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Figure 1: Progressive Reconstruction of Visual Structure. A small part of the new structure is produced in each VSR layer.

At the beginning, the known information is limited and so the encoding layers only estimate the outer parts of the missing

structure. As the information accumulates during the feeding forward procedure, the decoding layers can have the capability

to restore the missing inner parts. The generated parts are collected and sent to discriminator simultaneously.

Abstract

Inpainting methods aim to restore missing parts of cor-

rupted images and play a critical role in many computer

vision applications, such as object removal and image

restoration. Although existing methods perform well on im-

ages with small holes, restoring large holes remains elu-

sive. To address this issue, this paper proposes a Progres-

sive Reconstruction of Visual Structure (PRVS) network that

progressively reconstructs the structures and the associated

visual feature. Specifically, we design a novel Visual Struc-

ture Reconstruction (VSR) layer to entangle reconstructions

of the visual structure and visual feature, which benefits

each other by sharing parameters. We repeatedly stack

four VSR layers in both encoding and decoding stages of

a U-Net like architecture to form the generator of a gen-

erative adversarial network (GAN) for restoring images

with either small or large holes. We prove the generaliza-
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tion error upper bound of the PRVS network is O
⇣

1p
N

⌘

,

which theoretically guarantees its performance. Extensive

empirical evaluations and comparisons on Places2, Paris

Street View and CelebA datasets validate the strengths of

the proposed approach and demonstrate that the model

outperforms current state-of-the-art methods. The source

code package is available at https://github.com/

jingyuanli001/PRVS-Image-Inpainting.

1. Introduction

Image inpainting aims to restore missing parts in cor-

rupted images. Recently, it has become an important task in

computer vision and shows promising performance in many

applications, such as object removal and image restoration

[22, 24, 1].

Previous studies [28, 32, 29] based on texture search-

ing produced reasonable results on images with small holes.
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However, when filling large holes, these algorithms suffer

from limited information (specifically, eligible structure in-

formation for recovering the lost parts) and usually halluci-

nate blurry textures or even meaningless content.

Recent studies try to solve this problem by introduc-

ing additional generators to estimate the visual structure of

the missing part. They exploit the estimated visual struc-

tures as prior knowledge to improve recovery performance.

For example, Nazeri et al. [16] and Xiong et al. [27] sug-

gested explicitly encoding edge and saliency information to

boost inpainting network performance, respectively. How-

ever, they failed to produce semantically meaningful and

detailed structures. This is mainly because they utilized the

adversarial loss to evaluate the generated structure, which

treats each structure map as a whole and thus the network

can hardly recover qualified local structures. Moreover, cas-

cading two or more generators is suboptimal for parameter

optimization.

In this paper, we design a Visual Structure Reconstruc-

tion (VSR) layer to restore visual structures by entangling

the generation of structures and contents. Specifically, VSR

adopts a partial convolution and a bottleneck block to re-

store a portion of edges in a missing region. The recon-

structed edges are then combined with an input image with

holes to progressively shrink the size of holes by filling se-

mantically meaningful contents. We stack two VSR lay-

ers in the encoding stage and two VSR layers in the decod-

ing stage. All four VSR layers together seamlessly assist a

U-Net like architecture to progressively recovery the visual

structure through the feeding forward procedure. We term

the new end-to-end trainable GAN scheme for inpainting

as the progressive reconstruction of visual structure (PRVS)

network. This end-to-end network can be easily trained, and

can appropriately restore the missing structure information

for the subsequent recovery of the missing details.

For the discriminator used for detail generation, we fol-

low [12] to integrate the style loss and the perceptual loss

taken from a VGG-16 pre-trained on ImageNet [21]. For

the discriminator used for structure generation, we integrate

a Patch-GAN discriminator with spectral normalization and

adversarial loss. The combined training target is expected

to help the model learn to produce well-structured results.

We theoretically analyze the generalization ability of

the proposed method and gives an O
⇣

1p
N

⌘

generalization

bound which leads to two practical implementations based

on some recent results [2, 15, 34]. First, the generalization

bound demonstrates a negative correlation between the gen-

eralization ability and the complexity of the discriminator.

From this result, we adopt a pre-trained VGG in the discrim-

inator and fix the weight matrices. Since the correspond-

ing capacity of hypothesis space is only one (the potentially

smallest capacity), the weight-fixed VGG can significantly

reduce the hypothesis complexity of the discriminator and

thereby improve the generalization ability. Second, the the-

oretical results suggest a negative correlation between the

spectral norms of the weight matrices, which leads to the

spectral normalization in order to control the spectral norms

(it is also suggested by [2, 14, 17]).

Extensive experiments on standard datasets Places2 [35],

Paris Street View [4] and CelebA [13] datasets are con-

ducted. The results demonstrate that our method signifi-

cantly outperforms the state-of-the-art methods.

2. Related Work

2.1. Generative Model for Image Inpainting

Image inpainting aims to recover missing areas of a dam-

aged image. There have been significant improvements in

image inpainting through the use of deep learning [11].

Pathak et al. [18] introduced GANs [5] to inpainting, albeit

producing relatively low-resolution hallucinations. Iizuka

et al. [7] introduced local and global discriminators, assisted

by dilated convolution [30] and Poisson blending [19] to

preserve the richness of high-frequency information and to

handle rectangular masks at any location.

Since convolution filters can only extract local informa-

tion, it is difficult for traditional GANs to capture texture

information from distant areas. As a result, Yang et al. [29],

Yan et al. [28] and Yu et al. [32] investigated to collect ap-

pearing features, utilizing the idea of patch-match on deep

feature maps, which enable a GAN to generate sharp and

accurate results. However, these methods were designed

for rectangular holes and could not handle larger, irregular

masks due to the difficulty in searching for suitable patches.

Liu et al. [12] proposed a partial convolution layer to

help inpaint irregular holes. Values of a new feature map

are calculated from non-masked regions; meanwhile, the

mask in each layer is updated. Perceptual loss and style loss

taken from a pre-trained VGG-16 [23] on ImageNet [21]

have also been introduced to replace the traditional adver-

sarial loss. Yu et al. [31] further deployed the gated convo-

lution layers in the model of [32] for the irregular inpainting

task. While the methods mentioned above have made sig-

nificant contributions to the field of inpainting, the absence

of structural knowledge has constrained their potential in

recovering continuously masked images.

2.2. Structure Information for Inpainting

Wang et al. [25] showed that the binary edge maps of

an image could benefit an image synthesizing model and

help to evaluate object boundaries during image generation.

The learnt edge maps can characterize the image structure.

Also, it is easier to estimate binary maps than RGB images.

Thus, there are also natural initiatives to reconstruct the vi-

sual structure for inpainting, such as Nazeri et al. [16] and

Xiong et al. [27].
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Inspired by human artists, Nazeri et al. [16] used two

GANs for the inpainting task, which utilizes the edge map

from the first generator as the prior of the inpainting net-

work. Similarly, Xiong et al. [27] divided the model into

multiple sub-networks to restore the image step by step,

enabling the model to be aware of the saliency informa-

tion. Both methods simplify the task of inpainting by build-

ing precise medium targets, i.e. recovering the edge or the

foreground-background of the corrupted image.

However, as the corruption is getting larger, they fail to

appropriately reconstruct the visual structure. Detailed rea-

son is given in the introduction.

3. Approach

We design a Progressively Reconstruction of Visual

Structure (PRVS) network for image inpainting. The gener-

ator adopts the P-UNet as the backbone (see Fig. 3), which

replaces each convolution layer in U-Net [20] with a partial

convolution layer [12] in order to capture the local informa-

tion of irregular boundaries. Besides, the generator stacks

a series of visual structure reconstruction (VSR) layers in

both the encoding and decoding stages of the P-UNet back-

bone, which entanglingly reconstruct the visual structure

(edges) and visual features in a progressive manner. An up-

sampling module combines the benefits of the transposed

convolution and partial convolution also advances inpaint-

ing result.

Below, we first introduce the partial convolution layer

which helps us keep track of the mask shape in each layer.

Then, we detailedly present the VSR layer and the loss func-

tions. Afterwards, we present the PRVS network for in-

painting. For the convenience, the values of the masked

area and non-masked area in the masks are assigned to 0

and 1 respectively in our work.

3.1. Visual Structure Reconstruction Layer

VSR layer is composed of a structure generator and a

feature generator. The structure generator first updates the

input edge to shrink the size of missing regions. The up-

dated edge map is then used to guide the generation of the

new feature. Below we first introduce the partial convolu-

tion [12] which helps us keep track of the mask shape. Then

we introduce the generation of edge and feature inside the

VSR layer.

3.1.1 Partial Convolution

Partial convolution layer is helpful for recovering masked

area [12]. In each step, partial convolution layer updates

the mask; meanwhile, the values of the updated feature map

only rely on the values in unmasked area. The new value of

the mask is 1 if the sum of values in previous mask covered

by convolution window is not 0. Let X0 denotes the feature
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Figure 2: The generation of visual structure. Structure part

is generated by a partial convolution followed by a residual

block, then combined with input structure.

map generated by partial convolution layer. x0
ijk means the

new feature value at location i, j in the kth channel. Wk

is the kth convolution kernel in the layer. xij and mij is

the input feature tensor patch and input mask tensor patch

(whose size is the same as the convolution kernel) centered

at location i, j respectively.

x0
ijk =

(

WT
k (xij � mij)

sum(1)
sum(mij)

+ b, if sum(mij) != 0

0, else

Similarly, the value of new mask value at location i, j can

be expressed as:

m0
ij =

⇢

1, if sum(mij) != 0

0, else

The partial convolution layers help us keep track of the

mask shape during the feed-forward procedure and enable

us to progressively reconstruct the visual structures.

3.1.2 Visual Structure Generator

In this section, we denote the partial convolutions as

Pconv(,), where the first parameter is the input feature and

the second is the input mask. We use h, i to express concate-

nation in the channel dimension. There are four input fac-

tors in the structure generator, which are the image feature

map Xin 2 RH⇥W⇥C , structure map Ein 2 RH⇥W⇥1,

previous mask for image M
Img
in 2 {0, 1}H⇥W⇥C , and pre-

vious mask for edge M
Edge
in 2 {0, 1}H⇥W⇥1, respectively

(See Fig. 2). These two masks have the same shape but dif-

ferent channel numbers. We first adopt a partial convolution

layer to update the feature map and mask as follows,

Xpc1,Mpc1 = Pconv(hXin,Eini, hM
Img
in ,M

Edge
in i) (3.1)

The feature map generated by the first partial convolution

is then fed to a residual block [6] and a one-channel output

convolution kernel to produce a structure map Econv . In this

paper, we use the bottleneck residual block with kernel sizes
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Figure 3: Overall architecture of our proposed model. The VSR Layer is put in the first two layers and last two layers in our

network. The generated structure and feature maps are sent to next and decoding layers. Finally, two structure (edge) maps

of different scales are generated to learn structure information.

and channel numbers of 1, 3, 1 and 64, 16, 64, respectively.

We then use the mask Mpc1 from the partial convolution

to correct the shape of structure map. The input structure

Ein is used to replace the previously known area in the new

structure map Econv and so only the newly generated parts

Econv�(Mpc1�Min) are preserved. This can be described

as Eq. (3.2). This helps the partial convolution and residual

block in the edge generator focus on the newly generated

part.

EEG = Econv � (Mpc1 � M
Edge
in ) + M

Edge
in (3.2)

The final outputs of structure generator are Mpc1 and EEG.

In our design, the generators only need to estimate structure

parts that are closest to the known area, which is easier to

generate based on the feature map.

3.1.3 Architecture of VSR Layer

The main purpose of the VSR layer is to incorporate the

structural information in the reconstructed feature map. We

concatenate EEG with the input original feature map Xin,

using the structure map to guide the generation of next fea-

ture map. The concatenated feature maps and the corre-

sponding masks are then sent into another partial convolu-

tion layer to update the image feature map Xout (see Eq.

(3.3)). We use the mask Mpc1 from the structure generator

(which is only updated once) as the output mask and use

it to correct the shape of image feature map (the element

wise multiplication in Eq. (3.3)). If any down-sampling

operation makes the new feature map become smaller, max

pooling is applied to Min to produce a mask of expected

shape.

Xout,Mpc2 = Mpc1 � (Pconv(hXin,EEGi, hMin,Mpc1i))
(3.3)

The generated feature from VSR layer carries more struc-

tural information in this way, which helps recover the im-

age. The final outputs of the VSR layer are EEG, Xout and

Mpc1.

3.2. Structure Learning and Loss Functions

Many structure parts are generated by VSR layers and

it’s time-consuming to learn these structure parts separately.

Note that the newly restored structures from different layers

do not share any overlapping region, so it is natural to cu-

mulate the restored structures. We therefore filter out the

parts of structure that are not used to assist image genera-

tion and keep only the newly generated parts like Eq. (3.4),

where the Epart is the newly generated structure in each

VSR layer:

Epart = EEG � (Mpc1 � Min) (3.4)

Those filtered parts from generators are collected and sent

to discriminator. We use Ei to denote the combined struc-

ture map from ith VSR layer at each level, where “level”
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means the group of layers having the same input size. E0

means the original input. The combination process can be

expressed as following:

Ei+1 = Ei � Mi + Ei+1
part (3.5)

In this way, two structure maps of different scales (256 and

128) are generated.

For the discriminator, we use a Patch-GAN [9] discrimi-

nator and a pre-trained and fixed VGG-16 network [23] for

structure generation learning and image generation learn-

ing, respectively, as follows. For structure generation learn-

ing, we use a Patch-GAN discriminator to evaluate whether

each structure patch belongs to the real or fake distribu-

tion. The Patch-GAN discriminator calculates the adver-

sarial loss for structure from the generator. The adversarial

loss for structure map from ith level is denoted as Li
adv .

Besides, spectral normalization [14], which divides weight

matrix by the corresponding Lipschitz constant, is applied

in our discriminator. Theoretical analysis demonstrates that

spectral normalization can control the generalization error

(see also [34]).

For image generation learning, the perceptual loss and

style loss from a pre-trained and fixed VGG-16 are used.

The perceptual loss and style loss compare the difference

between the deep feature map of the generated image and

the ground truth. These loss functions are formalized in

the following. φpooli means feature maps from ith pooling

layer in the fixed VGG-16. In following equations, Hi, Wi

and Ci are used to express the height, weight and channel

size of the ith feature map. The perceptual loss can be then

written as following:

Lpreceptual =

N
X

i=1

1

HiWiCi
|φgt

pooli
� φ

pred
pooli

|1 (3.6)

Similarly, the computation of style loss is as follow:

φ
style
pooli

= φpooliφ
T
pooli (3.7)

Lstyle =

N
X

i=1

1

Ci ⇤ Ci

�

�

1

HiWiCi
(φ

stylegt
pooli

� φ
stylepred
pooli

)
�

�

1

(3.8)

Besides, Lvalid and Lhole which calculate L1 differences

in the unmasked area and masked area respectively are also

used in our model. In summary, our total loss function is as

follow:

Ltotal = λholeLhole + λvalidLvalid + λtvLtv + λstyleLstyle

+ λperceptualLperceptual + λadv(L
1
adv + L2

adv)
(3.9)

Although the perceptual loss and style loss are designed

for learning RGB image generation, the shared parameters

make structure generation benefit from the target functions.

Similarly, the image generation also benefits from the ad-

versarial loss for structure learning.

3X3 Partial Convolution

Transpose Convolution

Batch Normalization

LeakyReLU

3X3 Partial Convolution

Batch Normalization

LeakyReLU

Nearest Upsampling

Figure 4: Partial-deconvolution up-sampling. On the left is

the previous up-sampling module in P-UNet, on the right

is ours. We add a deconvolution layer following the par-

tial convolution. Nearest up-sampling is used to enlarge the

mask in the decoder stage of PRVS network.

3.3. Overall Architecture

In the generator, two VSR layers are deployed in the en-

coder stage and two are deployed in the decoder stage of the

P-UNet (16 layers), as shown in Fig. 3. At the beginning

of the generator, there is little information in the corrupted

region and a single VSR layer is not expected to recover

the visual structure for the whole corrupted area. However,

as information accumulates during down-sampling and up-

sampling, the VSR layers in the decoding stage are capa-

ble to estimate the visual structure of the central area. As

a result, the outer and inner visual structures are gener-

ated by VSR layers in the encoding and decoding stages,

respectively. These VSR layers together form the visual

structure for inpainting. Besides the VSR layer, a partial-

deconvolution layer (Fig. 4) which combines partial con-

volution with transpose convolution is also used in the up-

sampling layers. In the original P-UNet, the skip connec-

tions make it hard to directly apply the transposed convo-

lution without harming the benefits of partial convolutions.

To address this issue, we use a partial convolution layer to

make the mask shape the same in different channels fol-

lowed by transposed convolution [33] to up-sample feature

map. A bottleneck residual block is added to the end of our

model (the white blocks in Fig. 3) to merge the last struc-

ture map. Contextual attention modified from [32] is also

used to help obtain better textures before the third last layer.

For more details, please refer to Appendix A.

4. Theoretical Analysis

Generalization ability is of vital importance to machine

learning algorithms, which refers to the ability to generalize

the good performance on training data to unseen data. Our

proposed method is built based on a GAN which is used to

generate a group of new sample points that follow the dis-

tribution of the existing data. The learning procedure is to

narrow the gap between the latent distribution of the exist-

ing data and the generated data. A recent theoretical result
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demonstrates that the discriminator is the bottleneck of the

generalization abilities of GANs. The generalization ability

of GANs is guaranteed as long as the hypothesis complexity

of the discriminator is small enough, regardless of the size

of the generator hypothesis set (see Lemma 3 in Appendix

B.2; cf. [34], Theorem 3.1). Denote the latent distribu-

tions of the existing data and the generated data as µ and

ν, respectively. Suppose the empirical distribution of the

training sample set is µ̂N and the empirical distribution of

the generated data is νN , where N is the size of the training

sample set. Denote the generator as g 2 G and the discrim-

inator as f 2 F , where G is the distribution class of the

generated data and F is the hypothesis class of the discrim-

inator. Mathematically, GANs minimize the integral prob-

ability metric (IPM) dF (µ̂N , ν) between the distributions

µ̂N and ν [15], which is defined as:

dF (µ̂N , ν) , sup
f2F

{Ex2µ̂N
[f(x)]� Ex2ν [f(x)]} . (4.1)

Meanwhile, dF (µ, νN ) expresses the distance between the

latent distribution of existing data and the empirical distri-

bution of the generated data, which is usually called the

empirical risk. Additionally, infν2G dF (µ, ν) expresses the

distance between the best hypothesis and the observed data,

which is usually called the expected risk. Finally, the gen-

eralization error of GANs is defined as:

dF (µ, νN )� inf
ν2G

dF (µ, ν). (4.2)

For more details about the definition of the generalization

error, please refers to [34].

As Fig. 3 shows, the discriminator is constituted by two

parts, a pre-trained and weight-fixed VGG-16 classifier and

a five-layer CNN (the patch discriminator). For the brevity,

we denote these two parts respectively as VGG Feature Ex-

tractor (VFE) and patch discriminator (PD). Specifically,

the PD is constituted by a series of convolutional layers and

nonlinear operations (nonlinearities) which are expressed

as (A1,σ1, A2,σ2, A3,σ3, A4,σ4, A5,σ5), where Ai is a

convolutional layer, and σi is a nonlinearity (leaky ReLU).

Then we can obtain the following lemma on the hypothesis

complexity of the discriminator.

Theorem 1 (Covering bound for the discriminator). Sup-

pose the spectral norm of each weight matrix is bounded:

kAikσ  si. Also, suppose each weight matrix Ai has a ref-

erence matrix Mi, which is satisfied that kAi �Mikσ  bi,

i = 1, . . . , 5. The Lipschitz constant of σ5 is supposed as ρ.

Then, the ε-covering number satisfies that

logN (F|S , ε, k · k2)


log
�

2W 2
�

kXk22
ε2

 

ρ

5
Y

i=1

si

!2 5
X

i=1

b
2/3
i

s
2/3
i

!3

, (4.3)

where W is the largest dimension of the feature maps

throughout the algorithm.

A detailed proof is omitted here but provided in the ap-

pendix. Finally, we obtain the following theorem. For

brevity, we denote the right-hand side (RHS) of Eq. (4.3)

as R2

ε2
.

Theorem 2. Assume that the discriminator set F is even,

i.e., f 2 F implies �f 2 F , and that all discriminators are

bounded by ∆, i.e., kfk1  ∆ for any f 2 F . Assume µ̂N

and νN satisfy

dF (µ̂N , νN )  inf
ν2G

dF (µ̂N , ν) + φ. (4.4)

Then with probability at least 1� δ, we have

dF (µ, νN )� inf
ν2G

dF (µ, ν)


24R

N

✓

1 + log
N

3R

◆

+ 2∆

s

2 log( 1
δ
)

N
+ φ. (4.5)

A detailed proof is omitted here but provided in the ap-

pendix. Eq. (4.5) gives an O
⇣

1p
N

⌘

generalization bound

for our proposed and provides two practical implementa-

tions: (1) use a pre-trained and fixed VGG-16 as a part of

the discriminator. Thereby, we significantly reduce the hy-

pothesis complexity and enhance the generalization ability;

and (2) utilize the regularization technique of spectral nor-

malization to scale the spectral norms of all weight matri-

ces to 1 (to make si = 1), which is much lower than the

ones without spectral normalization. Meanwhile, there is a

positive correlation between our generalization bound (Eq.

(4.5)) and the product of the spectral norms of all weight

matrices. Therefore, spectral normalization can also sig-

nificantly help to achieve a significantly lower upper bound

for the generalization error, and thus improve generalization

ability.

5. Experiments & Results

5.1. Setup

Our model was trained with the batch size of 5 on an

NVIDIA RTX 2080TI 11G GPU. We used the Adam Opti-

mizer [10] to optimize our generator and discriminator. We

first used 2 ⇥ 10�4 as our initial learning rate to train our

model. Then we finetuned our model with a learning rate of

1⇥10�5. During finetuning, the batch normalization layers

[8] in the encoding stage of generator were frozen to sta-

bilize training. It took three days including one day’s fine-

tuning to train the model on CelebA and Paris Street View

datasets. For Places2, two weeks’ training and two days’

finetuning was needed. For the hyper-parameters, we chose

50, 50, 0.01, 180, 0.1, 0.1 for λhole, λvalid, λtv , λstyle,

λperceptual, λadv respectively.
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Figure 5: Comparisons of inpainting methods. From left to right: Masked Images. Edge-Connect [16]. PConv [12]. Ours.

Our model is able to generate high quality result even if the mask is large. The results are from Places2 and Paris Street View

datasets. All images are not post processed.

Places-SSIM P-UNet Edge-Connect Ours

10%-20% 0.944 0.942 0.956

20%-30% 0.892 0.891 0.914

30%-40% 0.833 0.831 0.861

40%-50% 0.762 0.759 0.797

50%-60% 0.631 0.629 0.672

Places-PSNR P-UNet Edge-Connect Ours

10%-20% 27.67 27.48 28.87

20%-30% 24.60 24.54 25.66

30%-40% 22.52 22.53 23.46

40%-50% 20.88 20.92 21.74

50%-60% 18.80 18.83 19.51

Places-MAE P-UNet Edge-Connect Ours

10%-20% 0.0147 0.0151 0.0125

20%-30% 0.0262 0.0265 0.0225

30%-40% 0.0388 0.0389 0.0337

40%-50% 0.0530 0.0531 0.0466

50%-60% 0.0768 0.0768 0.0689

Table 1: Results from Places2 Dataset. The methods com-

pared are designed for irregular hole inpainting tasks. Com-

parisons with Yu et al. [31] are in the Appendix C.

5.2. Training & Testing

We evaluated our model and compared baselines on the fol-

lowing datasets:

-Places2 Challenge Dataset: A dataset released by MIT

containing over 8,000,000 images from over 365 scenes.

Although the dataset is designed for classification, it is suit-

able for building inpainting models as it enables the model

to learn the distribution from many natural scenes.

-CelebA Dataset: A dataset focuses on human face im-

ages, containing over 180,000 training images. The mod-

els trained on this dataset can be easily transferred to face

editing/completion tasks.

-Paris Street View Dataset: A dataset commonly used for

inpainting methods. It contains 14,900 training images and

100 testing images.

For images from CelebA dataset, we cropped the cen-

ter 178⇥178 pixels from the images. For Paris Street View

dataset, we divided the training image into left, middle and

right and therefore obtained 44,700 images in total. All

images for our experiment were resized to 256⇥256. For

ground truth structure, the Canny edge [3] algorithm was

used. The masks for model training and testing is from [12].

For testing, we chose 10,000 images from the dataset, iter-

atively using the testing mask grouped by mask ratio.

5.3. Quantitative Result

For quantitative analysis, we compared our model

with current state-of-the-art methods on Paris Street View,

Places2 and CelebA datasets. The results in Table 1 were

averaged on 10,000 images from Places2 validation set. We

tested the models on different mask ratios (the percentages

in the first column). The results on other datasets can be

found in Appendix C. The compared models are 1) Edge-

Connect [16] 2) P-UNet[12] and 3) GatedConv[31]. Our

model shows the superiority in quantitative results. We

evaluated the generated results from the aspect of peak

signal-to-noise ratio (PSNR), structural similarity (SSIM)

and mean absolute error (MAE) [26].
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Figure 6: Comparisons between different ways to generate structure (edge). From left to right: Ground truth, masked image,

edge from a single generator, edge from our model. Edges from our model described necessary structure details better.
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Figure 7: Training loss of each module. PD means baseline

and partial-deconvolution layers. PD+VSR means baseline,

partial-deconvolution layers and the VSR layers.

5.4. Inpainting Quality Comparison

From the perspective of applications, qualitative results

are more important than quantitative results. We compared

our model with respect to visual outcome in Fig. 5. Accord-

ing to this figure, it is observed that as the hole size gets

larger, previous models become unstable while our model

can still produce well-structured content.

We expect the model to benefit from joint training of

structure generation and image generation by parameter

sharing. To validate our idea, comparisons on edge qual-

ity between various model were also conducted in Fig. 6.

We compared edges from our model with that from a single

generator.

5.5. Effectiveness of modules

We tested the effectiveness of each new module in Ta-

ble 2, which consisted of three combinations of differ-

ent modules. The first model tested was P-UNet using

the same hyper-parameters as that mentioned in Section

5.1. The second model was equipped with the partial-

deconvolution layer to replace the nearest up-sampling. The

third model includes our VSR layer. We used the same

Baseline PD PD+VSR Full

SSIM 0.697 0.707 0.716 0.724

PSNR 22.04 22.19 22.31 22.48

MAE 0.0572 0.0556 0.0545 0.0534

Table 2: Effectiveness of modules. We tested each module

on Paris Street View dataset with the mask ratio of 50%-

60%.

hyper-parameters for each model to ensure fairness. The

pixel attention module [32] was removed except for “Full”

to address its possible impact.

6. Conclusion

In this paper, we propose a novel image inpainting

method that progressively incorporates structure informa-

tion into the feature to output more structured image based

on generated adversarial networks (GANs). Specifically,

the generator adopts four novel visual structure reconstruc-

tion (VSR) layers to progressively reconstruct the structure.

Besides, partial-deconvolution is utilized in the generator in

order to address the limitation of partial convolution with

existing modules. In the discriminator, we adapt a patch

discriminator to evaluate the generated structures with the

adversarial loss and a pre-trained and weight-fixed VGG-16

to evaluate the images with style loss and perceptual loss.

Theoretical analysis evaluates our method and gives a theo-

retical guarantee. Extensive experiments on many standard

datasets validate the feasibility of our method.
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