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Abstract

Optical flow in heavy rainy scenes is challenging due

to the presence of both rain steaks and rain veiling effect,

which break the existing optical flow constraints. Concern-

ing this, we propose a deep-learning based optical flow

method designed to handle heavy rain. We introduce a fea-

ture multiplier in our network that transforms the features of

an image affected by the rain veiling effect into features that

are less affected by it, which we call veiling-invariant fea-

tures. We establish a new mapping operation in the feature

space to produce streak-invariant features. The operation

is based on a feature pyramid structure of the input images,

and the basic idea is to preserve the chromatic features of

the background scenes while canceling the rain-streak pat-

terns. Both the veiling-invariant and streak-invariant fea-

tures are computed and optimized automatically based on

the the accuracy of our optical flow estimation. Our net-

work is end-to-end, and handles both rain streaks and the

veiling effect in an integrated framework. Extensive exper-

iments show the effectiveness of our method, which outper-

forms the state of the art method and other baseline meth-

ods. We also show that our network can robustly maintain

good performance on clean (no rain) images even though it

is trained under rain image data. 1

1. Introduction

Existing optical flow methods (e.g. [49, 1, 44, 22, 19,

20, 39]) show accurate and robust performance in several

benchmarking datasets [17, 2, 7]. Most of them, however,
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(a) Input First Frame (b) PWC-Rain [44]

(c) Robust Flow [26] (d) Ours

Figure 1: An example of our algorithm compared with Ro-

bust Flow [26] and PWC-Net [44] on real rain image input.

Moving objects are indicated in the yellow boxes.

still face challenges when applied to rain images [26]. We

consider addressing the problem of optical flow in rainy

scenes is important, since more and more vision-based sys-

tems, which require motion information, are deployed in

outdoor environments. Most of them have to work in any

weather condition and rain is the most adverse weather phe-

nomenon [40] that occurs frequently in the real world.

There are two main properties of rain, particularly heavy

rain, which causes existing optical flow methods to be erro-

neous: rain streaks and the rain veiling effect. Rain streaks

occlude the background scene, and appear in different lo-

cations in different input frames, and thus induce violation

to the brightness constancy constraint (BCC). Rain streaks
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also render spurious gradients due to the specular reflec-

tion of individual streaks, consequently causing violation

to the gradient constancy constraint (GCC). Both the BCC

and GCC are the core assumptions of optical flow meth-

ods. Hence, existing variational methods [18, 6, 42], patch-

match methods [28, 19], and even some deep learning meth-

ods [10, 22, 44, 37, 49] cannot perform adequately in rainy

scenes. The rain veiling effect refers to the atmospheric

conditions visually similar to fog, which is attributed to

light scattering by densely accumulated rain droplets. It

occurs particularly in heavy rain. It washes out the back-

ground colors and the overall image contrast, making the

BCC- and GCC-based methods more susceptible to the

aforementioned violations and any further noise [45].

In this paper, our goal is to estimate optical flow from

rain images without being affected by the appearance of

rain streaks and the rain veiling effect. Particularly, we tar-

get heavy rain images, where both rain streaks and the rain

veiling effect are present substantially. To accomplish the

goal, we propose a deep learning method that requires syn-

thetic rain images and the corresponding optical flow maps

to train our network. Our optical flow computation is based

on the cost volume (e.g., [49, 44]). Hence, to have a robust

optical flow from heavy rain images, we need to ensure that

our cost volume is robust to both rain streaks and the rain

veiling effect. There are two key ideas in our method.

First, to deal with the loss of contrast issue posed by the

rain veiling effect, we compute the cost volume from a fea-

ture representation instead of directly from the input rain

images. This feature representation is less affected by the

rain veiling effect, and we call it veiling-invariant2 features.

The veiling-invariant features are computed by multiplying

a feature multiplier with an input image features. The fea-

ture multiplier acts as contrast enhancement, which boosts

the contrast of the input image features even in the presence

of rain veiling effect. It encodes both intensity and depth

information from coarse to fine scale. We consider that this

encoding allows the contrast to be restored in a depth-aware

and scale-dependent manner, thereby better preserving the

integrity of the various constancy constraints.

Second, unlike existing methods (e.g. [34, 26]) that

handcraft an invariant representation to deal with rain

streaks or other artifacts, we propose a rain-streak-invariant

features that are automatically learned by our network. To

achieve this, our network generates RGB chromatic fea-

tures, and then transform them into features that are less

affected by rain streaks, which we call streak-invariant fea-

tures. The basic motivation of the transformation is that

in an image, rain streaks appear in RGB channels identi-

cally. Thus, if we subtract one channel from the other, rain-

streak will be cancelled [26]. However, instead of applying

the subtraction operation in the image domain, we apply it

2The invariant is used in the sense of strongly (not strictly) invariant.

in feature domain, of which further details and motivations

are provided in the ensuing sections. Both the feature mul-

tiplier and the streak-invariant features are computed and

optimized based on the accuracy of our optical flow estima-

tion. After obtaining the features that are less affected by

the rain veiling effect and rain-streaks, we then compute the

cost volume before estimating optical flow.

As a summary, in addressing the problem of optical flow

estimation from heavy rain images, we make the following

contributions:

• We introduce veiling-invariant features, which are less

affected by the rain veiling effect. These features are

generated using a feature multiplier in the feature do-

main. The feature multiplier can enhance the contrast

of the features in a depth-aware manner, making our

features robust to the rain veiling effect.

• We propose a data-driven scheme to learn streaks-

invariant features. The ability to automatically learn

nonlinear, spatially varying and streak-invariant fea-

tures is important for coping with the complex pertur-

bations caused by dense rain streaks.

• We propose an integrated and end-to-end framework of

optical flow estimation that can handle simultaneously

both rain streaks and the rain veiling effect, which are

the attributes of heavy rain.

Our experimental results show that our method outperforms

the state of the art method and other baselines both qualita-

tively and quantitatively.

2. Related Works

Most existing deraining methods, including single im-

age based deraining [55, 9, 25, 27, 12, 38, 46, 52] and video

based deraining [56, 16, 3, 5, 31, 24, 9, 25, 8, 41], focus

on rain streaks removal. These methods do not consider the

appearance of rain veiling effect, and hence can only work

for relatively light rain scenarios. Yang et al. [51] develop a

multi-task network for rain detection and removal, integrat-

ing a fog/haze removal module to handle rain veiling effect.

However, since the deraining process is performed frame-

by-frame independently, the derained output does not guar-

antee the photo-consistency between consecutive frames, to

the detriment of optical flow computation.

Since Horn and Schunck’s classic work [18], a large

number of variational optical flow approaches have been

proposed, examples of which include [4, 6, 30, 42]. Readers

are referred to [11] for a recent survey on this topic. As real-

world images or video sequences usually contain a certain

level of noise and outliers, to this aim, several robust meth-

ods have been proposed [47, 48, 30, 50, 35]. While these

methods can deal with a moderate amount of image corrup-

tions such as drizzles and light rain, they tend to fail under
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Figure 2: Left: Detailed structure for extracting the feature multiplier M when computing optical flow at each pyramidal

level. Right: the architecture for the full solution. Layer A and B are global maximum and global minimum operation

respectively. VI stands for veiling-invariant, and SI stands for streak-invariant.

heavy rain scenarios, which contain strong rain veiling ef-

fect and rain streak. Another line of research uses the well-

known HSV and the rφθ color space to obtain features that

are invariant to illumination changes (see a review in [34]).

However, this is not specifically designed to handle rain,

and thus does not perform adequately. Li et al. [26] propose

a robust optical flow method based on the residue chan-

nel that is invariant to rain streaks. However, the spatially-

uniform residue image operation resulted in missed motion

for objects of comparable size to rain streaks. Moreover, the

residue channel is handcrafted, and whether it is an optimal

representation for computing optical flow is unknown.

Dosovitskiy et al. [10] propose the first CNN based so-

lution for estimating optical flow. Since then, many CNN

based methods have been proposed [37, 49, 21, 54]. Ilg et

al. [22] build a large CNN model FlowNet2 by stacking a

few basic FlowNets and train it in a stage-by-stage man-

ner. The performance of FlowNet2 can compete with the

state of the art variational methods. Sun et al. [44] propose

a compact but effective network, PWC-Net, that outper-

forms FlowNet2 and other state of the art methods. PWC-

Net elegantly utilize the cost volume computation, which

is widely applied in stereo problems. Though all the afore-

mentioned methods perform well on existing normal optical

flow benchmarking datasets, they tend to perform poorly on

heavy rain scenarios [26].

3. Proposed Method

We design our network by considering heavy rain, where

both rain streaks and the rain veiling effect can have a sub-

stantial presence. Our design is thus driven by these two

rain components, and the following discussion first focuses

on how we deal with each of them. Subsequently, we dis-

cuss the integration of our solutions in one framework.

3.1. Optical Flow under Rain Veiling Effect

The left side of Fig. 2 shows our network in dealing with

the rain veiling effect. Our backbone network that generates

image features is an L-level feature pyramid encoder [44].

F
l
{1,2} = {Fl

1,F
l
2} are the image features at level l of the

pyramid that represent the features associated with images

1 and 2, respectively. The bottom level of the pyramid F
0
1 =

I1, and F
0
2 = I2, where I1, I2 are the input images.

To tackle the low contrast problem introduced by the rain

veiling effect, we introduce an extra 1×1 Conv-ReLU layer

that takes the extracted features at each pyramid level as

the input, and outputs feature multipliers for every level,

M
l
{1,2}:

M
l
1 = Conv1(F

l
1)

M
l
2 = Conv2(F

l
2).

(1)

Having obtained M
l
{1,2}, we multiply them with F

l
{1,2}

in an element-wise manner, resulting in (Ml
1(x)F

l
1(x))

and (Ml
2(x)F

l
2(x)), which are the veiling-invariant features

from images 1 and 2, respectively. These veiling-invariant

features are normalized, and then the matching cost can be

computed using the following expression:

Cl(x, u) = 1− (Ml
1(x)F

l
1(x))

T (Ml
2(x+ u)Fl

2(x+ u)),
(2)

where u is the estimated flow at level l of the pyramid.

To compute the optical flow, we warp one of the veiling-

invariant features, and then compute the cost volume us-

ing Eq. (2). Note that, since rain images also contain rain

streaks, we do not only use the veiling-invariant features
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to compute optical flow, but also streak-invariant features,

which will be discussed in Sec. 3.2.

Network Design Ideas Our network is inspired by our

analysis on the model of the rain veiling effect. The details

are as follows. Due to the light scattering by a volume of

suspended water droplets, the rain veiling effect is formed,

similar to the visual formation of fog [51]. This formation

can be modeled using a widely used fog model [53, 29]:

I(x) = J(x)α(x) + (1− α(x))A, (3)

where I(x) is the image intensity at pixel location x. J is

the clean background image. α is the transmission map. A
is the atmospheric light, which is assumed to be constant

across the entire image, since in a rainy scene, the main

source of global illumination is the cloudy skylight, which

is diffused light.

According to Eq. (3), there are two main factors of degra-

dation: Light attenuation and airlight. Light attenuation is

the first term in the equation, i.e., J(x)α(x), where α(x)
reduces the information of the background scene, J(x), in

the input image, I. Airlight, the second term of Eq. (3):

(1 − α(x))A, is the light scattering by the water droplets

into the direction of the camera [36]. Thus, airlight washes

out the image, reducing contrast and weakening the BCC.

Since I1, I2 are degraded by the rain veiling effect, using

them directly or their feature representations to compute op-

tical flow will be sensitive to errors. In contrast, the images

of the background scene, J1,J2 are not affected by the rain

veiling effect. Thus, we should utilize them or their fea-

ture representations. For this, we can reformulate Eq. (3) to

express J in the following form:

M(x)I(x) = J(x), (4)

where M(x) = (I(x) + α(x)A − A)/α(x)I(x). The

presence of this multiplier M, that can generate a veiling-

invariant image, inspires us to create a similar multiplier

in the feature domain in our network. However, unlike the

operation in Eq.(4), our feature multipliers are learned auto-

matically by our network, using the accuracy of our optical

flow estimation as our cornerstone.

3.2. Optical Flow under Rain Streaks

Given two input images, I1 and I2, we decompose the

images into their color channels: R,G,B, denoted as I1,i

and I2,i, where i ∈ {R,G,B}. Then, like in the previous

section, we create a L-level pyramid of features for each

color channel, with the same backbone network. In each

level l, we use a Stride-2 convolution to downsample the

features by a factor of 2 to form the next level features.

We call the three feature pyramids chromatic feature pyra-

mids, which are shown in the right figure of Fig. 2. Each of

(a) input (b) Red Feature @ Level 2

(c) Green Feature @ Level 2 (d) Blue Feature @ Level 2

(e) PWC feature @ Level 2 (f) Rain invariant feature@Level2

Figure 3: The streak-invariant features (f) contains much

less rain streaks compared with original PWC feature (g)

and R, G, B features (b-d).

the chromatic feature pyramids contains features extracted

from the color channel of the input rain images, including

rain streaks.

At each level l of every chromatic feature pyramid, we

apply two operations to extract the maximum and minimum

features, and multiply each of these features with some

weights, WM and Wm:

R
l
j = WM ⊙max

i
(Fl

j,i) +Wm ⊙min
i
(Fl

j,i), (5)

where i ∈ {R,G,B}, j ∈ 1, 2 and ⊙ represents element-

wise multiplication. R
l
j is our rain-streak-invariant fea-

tures, which are features that are less affected by rain

streaks. WM ,Wm, and F
l
j,i are all learned automatically

by our network.

Network Design Ideas The appearance of rain streaks is

commonly modeled as a linear combination of the back-

ground layer and rain-streak layer (e.g. [53, 12, 32, 23]).

Based on this model, Li et al. [26] show that subtracting the

minimum color channel from the maximum color channel

(i.e., residue channel) will generate a rain-invariant image.

Rain streaks are achromatic (white or gray) and appear ex-

actly in the same locations for different RGB color chan-

nels, thus subtracting the minimum color channel from the

maximum one will cancel the appearance of rain streaks.
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While the operation of subtracting the color channel by

another color channel in the image space is useful, it can

cause damage on the background image since it discards in-

formation. Therefore, our idea is to move the operation to

the feature domain, so that we can obtain the maximum and

minimum feature representations. Moreover, unlike [26],

we learn weights via the invariant feature mapping mod-

ule and apply them to the maximum and minimum repre-

sentations of the features (Eq. (5)). The values of these

weights may be spatially variant, i.e., different for differ-

ent pixels, and they are learned automatically by the net-

work through the backpropagation process, which uses the

optical flow estimation accuracy as the main goal. This

spatial variance learns to discard information in a context-

dependent manner, e.g., rain-streak free regions should have

less information discarded and be less affected by the in-

variant operation. Through our chromatic feature pyramids

and the invariant feature mapping, our network is capable

of a more powerful invariant representation than the sim-

ple linear operation proposed by [26], and also much more

tailored to complex rain streak scenario compared to tradi-

tional difference-based invariant such as hue. More impor-

tantly, it should still retain sufficient discriminatory infor-

mation in the computed cost volume, crucial for obtaining

robust optical flow under rain streaks. Figure 3 shows some

examples of our streak-invariant features.

3.3. Integrated Framework

As heavy rain consists of both the rain veiling effect and

rain streaks, to solve them concurrently, we combine the so-

lutions for the rain veiling effect (Sec. 3.1) and rain streaks

(Sec. 3.2). The right figure of Fig. 2 shows our integrated

network. Given a pair of input images, we create a fea-

ture pyramid (at the bottom of the figure) and three chro-

matic feature pyramids. For each of these feature pyramids,

we compute the the feature multipliers (Mr, Mg , Mb, and

MC) and thus obtain the corresponding veiling-invariant

features. For the features that focus on the rain-veiling ef-

fect (the bottom in the figure), we compute its cost volume,

and call it veiling-invariant (VI) cost volume. Meanwhile,

for the features focusing on rain streaks, we apply the global

maximum (A) and global minimum (B) operations to pro-

duce the maximum and minimum features. Subsequently,

we run the operation in Eq. (5) to obtain the streak-invariant

features, from which we can calculate the streak-invariant

(SI) cost volume. We concatenate the veiling-invariant and

streak-invariant cost volumes to compute the final optical

flow.

Loss Function The loss function of our network is ex-

pressed as:

L(Θ) =

L∑

l

αl

∑

x

(|ul
Θ(x)− ul

gt(x)|2) + γ|Θ|2, (6)

where Θ represents all the learnable parameters in our net-

work. uΘ is the predicted optical flow by our network,

and ugt is the optical flow ground-truth. | · |2 indicates

L2 norm of a vector and the weighting factor γ = 0.0004
in our experiment. αl is the learning weight parameter

for each pyramid level. We set α6 = 0.32, α5 = 0.08,

α4 = 0.02,α3 = 0.01, α2 = 0.005 in practice. The second

term regularizes all trainable parameters of the network. As

described in the loss function, our network requires only

training input data degraded by rain and the ground-truth

optical flow. We do not need the corresponding clean (non-

rain) images in our method.

4. Implementation

Training Details Unlike many other CNN-based optical

flow methods (e.g. [10, 22, 44]), we randomly initialize

and train our network using a mixed combination of the

FlyingChairs dataset [10] and the downsampled FlyingTh-

ings3D dataset [33], instead of separating the two datasets

for different training phases. We call this ChairThingsMix

dataset. Since the average displacement of FlyingThings3D

is around 38 pixels, which is higher than the 19 pixels of

FlyingChairs, we downsample the FlyingThings3D data to

half of its resolution, 270×480 pixels. The image pairs

in FlyingThings3D with extreme motion (magnitude larger

than 1000 pixels) are excluded. In total, there are 41,732

image pairs in the training set. Since the real rain test

dataset has small average motion, we use FlyingChairSDH

[22] to construct the ChairThingsMix dataset.

We use the Slong learning rate schedule described in

[22], starting from 0.0001 and reducing the learning rate

by half at 400K, 600K, 800K, 1M iterations with batch size

equal to 8. For the data augmentation, we use a simple strat-

egy, including only random translation and random image

size scaling. Specifically, the scaling parameter is uniformly

sampled from [0.95, 1.05], and the translation parameter

(tx, ty) from [-5%, 5%] of the image width w and height

h. After data augmentation, we crop 256 ×448 patches as

our network input.

During the training, we scale down the flow ground-

truths by 20 as suggested in [10, 44]. The downsampled

flow ground-truths are sent to each pyramid level. The fea-

ture pyramid and chromatic feature pyramids have 6 levels

starting from l0 = 2, i.e. the last layer of our network out-

puts a quarter size of the original flow field. We use bilinear

interpolation to upsample the output flow field. Regarding
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Table 1: Average EPE results on the FVR-660 and NUS-

100 dataset. For derain data, we apply Yang et al’s [51] to

perform deraining preprocessing
Method FVR-660 NUS-100 Time (s)

Condition Rain Derain Rain Derain Rain

Classic+NL 2.17 2.19 0.49 0.53 47.51

LDOF 2.93 2.98 0.68 0.60 76.00

EpicFlow 4.52 5.50 0.35 0.36 15.00

Robust-Flow 1.76 1.80 0.22 0.19 69.94

SpyNet 2.43 2.42 1.41 1.50 0.16

DCFlow 46.71 30.69 0.30 0.30 8.60

FlowNet2 5.73 6.07 0.28 0.30 0.12

FlowNet2-Rain 2.21 2.18 0.42 0.43 0.12

PWC-Net 2.66 2.57 0.49 0.53 0.02

PWC-Net-Rain 6.29 6.29 0.87 0.90 0.02

RainFlow-Rain 1.57 1.60 0.18 0.19 0.03

the cost volume computation, we set the search range to 4

pixels and the kernel size is 1 pixel.

Rain Rendering Details Due to the absence of large-

scale real rain sequences with flow ground-truths, we ren-

der synthetic rain. Our synthetic rain, containing both rain

streaks and the rain veiling effect, is rendered by the follow-

ing model introduced in [51]:

I(x) = α(x)(J(x) +
∑

i

Si(x)) + (1− α(x))A, (7)

where I(x) is the image intensity at pixel location x, J the

clean background image, α the transmission map, and Si

the rain streak layer at the depth-layer i. A is the atmo-

spheric light, which is assumed to be constant across the en-

tire image, since in a rainy scene, the main source of global

illumination is the cloudy skylight, which is diffused light.

For the rendering of rain streaks Si, we generate photo-

realistic rain streaks following Garg et al.’s rain model [15]

during the training process. For the FlyingChair dataset,

as it has no depth information available, we render the rain

veiling effect uniformly across each image. The transmis-

sion α is uniformly sampled from the range [0.3, 1]. The

atmospheric light is uniformly sampled from [0.4, 1]. Since

FlyingThings3D provides the depth information, we sample

the attenuation factor β uniformly from [3, 5] according to

α(x) = exp−βD(x), where D(x) is the depth of the scene

at location x.

5. Experimental Result

Three datasets are used in our evaluation: 1) Synthetic

rain rendered on MPI Sintel [7], KITTI [17] and VKITTI

[13] datasets, 2) Hybrid rain of the FVR-660 dataset [26],

3) Real-World rain with human annotated ground-truths,

i.e., the NUS-100 dataset [26]. As for the baseline meth-

ods, we choose a few conventional methods, i.e. Classic

+NL [43], LDOF [6], Epic-Flow, Robust-Flow [26] as well

Table 2: Average EPE results on the MPI Sintel dataset. We

evaluate both rain and clean weather conditions of the two

datasets. For the variational methods under rain data, we

apply Yang et al.’s [51] to perform deraining preprocessing.
Method Sintel (train) VKITTI KITTI2012

Condition Clean Rain Clean Rain Rain

Classic+NL 4.94 7.97 8.06 12.44 9.17

LDOF 4.29 10.68 12.69 19.38 10.17

EpicFlow 2.46 14.92 4.82 10.46 6.94

Robust-Flow 4.71 5.46 7.45 11.72 6.65

SpyNet 4.19 9.84 10.21 13.53 11.70

FlowNet2 2.02 7.68 6.13 9.12 7.23

FlowNet2-Rain 4.65 6.90 9.586 11.27 8.01

PWC-Net 2.55 14.20 6.73 11.39 7.55

PWC–Net-Rain 4.46 7.26 9.40 9.69 6.41

RainFlow-Rain 2.61 4.59 6.90 8.27 5.62

as recent supervised learning methods such as FlowNet2

[22], DCFlow [49], and PWC-Net [44]. For comprehen-

sive and fair comparisons, we train the baseline methods on

the same dataset as described in Sec. 4. We indicate those

networks trained on rainy data with the suffix ”-Rain” (e.g.

FlowNet2-Rain, PWC-Rain, etc.). We train these baselines

([22, 44]) according to the training details described in their

paper.

We test all the baseline methods on the rain-rendered

MPI Sintel [7] and KITTI2012 [17] datasets adopted from

[26]. We also test all the methods on the VKITTI dataset

[14] as it provides all kinds of weather conditions includ-

ing rain-rendered sequences. All the CNN-based baseline

methods are trained on the ChairThings (clean and rain)

datasets for a fair comparison.

Qualitative Results The qualitative results for the syn-

thetic rain datasets (Sintel, KITTI2012 and VKITTI) are

shown in Fig. 4. Real rain results are demonstrated in Fig. 6

and Fig. 7 respectively.

Quantitative Results The quantitative results of the syn-

thetic rain datasets are shown in Table 2. The real rain re-

sults are demonstrated in Table 1. From the results shown in

the table, our network consistently outperforms all the base-

line methods on the synthetic rain datasets. For the clean

(no rain) sequences, one can see that most of the current

CNN-based optical flow networks face performance degra-

dation on the clean testing datasets when they are trained

under the rain data due to the over-fitting problem. How-

ever, thanks to the rain-invariant features in our network,

our method still produces robust results on both rain and

clean testing datasets.

6. Ablation Study

Effectiveness of Multiplier M To verify the effective-

ness of the learnt parameter M, we perform a comparison

on PWC-Net and PWC-M, a PWC-based model added with
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First Frame PWC-Net [44] FlowNet2-rain [22] Ours Ground truth

Figure 4: A qualitative comparison of baseline methods and our method on MPI Sintel [7] and VKITTI [13]datasets.
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Figure 5: Cost volume analysis of PWC and PWC-M on clean and rain images. (b,c) show the cost volume values of the

pixels indicated by the red dots (a). For the graph, x-axis shows the channel index of the cost volume tensor, and y-axis

represents the cost volume value.

Table 3: Effectiveness of the feature multiplier M and the

Chromatic Pyramid (ChromPyrd).

Method Sintel VKITTI

Condition clean rain clean rain

PWC-rain 4.46 7.26 9.40 9.69

Ours w/o M 3.67 6.27 8.27 8.96

Ours w/o ChromPyrd 4.29 6.03 6.75 9.38

feature multiplier M at each level, on the estimated flow on

Sintel rendered with a strong rain veiling effect as shown

in Table 3. In this experiment, we use PWC-Net as our

baseline since it does not have parameter M. We create a

model called PWC-M by adding multiplier M learning at

each pyramid level of PWC-Net. We train both PWC-M

network and PWC network on the same training data de-

scribed in Sec. 4 and test them on the Sintel dataset ren-

dered with the rain veiling effect only. From the table, we

find that the performance of PWC-M outperforms PWC on

both rain and clean data. In addition, we also investigate

the cost volume on these two network models. In Fig. 5, we

plot the cost of a pixel. One can see that the variation of the

cost volume of rain input is much smaller than that of clean

input for PWC network, whereas with the feature-multiplier

M added to PWC network, the cost volumes of rain input

and clean input have similar range of variation. Therefore,

the optical flow decoder is able to compute the flow field

robustly for both rain sequences and clean sequences.

Effectiveness of Chromatic Pyramids To verify the ef-

fectiveness of the chromatic pyramids and invariant fea-

ture mapping, we compare PWC network and PWC net-

work with chromatic pyramids and invariant feature map-
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(a) Frame1 (b) Frame2 (c) PWC-Rain [44]

(d) Robust Flow [26] (e) Ours (f) Ground Truth

Figure 6: A qualitative comparison of baseline methods and our method on FVR-660 dataset [26].

First Frame FlowNet2-Rain [22] Robust Flow [26] PWC-Rain [44] Ours-Rain Ground Truth

Figure 7: A qualitative comparison of baseline methods and our method on NUS-100 dataset [26].

ping, denoted as PWC-Chromatic. We use Sintel rendered

with strong rain streaks and VKITTI datasets for evalua-

tion. The quantitative results are shown in Table 3. PWC-

Chromatic is able to outperform PWC network on all the

rain datasets with only a marginal increase in the number

of parameters needed (i.e. for the invariant feature mapping

module). In addition, it also performs better than PWC net-

work on clean datasets. This is because the chromatic fea-

ture pyramids and the invariant feature mapping are able to

extract more texture-rich features from the background.

7. Conclusion

We present a robust optical flow method that achieves

state of the art performance in rainy scenes. To deal with the

rain veiling effect, our network learns a contrast-enhancing

feature-multiplier M at each pyramid level so that the cost

volume of rainy images is as discriminative as that of a clean

image pair. To address the spurious gradients of densely dis-

tributed rain streaks, we propose a chromatic feature pyra-

mids that produce a streak-invariant features that are less

affected by rain streaks. In addition, our network perfor-

mance is not at the expense of optical flow estimation on

clean sequences even if it is trained under rain conditions.

Our experiments demonstrate that our network outperforms

all the baselines on all the existing benchmarking datasets.
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C. Hazırbaş, V. Golkov, P. Smagt, D. Cremers, , and T. Brox.

Flownet: Learning optical flow with convolutional net-

works. In IEEE International Conference on Computer Vi-

sion (ICCV), 2015.

[11] D. Fortun, P. Bouthemy, and C. Kervrann. Optical flow

modeling and computation. Comput. Vis. Image Underst.,

134(C):1–21, May 2015.

[12] X. Fu, J. Huang, D. Zeng, Y. Huang, X. Ding, and J. Paisley.

Removing rain from single images via a deep detail network.

In The IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), July 2017.

[13] A. Gaidon, Q. Wang, Y. Cabon, and E. Vig. Virtual worlds

as proxy for multi-object tracking analysis. In CVPR, 2016.

[14] A. Gaidon, Q. Wang, Y. Cabon, and E. Vig. Virtual worlds

as proxy for multi-object tracking analysis. In CVPR, 2016.

[15] K. Garg and S. K. Nayar. Photorealistic rendering of rain

streaks. ACM Trans. Graph., 25(3):996–1002, July 2006.

[16] K. Garg and S. K. Nayar. Vision and rain. Int. J. Comput.

Vision, 75(1):3–27, Oct. 2007.

[17] A. Geiger, P. Lenz, and R. Urtasun. Are we ready for au-

tonomous driving? the kitti vision benchmark suite. In

Conference on Computer Vision and Pattern Recognition

(CVPR), 2012.

[18] B. K. P. Horn and B. G. Schunck. Determining optical flow.

ARTIFICAL INTELLIGENCE, 17:185–203, 1981.

[19] Y. Hu, R. Song, and Y. Li. Efficient coarse-to-fine patch

match for large displacement optical flow. In 2016 IEEE

Conference on Computer Vision and Pattern Recognition

(CVPR), pages 5704–5712, June 2016.

[20] T.-W. Hui, X. Tang, and C. C. Loy. A Lightweight Opti-

cal Flow CNN - Revisiting Data Fidelity and Regularization.

2019.

[21] E. Ilg, O. Cicek, S. Galesso, A. Klein, O. Makansi, F. Hut-

ter, and T. Brox. Uncertainty estimates and multi-hypotheses

networks for optical flow. In The European Conference on

Computer Vision (ECCV), September 2018.

[22] E. Ilg, N. Mayer, T. Saikia, M. Keuper, A. Dosovitskiy, and

T. Brox. Flownet 2.0: Evolution of optical flow estimation

with deep networks. CoRR, abs/1612.01925, 2016.

[23] L. W. Kang, C. W. Lin, and Y. H. Fu. Automatic single-

image-based rain streaks removal via image decomposition.

IEEE Transactions on Image Processing, 21(4):1742–1755,

April 2012.

[24] J. H. Kim, J. Y. Sim, and C. S. Kim. Video deraining

and desnowing using temporal correlation and low-rank ma-

trix completion. IEEE Transactions on Image Processing,

24(9):2658–2670, Sept 2015.

[25] M. Li, Q. Xie, Q. Zhao, W. Wei, S. Gu, J. Tao, and D. Meng.

Video rain streak removal by multiscale convolutional sparse

coding. In The IEEE Conference on Computer Vision and

Pattern Recognition (CVPR), June 2018.

[26] R. Li, R. T. Tan, and L.-F. Cheong. Robust optical flow in

rainy scenes. In The European Conference on Computer Vi-

sion (ECCV), September 2018.

[27] X. Li, J. Wu, Z. Lin, H. Liu, and H. Zha. Recurrent squeeze-

and-excitation context aggregation net for single image de-

raining. In The European Conference on Computer Vision

(ECCV), September 2018.

[28] Y. Li, D. Min, M. S. Brown, M. N. Do, and J. Lu. Spm-bp:

Sped-up patchmatch belief propagation for continuous mrfs.

In 2015 IEEE International Conference on Computer Vision

(ICCV), pages 4006–4014, Dec 2015.

[29] Y. Li, R. T. Tan, X. Guo, J. Lu, and M. Brown. Single image

rain streak separation using layer priors. IEEE transactions

on image processing: a publication of the IEEE Signal Pro-

cessing Society, 2017.

[30] C. Liu, J. Yuen, and A. Torralba. Sift flow: Dense corre-

spondence across scenes and its applications. IEEE Trans.

Pattern Anal. Mach. Intell., 33(5):978–994, May 2011.

[31] J. Liu, W. Yang, S. Yang, and Z. Guo. Erase or fill? deep joint

recurrent rain removal and reconstruction in videos. In The

IEEE Conference on Computer Vision and Pattern Recogni-

tion (CVPR), June 2018.

[32] Y. Luo, Y. Xu, and H. Ji. Removing rain from a single image

via discriminative sparse coding. In 2015 IEEE International

Conference on Computer Vision (ICCV), pages 3397–3405,

Dec 2015.

43297312
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