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Abstract

Learning discriminative image feature embeddings is of

great importance to visual recognition. To achieve better

feature embeddings, most current methods focus on design-

ing different network structures or loss functions, and the

estimated feature embeddings are usually only related to

the input images. In this paper, we propose Memory-based

Neighbourhood Embedding (MNE) to enhance a general

CNN feature by considering its neighbourhood. The method

aims to solve two critical problems, i.e., how to acquire

more relevant neighbours in the network training and how

to aggregate the neighbourhood information for a more dis-

criminative embedding. We first augment an episodic mem-

ory module into the network, which can provide more rel-

evant neighbours for both training and testing. Then the

neighbours are organized in a tree graph with the target in-

stance as the root node. The neighbourhood information is

gradually aggregated to the root node in a bottom-up man-

ner, and aggregation weights are supervised by the class

relationships between the nodes. We apply MNE on im-

age search and few shot learning tasks. Extensive ablation

studies demonstrate the effectiveness of each component,

and our method significantly outperforms the state-of-the-

art approaches.

1. Introduction

Encoding the semantic information of an image into a

feature embedding is a core requirement for visual recogni-

tion. Images from the same or related classes are desired to

be mapped to nearby points on a manifold, which is criti-

cal to many applications like few-shot learning [41, 31, 37],

visual search [7, 13, 45], face/person recognition [20, 26,

43, 2] and fine-grained retrieval [19, 18]. With ideal fea-

ture embeddings, classification tasks could be reduced to

∗This work is done when Suichan Li is an intern at SenseTime.
†D. Chen and B. Liu are the co-corresponding authors.
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Figure 1: A case to explain the basic idea of the proposed method.

The red nodes and blue nodes represent the feature embeddings of

two classes respectively. The original feature embeddings may

not be able to separate the samples of different classes as the two

nodes connected by the red line. While our approach, taking the

feature and its neighbourhood graph into account, can modify the

current feature embeddings with their context structure and output

the embeddings more consistent with their labels.

the nearest neighbour problem, while retrieval tasks would

be made easier by examining the inter-image relationships.

To improve the feature embeddings with deep neural net-

works, state-of-the-art methods mainly focused on design-

ing network structures. For example, VGGNets [30] and

GoogleNet [38] suggested increasing the depth of a net-

work can improve the quality of feature embedding, while

ResNet [10] showed that adding the identity-based skip

connections can help to learn deeper and stronger networks.

At the same time, there also exists a stream of methods

which supervise the feature embeddings by imposing dif-

ferent loss functions, including the contrastive loss [8], the

triplet loss [45] and quadruplet loss [3]. Chen et al. [2] built

a graph within an image batch, forming a kind of group

loss with CRF. The main goals of these loss functions are to

reduce the intra-class variations while enlarging the inter-

class variations.

Although these efforts continuously bring better feature

embeddings, most of them estimate a feature embedding

based on a single image, and the abundant contextual in-
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formation is ignored. When the same category individuals

undergo drastic appearance changes, or visual differences

between different categories are small, it becomes very dif-

ficult for the embedding of a single image to separate the

samples of different classes. The example of such a situa-

tion is illustrated in Fig. 1a, where the feature embeddings

of the two classes can be very close to each other. Neverthe-

less, if taking the feature embedding and its neighbourhood

into account, two close feature embeddings can be classified

two different clusters, and the affinities to their neighbours

can be in turn used to modify original feature embeddings,

achieving more discriminative features as demonstrated in

Fig. 1b and Fig. 1c.

To effectively enhance a feature embedding and to take

full advantage of the identity annotations, we propose the

Memory-based Neighbourhood Embedding (MNE) to ex-

ploit abundant features and relationships among the neigh-

bours. For a conventional neural network, the batch-based

training strategy determines that a training sample can only

observe the features of images in the same batch. To ac-

quire more relevant contextual information, we augment the

network with an episodic memory, which stores the nec-

essary features and labels of many image instances, and

the memory is updated according to the newly computed

CNN features during training. For every image in the image

batch, we retrieve the neighbours from memory and orga-

nize them to be a tree graph, where the target instance cor-

responds to the root node. Based on the tree structure, we

propose an iterative aggregation strategy to gradually prop-

agate the neighbours’ information to the root node. In this

way, neighbours close to the target instance can have a more

significant influence over the embedding of target instance

than the remote ones. We also have observed that if two

nodes belong to the same class, a larger aggregation weight

between them is preferred, which can help to produce more

compact neighbourhood embeddings within each class. A

new attention module is therefore introduced to predict the

aggregation weights, and we supervise the module by the

node-wise class relationships. After iterations of feature ag-

gregation, we obtain the neighbourhood embedding of the

target instance from the root node.

The contributions of this paper could be summarized into

three-fold: (1) We exploit the neighbourhood information

for feature embedding by augmenting the episodic mem-

ory to the deep neural network. The memory can provide

more relevant neighbours and support end-to-end training.

(2) An iterative feature aggregation strategy is proposed to

summarize the information in the neighbourhood. The strat-

egy organizes the neighbourhood as a tree graph and grad-

ually propagate the relevant information to the root node.

(3) A new attention module is introduced for the feature

aggregation, which is additionally supervised by the node-

wise semantic relationships to better separate the feature

embeddings of different classes. We apply MNE on im-

age search and few shot learning tasks. Extensive ablation

studies validate the effectiveness of the three components,

and our method significantly outperforms the state-of-the-

art approaches.

2. Related Work

The proposed method aims to exploit the context for fea-

ture learning. It is related to Graph Neural Networks (GNN)

that aggregate information from graph structure, and share

some similarities with the methods in transductive few-shot

learning.

Context-based Feature Learning. Recently, researchers

started to exploit the context information with the deep

neural network to learn better feature embeddings or re-

fine inter-image similarity. Turcot et al. [39] proposed to

augment bag-of-words representations of images by merg-

ing of useful features of their neighboring images. Iscen

et al. [11] carried out the diffusion through a sparse linear

system solver on descriptors of local image regions to re-

fine ranking scores for image retrieval. Donoser et al. [5]

analyzed a number of diffusion mechanisms and derived a

generic framework for iterative diffusion processes in the

scope of retrieval applications. Although these methods try

to involve more images for feature learning, they need to

pre-compute features or can only acquire the features in one

image batch. To solve this problem, we augment the neural

network with an episodic memory module. There also ex-

ist some works that added memory modules in the network.

Sprechmann et al. [32] expanded neural network with mem-

ory and stored old training examples in memory for param-

eter adaptation. Sukhbaatar et al. [34] presented a recurrent

neural network architecture over a large external memory

to allow reading multiple times from memory before out-

putting a symbol. In our case, we retrieve neighbours from

the episodic memory module for each training image, and

aggregate the neighbourhood information to achieve more

discriminative feature embeddings.

Graph Neural Network. Graph neural network (GNN) is

a straightforward extension of CNN from regular Euclidean

data to graphs. Following the idea of representation learn-

ing, Deep Walk [21] is proposed to generate graph embed-

ding by combining SkipGram model [17] with graph ran-

dom walk. GraghSAGE [9] proposed to compute node rep-

resentations in an inductive manner. It sampled a fixed-

size neighbourhood for each node, and then performed sim-

ple feature aggregation such as mean pooling, max pooling

and LSTM. Different from GraphSAGE that estimates the

graph embedding for all the nodes, our method is only in-

terested in the target instance. Then the feature aggregation

can be efficiently operated in a tree, and the information

is gradually propagated to the root node. To improve the

feature aggregation, Petar et al.[40] proposed an attention-
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based architecture to perform node classification for graph-

structured data, where the attention weights are implicitly

learned. Compared with [40], our method fully takes ad-

vantages of annotations of images in the memory, and addi-

tionally supervises the attention weight with the node-wise

class relationships.

Transductive Few-shot Learning. Given a labelled dataset

with different classes, the objective of few-shot learning

is to train classifiers for an unseen set of new classes, for

which only a few labelled examples are available. Com-

pared with the original few-shot learning problem, trans-

ductive few-shot task feeds all test instances simultane-

ously, which allows us to utilize unlabelled test instances.

To solve the problem, TPN [15] spread labels from la-

belled instances to unlabelled ones with a neighbourhood

graph, in which the neighbourhood structure is constructed

by a Gaussian similarity function. Instead of perform-

ing label propagation, our method aims at enhancing fea-

ture embeddings of target nodes by feature aggregation.

FEAT [46] transforms the embeddings from task-agnostic

to task-specific by employing self-attention mechanism. In

particular, it directly selects related instances by the atten-

tion weights, then combined their transformed features to

obtain a new feature embedding. Instead of using linear

feature combination, we construct the tree graph with the

neighbours retrieved from the memory, then adaptively ag-

gregate the features along the tree to the root node.

3. Methodology

We aim to enhance the embedding of a single image in-

stance by inspecting the relationships among the instance

and its neighbourhood. To efficiently acquire the more rele-

vant neighbours in the feature space, we augment the neural

network with the episodic memory, which provides the nec-

essary features and labels of a large number of instances.

Given a target feature extracted from the CNN backbone,

we retrieve its neighbours from the memory and organize

them to be a tree graph. The final embedding is obtained

by an iterative attention-based aggregation strategy over the

tree. In particular, we dynamically prune the leaf nodes of

the tree and learn the attention weight by supervising the

pairwise relationships in the neighbourhood. The overall

framework is illustrated in Fig. 2.

3.1. Episodic Memory

Most of the time, the feature embedding of one im-

age can already encode its semantic information for vi-

sual recognition. Alternatively, we can also estimate an

instance’s label by examining its neighbouring features,

which is because images with very similar features usually

belong to the same or relevant classes. To allow rapid ac-

quisition of more related neighbours while preserving the

Algorithm 1 Tree-Graph Construction

Input: Target node t, Memory set M, tree depth H , neigh-

bour number K.

Output: Tree-Graph G(t)
1: G(t) = {t}, h = 0, L = {t}, where L is set of leaf

nodes.

2: while h <= H do

3: for v ∈ L do

4: N (v) = SEARCHNEIGHBORS(v,K,M)
5: G(t) = ADDNEWLEAFNODES(v,N (v),G(t))
6: end for

7: L = GETLEAFNODES(G(t))
8: h = h+ 1
9: end while

10: return G(t)

high performance and good generalization of standard deep

models, we add an episodic memory module.

In training, an episodic memory M is composed by both

data and label of the training data:

Mtrain = {(fi, yi) | i ∈ Dtrain}, (1)

where fi is the feature embedding of an instance i, and yi is

the associated class label. The number of instances stored in

the memory is flexible. Generally, more instances are pre-

ferred because they can provide more relevant neighbours.

To construct the memory for visual recognition, we first pre-

train a CNN feature extractor, then initialize the memory

with the extracted features as well as associated labels. In-

volving the memory supports the end-to-end training, it can

be used to search the neighbours over a large number of

candidates in the forward pass. As the training influences

the CNN backbone, the memory also needs to be updated.

We replace the features corresponding to the current train-

ing examples in memory by the newly computed features

from the CNN backbone.

The label information is not a necessity for model infer-

ence in the testing time. To increase the diversity of the

memory, we can augment the memory with the unlabelled

data in the validation or testing set based on the protocol of

specific applications:

Mtest = Mtrain ∪ {fi | i ∈ Dtest/val}. (2)

3.2. Embedding with Neighbourhood Tree Graph

The main purpose of our method is to obtain a more ro-

bust feature embedding for visual recognition. Instead of

extracting the feature from a single image, we “re-estimate”

the feature from its neighbourhood, which is modelled by a

tree graph. In particular, we take the target instance as the

root node, then build the tree in an iterative fashion. Each
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Figure 2: The flowchart of the proposed Memory-based Neighbourhood Embedding (MNE). The episodic memory is initialized by the

features extracted from a pre-trained CNN backbone. The blue line demonstrates the data flow in training, which includes feature extraction,

tree graph construction and aggregative neighbourhood embedding. We update the memory with the features from the CNN backbone.

Algorithm 2 Aggregative Neighbourhood Embedding

Input: Tree-Graph G(t), tree depth H .

Output: Neighbourhood embedding f
′
t of G(t).

1: G0 = G(t), h = 0
2: while h < H do

3: // branch node means a node with at least one child

4: Bh = GETBRANCHNODES(Gh)
5: for v ∈ Bh do

6: C(v) = GETCHILDNODES(v,Gh)
7: f

h+1
v = AGGREGATE(fhv , C(v))

8: end for

9: L = GETLEAFNODES(Gh)
10: Gh+1 = Gh \ L // drop leaf nodes

11: h = h+ 1
12: end while

13: f
′
t = L2NORM(fHt ) // normalization

14: return f
′
t

time, we extend all the leaf nodes by adding their K near-

est neighbours from the memory M as the new leaf nodes.

The tree graph grows until it achieves a predefined depth

H . The detailed procedure is demonstrated in Alg. 1. It is

noteworthy that we allow a same instance appear multiple

times in the tree. The frequently appeared nodes are usually

“center” instances in the neighbourhood, which will have a

high influence on the final feature embedding.

The embedding of an instance then can take advantages

of neighbourhood tree graph to exploit more abundant in-

formation. As the nodes in the graph do not have ordering

information, thus the standard neural networks like CNNs

or RNNs cannot be directly adopted. To handle the graph

input, we iteratively perform feature aggregation among

connected nodes, which gradually propagates information

within the graph to the target instance. Specifically, the h-

th feature aggregation for node u can be represented by:

f
h
u = AGGREGATE(fh−1

u , C(u)), (3)

where C(u) is the child nodes of node u and f
0
u is initial-

ized by the original feature. Intuitively, the nodes close to

the target instance should have more influence over the final

embedding. For this reason, we perform the feature aggre-

gation over a dynamic graph as demonstrated in Alg. 2.

Each time, we update the features of all the branch nodes

in the tree, then drop the leaf nodes to form a new tree. Fi-

nally, the tree remains only one node whose feature is the

neighbourhood embedding. We impose the cross entropy

loss over the neighbourhood embeddings:

LC(t) = −
I
∑

i=1

yi,t log

(

exp(w⊤
i f

′
t)

∑I
j=1 exp(w

⊤
j f

′
t)

)

, (4)

where yi,t is the index label with yi,t = 1 if the image t
belongs to the ith class and yi,t = 0 otherwise. There are I
classes in total.

3.3. Aggregation with Supervised Attention

General aggregation strategies like mean-pooling and

max-pooling cannot determine which neighbours are more

important. To adaptively aggregate the features from the

same class, which is crucial for visual recognition, we pro-

pose a network module named ASA to Aggregate features

with Supervised Attention.

The h-th aggregation of all the parents nodes in the graph

is accomplished by a same module (as in Fig. 2), denoted by

ASA-h. In the module, we introduce attention weights over

the child nodes, then aggregation is specified by:

f
h
u = W

h
A

(

f
h−1
u +

∑

v∈C(u)a
h
u,vf

h−1
v

)

+ b
h
A, (5)

where W
h
A,b

h
A are parameters for feature transformation,

and ahu,∗ are attention weights. The feature embedding of

child node fh−1
v needs to be mapped close to that of the par-

ent node fh−1
u if they are from the same class, therefore, the

attention weight ahu,v needs to be high. Different from most

approaches that implicitly learn the attention weights in the
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Figure 3: Illustration of the proposed ASA-h module. We es-

timate the current feature of a node by aggregating the previous

feature and the features of its child nodes. The attention weights

are supervised by whether two nodes belong to the same class.

network, we utilize the label information in the memory to

supervise the attention module. In particular, the attention

weight is designed to be proportional to the probability of

two nodes belonging to the same class:

ahu,v = phu,v/
∑

k∈C(u)

phu,k. (6)

The probability phu,v is estimated from the previous feature

embeddings fh−1
u and f

h−1
v by the following steps:

d
h
u,v = W

h
D(fh−1

u −f
h−1
v ) + b

h
D,

p
h
u,v = σ(Wh

S(d
h
u,v ◦ dh

u,v) + b
h
S),

(7)

where Wh
D, bh

D and W
h
S ,b

h
S are parameters of linear trans-

formations to obtain the difference feature vector and pair-

wise probability. With d
h
u,v , we first perform element-wise

square, then project the obtained vector to a scalar value,

and finally normalize the scalar value to be within (0,1) with

the sigmoid function σ. We supervise the probabilities be-

tween the parent nodes and all its child nodes:

Lh
P (u) = −

∑
v∈C(u)[yu,v log p

h
u,v + (1− yu,v) log(1− phu,v)],

(8)

where u ∈ Bh which Bh is set of branch nodes of hth tree

graph. yu,v = 1 if nodes u and v belong to the same class,

otherwise yu,v = 0. Fig. 3 shows the detailed architecture

of the proposed ASA-h module.

In total, our MNE is learned with two kinds of loss func-

tions. One is the multi-class cross-entropy loss (Eq. 4),

which is imposed over the neighbourhood embeddings, the

other is the binary cross-entropy loss (Eq. 8), which super-

vises the pairwise probabilities between nodes in each tree.

4. Implementation

The proposed Memory-based Neighbourhood Embed-

ding (MNE) is applied on two recognition tasks, i.e., image

search and transductive few-shot learning. We now intro-

duce the CNN backbone selection, the memory construction

and the training details for the two tasks accordingly.

Image Search. Following the practice in [36], we adopt

ResNet-50 [10] as the backbone network, and change the

stride of the last down sampling block from 2 to 1, which is

helpful to get more fine-grained features. We pre-train the

CNN backbone to classify all the classes in the training set,

then use the pre-trained network to extract the features of

the entire training set and use them to initialize the episodic

memory in the training phase.

In training, we augment the input images by random

horizontal flipping and random erasing [48], then employ

Adam [12] to optimize the entire model. As the CNN back-

bone has been pre-trained, the initial learning rates are 10−5

for CNN backbone and 10−4 for other parts of the model,

respectively. We decay the learning rates by 0.1 after 20

epochs, and obtain the final model after 40 epochs. In test-

ing, we utilize the CNN backbone to extract the features of

gallery images, and augment them into the memory. With

this memory, we estimate the neighbourhood embeddings

for all the query and gallery images, and utilize the embed-

dings to perform the image search.

Transductive Few-shot Learning. For a fair comparison

with the existing methods, we employ a widely-used four-

layer convolution network [6, 31] as the backbone. It con-

tains 4 blocks. Each block has a convolutional layer with

kernel size 3, a batch normalization layer, a relu activation

layer, and a max pooling layer. We pre-train the backbone

network with the cross-entropy loss over the training set.

The training follows the episodic strategy. We mimic the

N-way M-shot tasks in each training batch in order to han-

dle the N-way M-shot tasks in testing. The memory con-

tains the feature embeddings for all the training and test-

ing images in the current episode. E.g., consider a typical

1-shot 5-way task with 15 testing instances per-class, the

memory will have 80 (5+5x15) images. With a pre-trained

CNN-backbone [46], we still employ Adam for optimiza-

tion, where the initial learning rates for CNN backbone and

other parts are 10−4 and 10−3. The learning rate is decayed

by 0.1 every 5000 episodes and the training is stopped after

30000 episodes. In testing, we first estimate the neighbour-

hood embeddings for each image in the memory, then as-

sign labels to the testing images according to their affinities

to the training images.

5. Experiments

We evaluate the proposed method on four datasets. Ab-

lation studies are mainly conducted on CUHK03 [13] and

miniImageNet [41], which are about person search and few-

shot learning, respectively. Besides, we report more results

on DukeMTMC [24] and tieredImageNet [23] to compare

with the current state-of-the-art methods.
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Baseline w/o update MNE
Methods(a) (b) Sample ratio

Figure 4: Investigation of the episodic memory. We evaluate (a)

the effectiveness of memory update strategy; (b) the influence of

memory size in terms of mAP and rank-1 accuracies.

（a） （b）

Figure 5: Influnence of nearest neighbour number K. We report

the mAP and rank-1 accuracy on CUHK03, and report the 1-shot

and 5-shot classification accuracies on miniImagenet.

5.1. Experimental Setup

Datasets. CUHK03 and DukeMTMC are two large-scale

person search benchmarks. CUHK03 contains 14,096 im-

ages of 1,467 identities. Each identity is captured from two

cameras and has an average of 4.8 images in each camera.

We follow the training/testing protocol proposed in [47],

which splits the dataset into a training set with 767 iden-

tities and a testing set with 700 identities. DukeMTMC is

a subset of the multi-target, multi-camera pedestrian track-

ing dataset [24]. It contains 1,812 identities captured by 8

cameras. There are 36,411 images in total, where 16,522

images of 702 identities are used for training, 2,228 im-

ages of another 702 identities are used as query images, and

the remaining 17,661 images are gallery images. For few-

shot learning, miniImageNet [41] and tieredImageNet [23]

are two widely-used benchmarks. miniImageNet has 60,

000 images of 100 classes selected from the ILSVRC-12

dataset [25], and each class has 600 images. Following the

protocol in [22], we use 64 classes for training, 16 classes

for validation, and 20 classes for testing. tieredImageNet

[23] is also a subset of ImageNet, but it has 608 classes

much larger than that in miniImageNet. All the classes are

summarized into 34 categories, which are further divided

into 20 training (351 classes), 6 validation (97 classes) and

8 test (160 classes) categories. Such strategy ensures that

the training classes are distinct from the test classes. It is a

more challenging and realistic few-shot setting.

Evaluation Metric. The cumulated matching accuracy at

Search depth
CUHK03 miniImageNet

mAP rank1 1-shot 5-shot

0 (baseline) 62.8 65.7 50.41 70.52

1 75.7 75.5 59.68 71.71

2 77.7 77.4 60.20 72.16

3 76.9 76.2 59.83 71.12

Table 1: The influence of search depth H . We fix K =12 for

CUHK03 and K =10 for miniImageNet. The 95% confidence

interval was omitted for simplicity.

(a) embeddings of the baseline (b) embeddings of  our MNE

Figure 6: t-SNE visualization of feature embeddings. Each point

indicates a testing image from randomly selected 30 identities of

DukeMTMC. Different identities may share the same color.

rank-1 and the mean average precision (mAP) are adopted

for image search. We evaluate 1-shot 5-way and 5-shot 5-

way classification tasks with 10,000 sampled test episodes

for few-shot learning, and report the mean accuracy and the

95% confidence interval.

5.2. Ablation Studies

We investigate the main components of the proposed

MNE, including the episodic memory, tree graph embed-

ding and supervised attention.

5.2.1 Memory

Incorporating the episodic memory for feature embeddings

is a characteristic of our method and the prerequisite to per-

form the neighbourhood embedding. We investigate the in-

fluence of the memory size and the memory update strategy

on the CUHK03 dataset, which can provide memory with

flexible size in both training and testing.

Memory Update. As the CNN backbone changes in the

training, the memory update is an important step to ob-

tain the updated features for neighbourhood embedding.

We compare three variants, the baseline, the MNE without

memory updating and the proposed MNE. Among them, the

baseline method indicates directly extracting features from

the CNN backbone. The results in Fig. 4a shows that the

MNE without memory update has already significantly im-

proved the baseline, and updating the memory can bring ad-

ditional gain. It improves the rank-1 accuracy from 72.9%

6107



(a) mAP on CUHK03 (b) Rank-1 Acc. on CUHK03 (c) 1-shot Acc. on miniImageNet (d) 5-shot Acc. on miniImageNet

Figure 7: The effectiveness of attention aggregation on CUHK03 for image search and miniImageNet for transductive few-shot learning.

to 77.3% and the mAP from 74.6% to 77.7%.

Memory Size. In testing, we sample different number of

gallery images to construct the memory. The Fig. 4b reports

the performance varying with the sampling ratios. It can

be seen that larger sampling ratio, i.e., more instances in

the memory leads to better performance, which verifies the

assumption that larger memory can provide more relevant

neighbours to improve the neighbourhood embeddings.

5.2.2 Tree Graph Neighbourhood Embedding

We propose tree-graph based embedding network to exploit

the context information in the feature space, aiming to en-

hance the original CNN features. As the tree graph structure

is important to the embedding, we first study how tree struc-

ture can influence the performance, then compare the ob-

tained neighbourhood embeddings with the CNN features.

Tree Construction. We study the number of neighbours K
and the tree depth H in tree construction. To build the tree

graph, we extend the leaf nodes by adding their K nearest

neighbours from the memory. We observe how the perfor-

mance varies with K on CUHK03 and miniImagenet when

H = 2. The results in Fig. 5 show that too large and too

small K will lead inferior results. This is because too small

K will not get sufficient neighbours while too large K will

introduce unrelated neighbours which may weaken the ef-

fectiveness of feature aggregation. We also observe how H
influence the performance by fixing K = 12 in Tab. 1. Best

results are achieved when H = 2, and deeper tree graph

will not bring additional gain. As the search depth increase,

more unrelated samples may be introduced, which possibly

impairs the feature embeddings of the target samples.

Neighbourhood Embedding v.s. Backbone Feature. The

performance gap between the two kinds of features embed-

dings can be reflected in Tab. 1, where our method can out-

perform the baseline by a large margin on both image search

and few-shot learning tasks. The 1-shot scenario can ben-

efit more from the neighbourhood embedding than the 5-

shot scenario, which is consistent with the results in [15].

With the shot increase, more labelled images are available

in the testing phase, thus the effectiveness of neighbourhood

embedding, i.e., exploiting the unlabelled context, will be

Dataset K metric with BCE w/o BCE

CUHK03 8
mAP 76.8 76.0

rank1 75.6 75.0

CUHK03 12
mAP 77.7 73.0

rank1 77.4 72.5

miniImageNet 8
1-shot 59.92 58.51

5-shot 71.76 71.40

miniImageNet 12
1-shot 60.04 59.32

5-shot 71.62 71.54

Table 2: Effectiveness of BCE loss of attention on CUHK03 and

miniImageNet.

weaken. In addition, we employ t-SNE to visualize the

feature embeddings of the same 30 testing persons from

DukeMTMC by CNN backbone and neighbourhood em-

bedding in Fig. 6, which clearly shows that incorporating

neighbourhood embedding can generate more discrimina-

tive feature embeddings.

5.2.3 Supervised Attention

Effectiveness of the Attentive Aggregation. We com-

pare the proposed attentive aggregation with the mean/max

feature pooling methods, which are most straightforward

strategies to summarize features. Results on CUHK03 and

miniImageNet are displayed in Fig. 7, where the attentive

aggregation outperforms the mean/max aggregation on both

tasks. With the increase of K, the results of mean/max ag-

gregation become worse while our method is stable.

Effectiveness of the Attention Supervision. We impose

the BCE loss (Eq. 8) within the ASA module, in order to

make the attention weight can reflect whether two images

belong to a same class. The results in Tab. 2 show that im-

posing BCE can generally achieve superior performance.

5.3. Comparison with Stateoftheart Approaches

Image Search. We report the comparison results between

our method and the state-of-the-art approaches in Tab. 3

and Tab. 4 for DukeMTMC and CUHK03, and our method

significantly outperforms the others without any additional

post-processing. Our method achieves 87.5% and 77.7%
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Method Ref mAP rank1

HA-CNN [14] CVPR’18 63.8 80.5

MLFN [1] CVPR’18 62.8 81.0

DuATM [29] CVPR’18 64.6 81.8

PCB [36] ECCV’18 69.2 83.3

Part-aligned [33] ECCV’18 69.3 84.4

Mancs [42] ECCV’18 71.8 84.9

GSRW [27] CVPR’18 66.4 80.7

SGGNN [28] ECCV’18 68.2 81.1

Spectral [16] Arxiv’18 73.2 86.9

Spectral+post [16] Arxiv’18 79.6 90.0

Proposed MNE 87.5 90.4

Table 3: Experimental results of the proposed MNE and state-of-

the-art methods on the DukeMTMC dataset.

Method Ref mAP rank1

SVDNet [35] ICCV’17 37.8 40.9

DPFL [4] ICCV’17 40.5 43.0

HA-CNN [14] CVPR’18 41.0 44.4

MLFN [1] CVPR’18 49.2 54.7

DaRe [44] CVPR’18 61.6 66.1

SFT [16] Arxiv’18 62.4 68.2

SFT+post [16] Arxiv’18 71.7 74.3

Proposed MNE 77.7 77.4

Table 4: Experimental results of the proposed MNE and state-of-

the-art methods on the CUHK03 dataset.

mAP on DukeMTMC and CUHK03, which improve the

competitive Spectral+post[16] by 7.9% and 6.0%, respec-

tively. Spectral+post and our method both exploit context

information in testing, but there are two main differences.

(1) Spectral+post refines the features by using top-n gallery

items of ranking list, while our method augments a mem-

ory in the network. (2) Post processing in spectral+post is

a non-parametric operation, and our method is a parametric

model and can be trained in an end-to-end fashion.

Few-shot Learning. We compare our method and state-

of-the-arts on miniImageNet and tieredImageNet, and the

results are reported in Tab.3 and Tab.4 in terms of mean

accuracy with 95% confidence interval. It can be seen

that the transductive few-shot learning methods outper-

form most of original few-shot learning methods, since

transductive few-shot methods are allowed to explore un-

labelled test samples in the test stage. Meanwhile, our ap-

proach significantly outperforms the compared methods, es-

pecially in the one-shot scenario. It achieves 60.20 ±0.23%

and 60.04±0.28% 1-shot accuracies on miniImageNet and

tiredImageNet, respectively. Notably, the 5-shot accuracy

of FEAT[15] is 0.49% better than ours in transductive set-

ting on miniImageNet. One possible reason is that Feat em-

ploys self-attention mechanism to select related instances

to enhance the feature embeddings, which is similar to our

attention-based aggregation.

Method Ref 1-shot 5-shot

MAML [6] ICML’17 48.70±1.84 63.11±0.92

ProteNet [31] NIPS’17 46.14±0.77 65.77±0.70

RelationNet [37] CVPR’18 51.38±0.82 67.07±0.69

Feat [46] Arxiv’18 55.21±0.20 72.17±0.16

Semi-ProtoNet [23] ICLR’18 50.41±0.31 64.59±0.28

TPN [15] ICLR’19 53.75±0.86 69.43±0.67

TPN+higher shot [15] ICLR’19 55.51±0.86 69.86±0.65

FEAT+transductive [46] Arxiv’18 56.49±0.21 72.65±0.16

Proposed MNE 60.20±0.23 72.16±0.17

Table 5: Experimental results of the proposed MNE and state-of-

the-art methods on miniImageNet. The results of original few-shot

learning and transductive few-shot learning methods are separated.

Method Ref 1-shot 5-shot

MAML [6] ICML’17 51.67±1.81 70.30±1.75

ProteNet [31] NIPS’17 48.58±0.87 69.57±0.75

RelationNet [37] CVPR’18 54.48±0.93 71.31±0.78

Semi-ProtoNet [23] ICLR’18 52.39±0.44 70.25±0.31

TPN [15] ICLR’19 57.53±0.96 72.85±0.74

TPN+higher shot [15] ICLR’19 59.91±0.94 73.30±0.75

Proposed MNE 60.04±0.28 73.63±0.21

Table 6: Experimental results of the proposed MNE and state-of-

the-art methods on tiredImageNet. The results of original few-shot

learning and transductive few-shot learning methods are separated.

6. Conclusion

In this work, we have proposed a novel Memory-based

Neighbourhood Embedding (MNE) approach. It enhances

the feature embeddings of a single image instance by ex-

ploiting the information and relationships in the instance’s

neighbourhood. Our approach augments the network with

an episodic memory, which can provide the features of more

relevant neighbours in training and testing. The neighbours

are organized as a tree, and their features are gradually ag-

gregated to the target instance in a bottom-up manner. Be-

sides, the feature aggregation is based on a supervised at-

tention strategy. We carefully verified the effectiveness of

various components in MNE on image search and few-shot

learning tasks, and our method can achieve the state-of-the-

art performances on both tasks.
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