. fx(.) is

used to model the feature extraction branch for search re-

gion, fz(.) is used to model the feature extraction branch

for target region. We assume that the movement of the tar-

get is smooth between two consecutive frames. Thus, we

can crop a search region X which is larger than the target

patch Z in the current frame, centered at the target’s posi-

tion in the last frame. The final score map is calculated by:

S = β ∗ fx(X), (1)

where β is the template to perform an exhaustive search

over the search region X, ∗ means cross correlation convo-
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Figure 3. The pipeline of the proposed algorithm, which consists of two branches. The bottom branch extracts the feature of search region

X and the top branch (named update branch) is responsible for template generation. The two purple trapezoids in the figure represent

sub-nets with shared parameters; the solid and dotted line represents forward and backward propagation respectively.

lution, S denotes the score map to find the target. In Siame-

seFC, the template β is defined as the deep target feature:

βsia = fz(Z), (2)

where Z is the target patch in the first frame. In order to

improve the discriminative ability of the template β during

online tracking, we design the update branch U(α) to ex-

plore the rich information in gradients:

βour = U(Z,X, α), (3)

where α is the parameter of the update branch which can

not only capture the template information in Z but also the

background information in X through gradients.

3.2. Template Generation

Initial Embedding. Given the image pair (X,Z), we want

to get the optimal template β⋆ which is suitable to distin-

guish the target from the background in search region X.

First, we get the target feature f2(Z) (using two convolu-

tional layers) and sent f2(Z) to the sub-net U1 to get the

initial template β:

β = U1(f2(Z), α1), (4)

where α1 is the parameter of U1. The initial template only

contains template information without background infor-

mation. Thus, we need to explore the discriminative infor-

mation in gradient to make it more robust. After getting β,

the initial score map S is calculated through equation (1).

Gradient Calculation. Based on the initial score map S

and the training label Y, we can get the initial loss L by:

L = l (S,Y), (5)

where l(.) is logistic loss function. We utilize this loss to

calculate the gradient of f2(Z) and added it to f2(Z). Then,

the updated target feature is obtained by:

h2(Z) = f2(Z) + U2(
∂L

∂f2(Z)
, α2), (6)

where α2 is the parameter of U2. Here, the gradient is re-

lated to U1 and used as the input of the sub-net U2 to cal-

culate the final loss, so the second-order guidance is intro-

duced in the parameter training of the sub-net U1.

Template Update. Finally, we send the updated target

feature h2(Z) to the sub-net U1 again to obtain the optimal

template β⋆ and the final score map S⋆ by:

β⋆ = U1(h2(Z), α1),

S
⋆ = β⋆ ∗ fx(X).

(7)

The optimal score map S
⋆ is utilized to estimate the target

position. Our goal is to let S⋆ have the highest value at the

target position and lower values at other positions. Thus, we

utilize the loss which is calculated by S
⋆ to train the update

branch:

argminα
∑

l (S⋆,Y). (8)

To our knowledge, this work is the first attempt to ex-

ploit the discriminative information of gradients to update

the template in SiameseFC. To simplify the introduction of

template generation process, we just utilize one image pair

here. In the next subsection, we will discuss the training

method more generally and detailedly.

3.3. Template Generalization

Problem of Basic Optimization. Image pairs from dif-

ferent videos and their training labels form the training set
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Figure 4. The distribution of weight ratio between gradients and

features. The weight ration is calculated by the absolute value of

α2, which reflects the proportion of the gradient during the tem-

plate update. The rectangles at different positions represent the

number of points in those ranges.

T = {(X1,Z1,Y1), (X2,Z2,Y2), . . . , (Xn,Zn,Yn)},

Xi is search region which is larger than target patch Zi, Yi

is training label and n is the number of training samples. It

should be noted that Xi and Zi are from different frames of

the same video, while Xi and Xj (i 6= j) are from different

videos. One simple idea to train our network is to utilize

image pairs (Xi,Zi,Yi) in the training set T to get optimal

template β⋆
i and final score maps S

⋆
i by equations (4−7).

The update branch is trained through:

argminα

n∑

i=1

l (S⋆
i ,Yi). (9)

This method has two main problems according to our ex-

periment. The first one is that the update branch of the

network is prone to focus on the template appearance in-

stead of the gradient, because learning to use the gradient

is harder than modeling the similarity metric. As shown in

Figure 4, the network trained without template generaliza-

tion has lower weight ratio of gradients. This means that

the network focuses less on gradients. The second one is

that the network cannot avoid overfitting under this training

process as shown in Figure 2.

Template Generalization. Our goal is forcing the up-

date branch to focus on gradients and avoiding overfitting.

Based on these requirements, we propose a template gener-

alization method which adopts search regions from different

videos to obtain a versatile template and make it perform

well on all search regions in each training batch. We show

the training process of our model without template general-

ization (a) and our model with template generalization (b)
in Figure 5 based on four image pairs. The main difference

is that we utilize one template (instead of four templates) to

search targets on four images from different videos.

We choose k (k = 4 in Figure 5) training image pairs

from the training set T to form a training batch and utilize

the target patch Z1 in the first image pair to calculate the tar-

get feature f2(Z1). The initial template β1 can be obtained

f2(z1)

f2(z2)

f2(z3)

f2(z4)

* fx(x1)

* fx(x2)

* fx(x3)

* fx(x4)

f2(z1)

* fx(x1)

* fx(x2)

* fx(x3)

* fx(x4)

a) Ours-T b) Ours

Figure 5. Illustration of ‘Ours-T’ and ‘Ours’ on exploiting tem-

plates. ‘Ours-T’ denotes training without template generalization;

‘Ours’ represents training through template generalization.

by equation (4). Here, β1 means the template which is cal-

culated through Z1. Then, we utilize β1 to find the target on

all search regions:

Si = β1 ∗ fx(Xi), i = 1, 2, ...k. (10)

Then, we can obtain the initial loss by equation (5) and up-

date the template β1 through equations (6, 7). After obtain-

ing the updated template β⋆
1

, we utilize it to search the target

in all search regions (X1,X2, ...,Xk) and train the update

branch through equation (9). In this way, the β⋆
1

is required

to track the targets in X1,X2, ...,Xk simultaneously. To

clarify, we show the details in Algorithm 1.

The template generalization offers the target feature with

multiple search regions and aims to obtain a general tem-

plate feature which performs well on all search regions.

This strategy can force the network to focus on the gradients

during offline training, because the initial target features are

misaligned and the gradients are aligned. The sub-nets U1

and U2 need to correct the initial misaligned template ac-

cording to the gradients and thereby obtaining a great power

to update templates according to gradients. As shown in

Figures 2 and 4, the template generalization algorithm can

effectively avoid overfitting and pay attention on gradients.

3.4. Online Tracking

After offline training, the update branch is totally fixed

and used for initialization and update during online testing .

Initialization. Given the ground truth in the first frame, we

crop a target patch Z1 and a search region X1 as inputs of

the network. Then, we can obtain the optimal template β⋆

according to equations (4−7). Besides, the updated target

features h2(Z1) is calculated through equation (6) and used

to update the template in the following frames.

Online Update. We update the template β⋆ with one re-

liable training sample through one iteration. We save the

reliable sample (Xi,Yi) according to tracking results and

use it to update the current template β⋆ based on equa-

tions (4−7) ( replacing f2(Z), X, Y with h2(Z), Xi, Yi

). Namely, we obtain updated feature h2(Z1) through the

initial frame. Then, the update branch of network is used
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Algorithm 1 Offline training the update branch

Input: Training samples (I1, I2, . . . , In) from different

videos and gaussian maps (Y1,Y2, . . . ,Yn)
Output: Trained weights α for the update branch.

Initialize the update branch with weights α0.

Initialize the feature extraction part of the tracker with

parameters from SiameseFC [3].

Crop template images Z and search regions X from

the training samples to construct the training set T =
{(X1,Z1,Y1), (X2,Z2,Y2), . . . , (Xn,Zn,Yn)}.

while not converged do

1. Randomly select k training samples from T .

2. Utilize the update branch to get β1 and β⋆
1

.

for i ∈ 0, . . . , k do

(a). β1 = U1(f2(Z1), α1)
(b). Si = β1 ∗ fx(Xi)

(c). L =
∑k

i=1
l (Si,Yi)

(d). Get h2(Z1) according to equation (6).

(e). β⋆
1
= U1(h2(Z1), α1)

end for

3. Train the update branch by minimizing the loss.

for i ∈ 0, . . . , k do

(a). Si
⋆ = β⋆

1
∗ fx(Xi)

(b). L⋆ =
∑k

i=1
l (Si

⋆,Yi)
(c). Minimize L⋆ to update α0 by SGD.

end for

end while

to update h2(Z1) according to the reliable sample (Xi,Yi)
and produce optimal templates β⋆ for the regression part.

3.5. Implementation Details

The feature extraction fx(.) for the search region con-

sists of five convolutional layers with the same structure and

parameters as SiameseFC [3]. The shallow target features

f2(.) are from the second convolutional layers of Siame-

seFC. There are three convolutional layers in U1 which have

the same structure with the last three layers of SiameseFC.

The kernel size of the convolutional layer in U2 is 3×3. The

size of template β and β⋆ is 6×6 and the size of score map is

17×17. During tracking, we update the template β⋆ every 5

frames. The reliable training sample is chosen according to

the max value of the score map. We set the max value of the

score map in the first frame as a threshold thre. If the max

value of the current score map is larger than thre ∗ 0.5, we

think that the result is accurate and crop the training sam-

ple Xt as the reliable training sample. The scale evaluate,

learning rate and training epoch in the proposed method are

the same as those in SiameseFC [3]. To take the trade-off

between the fast adaptation and error accumulation, the fi-

nal template is obtained by combining the initial template

Figure 6. Precision and success plots on the OTB-2015 dataset.

Figure 7. Precision and success plots on the TC128 dataset.
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Figure 8. Precision and success plots on the LaSOT dataset.

and β⋆. We only train the network on ILSVRC2014 VID

dataset and the whole network is fixed during inference.

4. Experiments

Our tracker is implemented in Python with the Ten-

sorflow framework, which runs at 80fps with an intel i7

3.2GHz CPU with 32G memory and a Nvidia 1080ti GPU

with 11G memory. We compare our tracker with many

state-of-the-art trackers with real-time performance (i.e.,

their speeds are faster than 25fps) on recent benchmarks, in-

cluding OTB-2015 [38], TC-128 [25], VOT-2017 [21] and

LaSOT [12].

4.1. Evaluation on the OTB­2015 dataset

The OTB-2015 [38] dataset is one of the most popular

benchmarks, which consists of 100 challenging video clips

annotated with 11 different attributes. We refer the reader

to [38] for more detailed information. Here, we adopt both

success and precision plots to evaluate different trackers on

OTB-2015. The precision plot reports the percentages that

the center location errors are smaller than certain thresh-
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ECO-HC ACT SiamRPN SiameFC KCFOurs

Figure 9. Representative visual results of different tracking algorithms on the OTB-2015 dataset.

Table 2. The accuracy (A), robustness (R) and expected average

overlap (EAO) scores of different trackers on VOT2017.

Trackers A R EAO

Ours 0.507 0.375 0.247

SiamRPN 0.490 0.460 0.244

CSRDCF++ 0.459 0.398 0.212

SiamFC 0.502 0.604 0.182

ECO HC 0.494 0.571 0.177

Staple 0.530 0.688 0.170

KFebT 0.451 0.684 0.169

SSKCF 0.530 0.656 0.164

CSRDCFf 0.475 0.646 0.158

UCT 0.490 0.777 0.145

MOSSEca 0.400 0.810 0.139

SiamDCF 0.503 0.988 0.135

olds. Whereas the success plot reports the percentages of

frames where the overlap between the predicted and the

ground truth bounding boxes is higher than a series of given

ratios. We compare our algorithm with twelve state-of-the-

art trackers including nine real-time deep trackers (ACT [5],

StructSiam [44], SiamRPN [22], ECO-HC [7], PTAV [13],

CFNet [35], Dsiam [16], LCT [27], SiameFC [3]) and three

traditional trackers (Staple [2], DSST [8], KCF [18]).

Figure 6 illustrates the precision and success plots of all

compared trackers over OTB-2015, which shows the pro-

posed tracker achieves very good performance (merely a

slightly lower than ECO-HC in success). Especially, our

tracker performs significantly better than the baseline model

(SiameseFC) by almost 8% in precision and 6% in success.

To facilitate more detailed analysis, we demonstrate the vi-

sual results of some representative methods in Figure 9.

From these figures, we can see that our method can well

handle various challenging factors and consistently achieve

good performance.

4.2. Evaluation on the TC­128 dataset

The TC128 [25] dataset consists of 128 fully-annotated

image sequences with 11 various challenging factors,

which is larger than OTB-2015 and focuses more on

color information. We also adopt both success and pre-

cision plots to evaluate different trackers (the same eval-

uation protocol as OTB-2015). We compare our algo-

rithm with eleven trackers, including ACT [5], PTAV [13],

Dsiam [16], SiameFC [3], HCFT [26], FCNT [36],

STCT[37], BACF [15], SRDCF [9], KCF [18] and

MEEM [41]. Figure 7 shows that our tracker achieves the

best results in terms of both precision and success criterion.

4.3. Evaluation on the VOT2017 dataset

The VOT2017 [21] dataset contains 60 short sequences

annotated with 6 different attributes. According to its eval-

uation protocol, the tested tracker is re-initialized whenever

a tracking failure is detected. In this benchmark, the ac-

curacy (A) and robustness (R) as well as expected aver-

age overlap (EAO) are three important criterion. Different

trackers are ranked based on the EAO criterion. We refer

the reader to [21] for more detailed information. In this

subsection, we compare our algorithm with top ten trackers

reported in the VOT2017 real-time Challenge [21] and an-

other state-of-the-art tracker SiamRPN [22]. Table 2 shows

that our tracker achieves the best performance in terms of

EAO while maintaining a very competitive accuracy and

robustness. The EAO of our tracker is higher than the win-

ner (CSRDCF++) of the VOT2017 real-time Challenge by

3.5%. Our tracker can also perform better than SiamRPN

whose training data (over 100,000 videos) is much larger

than ours (about 4,000 videos).
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4.4. Evaluation on the LaSOT dataset

The LaSOT [12] dataset is a very large-scale dataset con-

sisting of 1, 400 sequences with 70 categories and more

than 3.5M frames in total. The average frame length of

this dataset is more than 2, 500 frames. Up to now, this

dataset is the largest for visual tracking. Following one-

pass evaluation, different trackers are compared based on

three criteria including precision, normalized precision and

success. We also adopt precision and success plots to com-

pare 35 trackers and show the performance of the top 12
trackers in Figure 8 (more compared results are presented

in the supplementary material). From Figure 8, we can see

that our tracker performs the third-best in this dataset. Al-

though MDNet and VITAL achieve better accuracies than

our tracking algorithm, their speeds are far from the real-

time requirement (MDNet, 1fps and VITAL, 1.5fps).

4.5. Ablation Analysis

Self-comparison. To verify the contribution of each com-

ponent in our algorithm, we implement and evaluate several

variations of our approach (Ours) on OTB-2015. These ver-

sions include: (1) ‘Ours w/o M’: GradNet without template

generalization training process; (2) ‘Ours w/o MG’: Grad-

Net removed template generalization training process and

gradient application. It can be seen as SiameseFC with two

unshared branches; (3) ‘Ours w/o U’: the proposed method

without template update; (4) ‘Ours w 2U’: the two sub-nets

(in purple) in Figure 3 do not share parameters; (5) ‘Ours-

baseline’: SiameseFC.

Table 3. Precision and success scores on OTB-2015 for different

variations of our algorithm.

Variations PRE IOU FPS

Ours 0.861 0.639 80

Ours w/o M 0.823 0.615 80

Ours w/o MG 0.717 0.524 94

Ours w/o U 0.775 0.552 85

Ours w 2U 0.833 0.628 80

Ours-baseline 0.771 0.582 94

The performance of all variations and our final method is

reported in Table 3, from which we can see that all compo-

nents facilitate improving the tracking accuracy. For exam-

ples, the comparison of the ‘Ours w/o M’ and final methods

demonstrates the template generalization training method

could effectively learn an expected GradNet. With the same

amount of training data, ‘Ours’ improves the precision and

IOU score of ‘Ours-baseline’ about 9% and 5% respec-

tively, which demonstrates the effectiveness of the GradNet.

Training Analysis. To further analyze the template gener-

alization, we show the initial score map S and the optimal

score map S
⋆ of two different training methods in Figure 10.

(a)

(b)

(c)

(d)

Figure 10. The first row displays the search regions from different

videos. (a) and (b) shows S and S
⋆ of our model; (c) and (d) shows

S and S
⋆ of the model without template generalization. Model

through template generalization can get general initial score maps

S and optimal final score maps S⋆.

The initial score maps of the model with template general-

ization (a) are noisy score maps where the approximate area

of all objects has high response values. After the template

updating based on gradients, the promising score maps (b)

only have a high response at the target position. Differently,

the model without template generalization is likely to out-

put initial score maps (c) with a high response at the target

position directly. Thus, we think the model trained by tem-

plate generalization learns different tasks in the initial em-

bedding and template update processes. During initial em-

bedding, it learns a general template to detect the target and

background clutter. This manner provides the model more

discriminative gradients. Then, the model learns to update

the template based on these gradients in the template up-

date process. The discriminative gradients enable the fast

adaptation of the network.

5. Conclusions

In this work, we propose a GradNet for template up-

date, achieving accurate tracking with a high speed. The

two sub-nets in GradNet exploits the discriminative infor-

mation in gradients through feed-forward and backward op-

erations and speeds up the hand-designed optimization pro-

cess. To take full use of gradients and obtain versatile tem-

plates, a template generalization method is applied during

offline training, which can force the update branch to con-

centrate on the gradient and avoid overfitting. Experiments

on four benchmarks show that our method significantly im-

proves the tracking performance compared with other real-

time trackers.
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