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Abstract

In this paper, we propose a Neighborhood Preserving

Hashing (NPH) method for scalable video retrieval in an

unsupervised manner. Unlike most existing deep video

hashing methods which indiscriminately compress an en-

tire video into a binary code, we embed the spatial-temporal

neighborhood information into the encoding network such

that the neighborhood-relevant visual content of a video can

be preferentially encoded into a binary code under the guid-

ance of the neighborhood information. Specifically, we pro-

pose a neighborhood attention mechanism which focuses

on partial useful content of each input frame conditioned

on the neighborhood information. We then integrate the

neighborhood attention mechanism into an RNN-based re-

construction scheme to encourage the binary codes to cap-

ture the spatial-temporal structure in a video which is con-

sistent with that in the neighborhood. As a consequence, the

learned hashing functions can map similar videos to similar

binary codes. Extensive experiments on three widely-used

benchmark datasets validate the effectiveness of our pro-

posed approach.

1. Introduction

Scalable video retrieval seeks similar videos from a large

database given a query video. Usually, videos are repre-

sented by sampled frames and each frame is characterized

by a representative feature. The set of frame features are

utilized to identify relevant videos or nearest neighbors.

In the face of high dimensional features and large scale

datasets, hashing methods have attracted a lot of attention

in scalable visual retrieval [1–10]. Video hashing meth-

ods encode frame features of each video into a compact

binary code while enabling the similarity between videos
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Figure 1: The basic idea of neighborhood preserving hash-

ing. The spatial-temporal neighborhood information is em-

bedded into the encoding network to guide the encoder to

preferentially compress relevant visual content of the video

into a binary code.

to be preserved in the Hamming space [11–22]. Among

them, learning-based video hashing methods which learn

data-dependent and task-specific hashing functions have

achieved good search accuracy [23–25].

Over the past decade, hashing functions have been in-

tegrated into various deep learning architectures to ob-

tain promising performance. Typically, deep video hash-

ing methods compress an entire video into a binary code

via deep neural networks and apply similarity preserving

criteria on top of the hash layer to learn hashing func-

tions [13, 18–20]. However, since videos contain com-

plex, redundant and sometimes ambiguous content for near-

est neighbor search, indiscriminately extracting entire con-

tent from a video will inevitably lead to suboptimal hash-

ing functions [26]. On the other hand, manual labels are

time and labor consuming especially for large-scale video

dataset, which makes supervised hashing methods less fea-

sible for scalable video retrieval.
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In this work, we propose a Neighborhood Preserving

Hashing (NPH) method for scalable video retrieval in an

unsupervised manner. As shown in Figure 1, we embed

the spatial-temporal neighborhood information of each in-

put video into the NPH encoding network, such that the en-

coder learns to compress neighborhood-relevant content of

the video into a binary code under the guidance of neigh-

borhood information. Specifically, we develop a neigh-

borhood attention mechanism which concentrates on par-

tial useful content in each input frame instead of treating

the entire input equally, guided by the neighborhood in-

formation. Moreover, we integrate the neighborhood atten-

tion mechanism into an RNN-based reconstruction scheme

such that the binary codes are encouraged to capture the

neighborhood-relevant spatial-temporal structure in a video.

Experiments on three widely-used video datasets demon-

strate the superior performance of NPH over state-of-the-art

methods and also validate the effectiveness of our proposed

neighborhood attention mechanism.

2. Related Work

In general, learning-based video hashing methods

are classified into supervised methods and unsupervised

ones [24, 25].

Supervised learning paradigms are proposed to learn se-

mantically relevant hashing functions by using manually la-

beled data [11, 13, 15, 27]. For instance, Ye et al. [11] pro-

posed Video Hashing with both Discriminative commonal-

ity and Temporal consistency (VHDT) to exploit the con-

sistency among successive frames. Liong et al. [13] pro-

posed Deep Video Hashing (DVH) which minimized the

intra-class variation and maximized the inter-class variation

of binary codes to make them discriminative. Yu et al. [27]

defined a novel metric to select keyframes and applied pair-

wise constraints to capture the local properties of the events

at the semantic level. Their selection rule is hand-crafted

and in frame-level, thus is different from ours. In gen-

eral, supervised methods have achieved overall better per-

formance than unsupervised ones, however, the time and

labor consuming labeling requirement makes them imprac-

tical for scalable video retrieval.

Unsupervised video hashing methods integrate data

properties to learn hashing functions such that the simi-

larity structure between videos is preserved in the Ham-

ming space [12, 16–19, 28]. Early works such as Multiple

Feature Hashing (MFH) [12] extended image hashing tech-

niques to video hashing while they ignored to exploit the

temporal structure. In recent years, RNNs, which are fa-

mous for capturing long-term dependences in a sequence,

have been widely used to capture temporal structure in a

video [16–18]. Among them, Zhang et al. [16] proposed

Self-Supervised Temporal Hashing (SSTH) based on a bi-

nary autoencoder, which was regarded as the pioneering

work in deep unsupervised video hashing. Li. et al. [17]

extended SSTH by further exploiting the appearance struc-

ture. However, both of them neglect to exploit the neigh-

borhood structure. Song et al. [18] attempted to remedy

this disadvantage by designing a neighborhood similarity

loss on top of the hash layer. Wu et al. [19] proposed Un-

supervised Deep Video Hashing (UDVH) which attempted

to balance the variation of each dimension when binarizing

video features. They then extended UDVH [28] by replac-

ing the baseline model LSTM [29, 30] with Temporal Seg-

ment Networks (TSNs) [31]. Whereas all these methods in-

discriminately extract entire content from the video without

discriminating whether it is relevant to that in the neighbor-

hood, which unavoidably results in suboptimal hash codes.

3. Approach

3.1. Neighborhood Preserving Encoding

Let X = {xi}Ni=1 denote a set of N videos. For each

video, we uniformly sample M frames and process each

of them with a conventional Convolution Neural Network

(CNN) to gain a set of frame features {vm
i }Mm=1 ∈ R

M×l.

vm
i denotes the m-th frame feature of the i-th video in

R
l. We aim to learn a nonlinear mapping to transfer frame

features {vm
i }Mm=1 to a k-bit binary code bi ∈ {−1, 1}k

such that the similarity structure between videos is well pre-

served in the Hamming space.

Unlike most existing deep video hashing methods which

indiscriminately extract entire content from the video, we

preferentially encode the neighborhood-relevant content of

the video into a binary code, guided by the neighborhood in-

formation. Specifically, we embed spatial-temporal neigh-

borhood information into the encoding network via a pro-

posed neighborhood attention mechanism. Since the neigh-

borhood information of similar videos tends to be similar, it

can guide to project similar videos to similar binary codes.

The encoder first maps input frame features {vm
i }Mm=1 to a

neighborhood preserving video representation ti under the

guidance of the spatial-temporal neighborhood information:

ti = E({vm
i }Mm=1,ni, θ). (1)

where ni is the spatial-temporal neighborhood representa-

tion in R
b, θ is the learnable parameter set of the encoding

network, and E is a nonlinear projection. Then it discretizes

ti into the neighborhood preserving binary code bi:

bi = sgn(ti), (2)

where sgn(x) = 1 if x ≥ 0 and sgn(x) = −1 otherwise.

Neighborhood attention mechanism: The neighbor-

hood attention mechanism is to preferentially incorpo-

rate content of an input frame conditioned on the spatial-

temporal neighborhood information, which is inspired by
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relational recurrent neural networks (rRNN) [32]. The core

of rRNN is a memory state which updates by attending over

the former memory state and the new input. At time-step t,

a new input frame feature vt
i is encoded into the memory

state mi,t as below:

mi,t = softmax

(

mi,t−1W
q([mi,t−1;v

t
i ]W

k)T√
dk

)

× [mi,t−1;v
t
i ]W

v,

(3)

where mi,t is in R
b and mi,0 is a random initialized vector.

dk is a scaling factor. [x1;x2] means the row-wise concate-

nation of x1 and x2. W x denotes a learnable parameter

matrix. (3) is an extension of self-attention where [mi,t;v
t
i ]

is used to calculate the key and value, and mi,t is used to

calculate the query [33]. It forms the attention over the

memory state and the new input. This mechanism is able

to learn to determine which content in input frame should

be preferentially written into the memory state conditioned

on what is contained in the memory state.

While rRNN is capable to exploit the spatial-temporal

structure in a video, merely referring to the inherent con-

tent in a video will make the learned hashing functions

less effective for scalable retrieval. In order to exploit

the neighborhood-relevant spatial-temporal structure, we

formulate neighborhood attention mechanism via embed-

ding the spatial-temporal neighborhood information into the

memory state. We assume that for each input video xi,

a representation ni has been well developed to carry the

neighborhood information. We integrate ni into the mem-

ory state such that the spatial-temporal neighborhood infor-

mation guides to concentrate attention on relevant content

in the input frame. Among a variety of ways to incorporate

ni into the memory state, we choose to inject it only at the

first time-step in case of diluting the content from the input

video as below:

mi,1 = softmax

(

niW
q([ni;v

1
i ]W

k)T√
dk

)

[ni;v
1
i ]W

v.

(4)

When t > 1, the memory state mi,t updates with (3). Since

the neighborhood information has been embedded into the

memory state, at each time-step, it will interact with the new

input frame and guide to incorporate neighborhood-relevant

content into the memory state.

We integrate the neighborhood attention mechanism into

a standard LSTM network to form the neighborhood pre-

serving encoding network. We design the gates and cell

updates as follows:

ii,t = σ(W ivvt
i +W ihhi,t−1) (5)

fi,t = σ(W fvvt
i +W fhhi,t−1) (6)

oi,t = σ(W ovvt
i +W ohhi,t−1) (7)

ci,t = BN(fi,t ⊙ ci,t−1 + it ⊙ MLP(mi,t)) (8)

hi,t = oi,t ⊙ tanh(ci,t), (9)

where MLP denotes multiple layers perceptron and BN

denotes batch normalization. σ denotes sigmoid function:

σ(x) = 1
1+e−x . tanh denotes hyperbolic tangent function:

tanh(x) = sinh(x)
cosh(x) = ex−e−x

ex+e−x . It is worth to notice that the

term mi,t takes place of the input vector vt
i in a standard

LSTM. During the encoding period, the neighborhood at-

tention mechanism is considered to suppress the irrelevant

or even misleading content in the input frame. We map the

hidden state vector of the last time-step hi,M to the video

representation ti via a fully connected (FC) layer:

ti = FC(hi,M , k), (10)

where FC(x, y) denotes a linear function that maps the vec-

tor x to a vector in R
y . In this way, the neighborhood pre-

serving encoder can learn to capture useful spatial-temporal

structure in the video conditioned on the neighborhood in-

formation, thus better preserve the neighborhood structure.

Neighborhood representation calculation: The neigh-

borhood representation ni contains the spatial-temporal

neighborhood information of the i-th video. We formulate

it as an integration of the spatial-temporal representations

of nearest neighbors of the input video.

For each video xi in the database, we employ an LSTM

autoencoder [34] to acquire a spatial-temporal feature yi in

R
d from the last hidden state of the LSTM encoder. We

use {yi}Ni=1 to denote the spatial-temporal feature set of

training videos. Then we perform K-means clustering on

{yi}Ni=1 to obtain n centers {u∗

j}nj=1 in R
n×d. We consider

{u∗

j}nj=1 to be an anchor set. We treat the construction of

{u∗

j}nj=1 as a preprocessing step, thus we will not spend

extra time on this step for future training and evaluation.

Moreover, we set n ≪ N , thus the anchor set does not re-

quire much storage space.

For the i-th input video, we retrieve a nearest an-

chors by ranking the distances between yi and all the

anchors in {u∗

j}nj=1. We employ l2 norm for the dis-

tance calculation. We set a ≪ n ≪ N , thus calculat-

ing a nearest anchors requires little extra time. We use

u∗

i1,u
∗

i2, ...,u
∗

ia(i1, i2, ..., ia ∈ {1, 2, ..., n}) to denote the

a nearest anchors for the i-th input video and concatenate

them in a row-wise fashion. We then project the concate-

nation via an FC layer to obtain the spatial-temporal neigh-

borhood representation ni as follows:

ni = FC([u∗

i1;u
∗

i2; ..;u
∗

ia], b). (11)

3.2. Neighborhood Preserving Learning

Inspired by the success of reconstruction in hashing

function learning [16–18,35,36], we develop an RNN-based

reconstruction scheme as illustrated in Figure 2. Unlike

most existing methods which only reconstruct the input fea-

tures, we design several reconstruction principles and cor-
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Figure 2: RNN-based reconstruction pipeline. Green area denotes the encoding period. Triangle denotes the neighborhood

attention mechanism. Binarization, neighborhood representation calculation, and frame feature extraction are omitted.

responding losses to learn neighborhood preserving hash-

ing functions. 1) We reconstruct the neighborhood struc-

ture from the binary codes to ensure that the neighborhood

structure is preserved in the Hamming space. Accordingly,

we design a neighborhood similarity loss Ls to describe the

discrepancy between the neighborhood structure in spatial-

temporal feature space and that in the Hamming space. 2)

To ensure the binary code to contain visual content in the

video, we design an RNN decoder to reconstruct the frame

features. We use visual content reconstruction loss Lvr to

describe the discrepancy between input frame features and

reconstructed ones. 3) The neighborhood information is ex-

pected to provide the guide in the entire encoding stage,

thus it should be contained in the last memory state mi,M .

Therefore, we reconstruct the spatial-temporal neighbor-

hood representation from mi,M . We design a neighborhood

information reconstruction loss Lnr to denote the discrep-

ancy between the spatial-temporal neighborhood represen-

tation and the reconstructed one. In summary, we design

the training loss L as the combination of these three losses:

L = α1Ls + α2Lvr + α3Lnr, (12)

where α1, α2, and α3 are hyper-parameters that balance

these three losses.

Neighborhood similarity loss. To calculate the neigh-

borhood similarity loss Ls, we need to model the neigh-

borhood structure in the spatial-temporal feature space in

advance. Instead of building a kNN graph as [18] did,

we choose to build an approximate neighborhood graph S

based on a small anchor set for the sake of computation ef-

ficiency. Each entry of it Sij ∈ {−1, 1} denotes the simi-

larity between spatial-temporal features of the i-th and the

j-th training video, with i and j ∈ {1, 2, ..., N}. As de-

scribed in subsection 3.1, firstly we build a spatial-temporal

feature set {yi}Ni=1 and an anchor set {u∗

i }ni=1. Then for

each spatial-temporal feature yi, we calculate its a nearest

anchors u∗

i1,u
∗

i2, ...,u
∗

ia. With these variables, we can ob-

tain a truncated similarity matrix Y ∈ R
N×n. Each entry

of it is calculated as:

Yij =







exp(−Dist(yi,u
∗

j )/t)
∑

a

j′=1
exp

(

−Dist(yi,u∗

i,j′
)/t

) , ∀j ∈ 〈i〉

0, otherwise

(13)

where 〈i〉 denotes the indices of a nearest anchors of yi.

Dist() is a distance calculation function and we use l2
norm. t is a bandwidth parameter. According to [37, 38],

an approximate adjacency matrix A is calculated as:

A = Y Λ
−1Y T , (14)

where Λ = diag(Y T
1) ∈ R

n×n. The approximate adja-

cency matrix A is a nonnegative and sparse matrix, where

entries of each row or column sum to 1. We set Sij = 1
if the (i, j)-th entry of the approximate adjacency matrix

Aij > 0 and Sij = −1 otherwise. We treat the construction

of S as a preprocessing step for computation efficiency.

We define the similarity between two binary codes bi and

bj as S̃i,j = 1
kb

T
i bj . For steady training, we substitute S̃i,j

with an approximate one Ŝi,j : Ŝij = 1
k t

T
i tj , where ti is

the k-D neighborhood preserving representation introduced

in subsection 3.1. We use Mean Square Error (MSE) to

formulate the discrepancy between the neighborhood struc-

ture in spatial-temporal feature space and that in the Ham-

ming space. In addition, we introduce an auxiliary MSE

term with regard to bi and ti to minimize the discrepancy

between S̃ij and Ŝi,j . Thus we have the specific form of

neighborhood similarity loss Ls for (12):

Ls =
1

N2

N
∑

i=1

N
∑

j=1

(Sij −
1

k
tTi tj)

2 +
1

kN

N
∑

i=1

||bi − ti||22.

(15)

Visual content reconstruction loss: To ensure that the

binary code captures the visual content in the video, we em-

ploy an LSTM decoder to reconstruct the frame features
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from the binary code, and minimize the discrepancy be-

tween input frame features {vm
i }Mm=1 and the reconstructed

ones {ṽm
i }Mm=1. In detail, we project the binary code bi to

a real-value vector ṽ0
i ∈ R

l. At the first time-step, we input

ṽ0
i into the decoder and obtain the first reconstructed frame

feature ṽ1
i ∈ R

l from the output of the decoder. Then we

inject ṽ1
i into the decoder to obtain ṽ2

i . We conduct similar

operations recurrently till ṽM
i is yielded. We formulate the

visual content reconstruction loss Lvr with MSE as:

Lvr =
1

lMN

N
∑

i=1

M
∑

m=1

||vm
i − ṽm

i ||22. (16)

Neighborhood information reconstruction loss: We

linearly project the last memory state of the encoder mi,M

into a b-D vector ñi via an FC layer: ñi = FC(mi,M , b).
Then we minimize the discrepancy between ni and the re-

constructed one ñi. We formulate the neighborhood infor-

mation reconstruction loss Lr with MSE:

Lnr =
1

Nb

N
∑

i=1

||ni − ñi||22. (17)

4. Experimental Results

4.1. Datasets and Experimental Settings

We conducted experiments on three benchmark datasets:

FCVID [39], YFCC [40] and ActivityNet [41]. FCVID

contains 91,223 web videos annotated manually into 239

categories. The total duration of all videos is 4,232 hours

and the average duration per video is 167 seconds. Due to

the damaged data and category overlap, we collected 91,185

videos of them. Following the setting in [16], we used

45,585 videos for training and 45,600 videos as queries and

retrieval database. YFCC is a huge collection of multime-

dia data which contains 0.8M videos. We collected 700,882

videos of them where 409,788 unlabeled data were used for

unsupervised learning. Among the 101,256 labeled data, we

randomly chose 1000 videos as queries and the rest as re-

trieval database. ActivityNet comprises 20K videos in 200

activity categories collected from YouTube. The lengths

of the videos range from several minutes to half an hour.

The total length of the whole dataset is 648 hours. We used

9,722 videos for training. Since the test split was not pub-

licly available, we used the validation set as our test set. We

randomly sampled 1000 videos from the validation set as

queries and used the remaining 3,760 validation videos as

the retrieval database.

We employed Average Precision at top-K retrieved

videos (AP@K) for retrieval performance evaluation [42].

AP@K is defined as AP@K = 1

min(R,K)
∑

K
i=1

Ri
i
×Ii

, (1 ≤
i ≤ K). R is the number of total relevant videos in the

database. Ri is the number of relevant videos in the top-i

retrieved results. Ii = 1 if the i-th retrieved video is con-

sidered to belong to the same category with the query and

Ii = 0 otherwise. We defined two samples to be in the same

category as long as they shared at least one similar label. We

used the mean of AP@K over all the queries (mAP@K) as

the main evaluation metric. We used Precision-Recall (PR)

curve as an auxiliary evaluation measurement for detailed

observation of the retrieval performances. To sort the re-

sults, we ranked videos based on Hamming distances from

the query video. We chose to evaluate the performances

over binary codes with lengths of 8, 16, 32 and 64 bits.

We uniformly sampled 25 frames from each video and

used the 16 layers VGG network [43] pre-trained on Ima-

geNet [44] to extract 4096-D frame features. We set both

the dimension of the memory state b and the dimension of

anchors d as 256. We only used the training videos to obtain

the anchor set in subsection 3.1, thus there was no overlap

between the anchor set and query/retrieval set. This was

to ensure that the encoder attended to the neighborhood-

relevant content of the video instead of simply remember-

ing the video ids. We conducted 10 iterations for K-means

clustering to obtain an anchor set with 2000 anchors. We

set the number of acquired nearest anchors a and the scal-

ing factor dk as 3 and 256. We empirically set the hyper-

parameters α1, α2 and α3 as 0.1, 0.8, and 0.1 respectively

to balance those three losses. We applied Drop-Out [45]

to avoid overfitting. We initialized parameters of the net-

work with Xavier initialization [46]. We set the learning

rate, the momentum and mini-batch size as 0.001, 0.9, and

128 respectively. We trained our model with Adam opti-

mization algorithm [47] and stopped training at the 100th

epoch. Since the derivative of sgn() in (2) was 0 almost

everywhere, we referred to BinaryNet [48] to handle the ill-

posed gradient problem. We conducted all the experiments

with Pytorch on single Geforce GTX 1080 Ti GPU.

4.2. Results and Analysis

Comparisons with state-of-the-arts: We compared

NPH with the following state-of-the-art unsupervised hash-

ing methods to validate the effectiveness: ITQ [1], DH [2],

MFH [12], SSTH [16], JTAE [17] and SSVH [18]. Since

ITQ and DH were originally designed for image hashing,

we extended them to video hashing as [18] did. The exper-

imental settings for all the methods were the same.

The mAP@K results on FCVID are shown in Fig-

ure 3(a)-(d). As can be seen, NPH outperforms MFH, ITQ,

DH, SSTH and JTAE by a great margin. Among these

methods, ITQ, DH and MFH, which learn the video rep-

resentation and hashing functions separately, have gener-

ally poorer performances than the other compared methods

which simultaneously learn the video representation and

hashing functions. While SSTH exploits a more delicate

stacked BLSTM encoder-decoder structure, NPH outper-
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(a) FCVID 8 bits (b) FCVID 16 bits (c) FCVID 32 bits (d) FCVID 64 bits

(e) YFCC 8 bits (f) YFCC 16 bits (g) YFCC 32 bits (h) YFCC 64 bits

(i) ActivityNet 8 bits (j) ActivityNet 16 bits (k) ActivityNet 32 bits (l) ActivityNet 64 bits

Figure 3: Retrieval performances among all hashing methods in terms of mAP@K over three datasets.

forms it by a large margin with all the code lengths. Be-

sides, while JTAE endeavors to further exploit the appear-

ance structure, NPH outperforms it remarkably. We owe

the great advantage of NPH over these two methods to the

full use of neighborhood structure. Compared to the most

competitive SSVH, NPH consistently shows the superiority.

Specifically, NPH outperforms SSVH by around 70% with

code length of 16 bits in terms of mAP. Since SSVH also ap-

plies a neighborhood similarity loss on top of the hash layer,

we owe the superior performance of NPH over SSVH to the

neighborhood attention mechanism. It should be noticed

that SSVH is built on a hierarchical LSTM structure [49],

while NPH is built on a single layer LSTM structure. Since

the neighborhood attention mechanism is orthogonal to del-

icate structures such as hierarchical LSTM, the performance

of NPH will be further boosted when more powerful base-

line model is employed.

The mAP@K results on YFCC are shown in Figure 3(e)-

(h). As can be seen, NPH consistently outperforms the other

methods with all code lengths, which validates the effective-

ness of it. SSVH is a strong competitor at the code length

of 32 and 64 bits. The performance gap between NPH and

SSVH becomes marginal compared to that of FCVID. One

possible reason is that the scale of YFCC is much larger

than that of FCVID but we keep the scale of anchor set the

same. A larger anchor set can make the advantage of NPH

more prominent on YFCC.

The mAP@K results on ActivityNet are shown in Fig-

ure 3(i)-(l). The results of all the methods on ActivityNet

are not as good as those on the other two datasets. This

may be because many of the videos in this dataset are shot

by amateurs in uncontrolled environments, which makes re-

trieval more difficult. In addition, the scale of the retrieval

database is rather small, thus some queries do not have

enough true neighbors. Nevertheless, NPH consistently out-

performs the state-of-the-art methods with all code lengths,

which demonstrates the power of our method.

The PR curves of NPH, SSVH, JTAE, and SSTH are

shown in Figure 4. As can be seen, NPH delivers higher

precision than state-of-the-art methods at the same rate of

recall on FCVID. On ActivityNet, NPH consistently deliv-

ers higher precision than JTAE and SSTH. And it has higher

precision than SSVH with lower recall required. This is ap-

preciated in approximate nearest neighbor search because
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(a) FCVID 32 bits (b) FCVID 64 bits (c) ActivityNet 32 bits (d) ActivityNet 64 bits

Figure 4: PR curves of different video hashing methods with a variety of code lengths on FCVID and ActivityNet.

Table 1: mAP@K results of unseen classes retrieval.

Methods K=5 K=20 K=40 K=60

SSTH 0.249 0.131 0.080 0.057

JTAE 0.258 0.139 0.086 0.062

SSVH 0.300 0.169 0.102 0.071

NPH 0.306 0.175 0.109 0.079

Table 2: mAP@K results when training on train25.

Methods K=5 K=20 K=40 K=60

SSTH 0.279 0.160 0.098 0.068

JTAE 0.288 0.166 0.103 0.074

SSVH 0.320 0.185 0.110 0.079

NPH 0.327 0.193 0.118 0.085

large scale video retrieval is most interested in the high

probability of retrieving true neighbors rather than finding

out all the neighbors.

Transfer scenario: In order to see how well NPH can be

applied to conduct retrieval for unseen classes, we follow

[50] to split the dataset into two parts without class over-

lap: train75 and train25/test25, where train75 is the train-

ing set and train25/test25 is the retrieval database/query set.

Without loss of generality, we only conduct the evaluation

on FCVID. The train25/test25 contains data in 40 classes

which are randomly chosen, and the train75 consists of data

in the rest classes. Test25 consists of 1000 query videos

and train25 consists of the others. The mAP@K results are

shown in Table 1. It shows that NPH outperforms the com-

pared methods when retrieving data in unseen classes.

We use train25 for further training and report the

mAP@K results in Table 2. It shows that NPH still out-

performs state-of-the-art methods.

Ablation study: To evaluate the effectiveness of differ-

ent components of NPH, we propose these following base-

lines. FullCNN, Plain and SelfAtt are trained with only the

visual content reconstruction loss Lvr. The encoding net-

works of them are fully convolutional networks [51], stan-

Table 3: mAP@K results of different methods on FCVID.

The rows above are with 32-bit codes and the ones below

are with 64-bit codes.

Methods K=20 K=40 K=60 K=80 K=100

FullCNN 0.189 0.149 0.130 0.117 0.105

Plain 0.175 0.143 0.129 0.119 0.107

SelfAtt 0.187 0.140 0.112 0.103 0.093

NeibAtt 0.201 0.154 0.131 0.117 0.107

SelfAtt+Ls 0.210 0.162 0.138 0.121 0.113

NeibCat 0.214 0.167 0.142 0.124 0.115

NPH- 0.240 0.190 0.166 0.149 0.137

NPH 0.246 0.195 0.170 0.154 0.141

FullCNN 0.233 0.177 0.150 0.130 0.117

Plain 0.228 0.173 0.146 0.129 0.116

SelfAtt 0.239 0.176 0.146 0.127 0.113

NeibAtt 0.238 0.177 0.147 0.128 0.114

SelfAtt+Ls 0.244 0.203 0.184 0.172 0.162

NeibCat 0.254 0.213 0.193 0.181 0.170

NPH- 0.286 0.238 0.212 0.193 0.179

NPH 0.294 0.240 0.213 0.196 0.183

dard LSTM networks [29, 30] and rRNN [32] respectively.

NeibAtt shares the same structure with NPH but is trained

with only Lvr. SelfAtt+Ls extends SelfAtt by adding the

neighborhood similarity loss Ls during training. NeibCat is

similar with SelfAtt+Ls except for a little difference in the

encoder: a nearest anchors are further concatenated with the

encoded video representation, and the concatenation is then

mapped into a binary code. NPH- is the same with NPH ex-

cept that the neighborhood information reconstruction loss

Lnr is removed.

We show the mAP@K results of NPH and these base-

lines with code lengths of 32 bits and 64 bits in Table 3.

Remarkably, NPH outperforms these baselines by a great

margin. FullCNN, Plain and SelfAtt, which do not take

neighborhood structure into consideration, have the poorest

performances in general. This shows that exploiting neigh-

borhood structure is beneficial to hashing function learn-

ing. Besides, CNN based models do not show significant

advantage over RNN based models in our case. NeibAtt
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Figure 5: Top-10 retrieved results. Purple for FCVID and yellow for ActivityNet. Rows above are retrieved results of NPH

and ones below are that of SSVH. Green border means correct retrieved result and red border means incorrect retrieved result.

outperforms SelfAtt in most cases, which shows the su-

periority of neighborhood attention mechanism over self-

attention mechanism. Specifically, the proposed neighbor-

hood mechanism is able to incorporate the neighborhood-

relevant content of the video thus better preserves the neigh-

borhood structure. SelfAtt+Ls shows better performance

over NeibAtt, and this indicates that corresponding simi-

larity loss is useful to learn the neighborhood preserving

hashing functions. Comparing NPH- and SelfAtt+Ls, we

can see that embedding the spatial-temporal neighborhood

information into the encoding network can greatly improve

the retrieval performance. In addition, that NPH- outper-

forms NeibConcat indicates that the neighborhood atten-

tion mechanism is more than simply assigning anchors to

a query. In contrast, it learns what part of each input

frame to focus upon conditioned on the spatial-temporal

neighborhood information, thus preferentially compresses

neighborhood-relevant content into the binary code. Com-

paring NPH- and NPH, we see that the neighborhood infor-

mation reconstruction loss further brings improvement.

Qualitative results: We show the top-10 retrieved re-

sults with 64 bits of NPH and SSVH on FCVID and Ac-

tivityNet datasets in Figure 5. As can be seen, in general,

NPH obtains higher retrieval accuracy. For instance, given a

query video in category “Yoga”, NPH obtains correct top10

retrieved videos while SSVH fails to distinguish this action

from similar ones such as “Making shorts”. Besides, NPH

is able to retrieve relevant videos with various backgrounds

and shooting angles.

5. Conclusion

In this paper, we propose NPH for unsupervised scal-

able video retrieval, which embeds the spatial-temporal

neighborhood information into the encoding network so

that the neighborhood-relevant content in a video can be

compressed in the binary code. Specifically, we propose

a neighborhood attention mechanism to preferentially in-

corporate useful content from each input frame conditioned

on the neighborhood information. In addition, We integrate

the neighborhood attention mechanism into an RNN-based

encoder-decoder framework to capture the spatial-temporal

structure in a video which is consistent with that in the

neighborhood. Experiments on three widely-used bench-

mark datasets demonstrate superior performance of our pro-

posed approach over state-of-the-arts and also validate the

effectiveness of our proposed neighborhood attention mech-

anism. There are several future works to do. Firstly, we

can integrate the neighborhood attention mechanism into

more delicate architectures such as hierarchical LSTM to

further improve the performance. Besides, we will consider

optimizing the binary codes and spatial-temporal features

which are used to calculate the similarity structure in the

video space in an alternating way.
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