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Abstract

Person re-identification (re-ID) aims at matching images

of the same identity across camera views. Due to varying

distances between cameras and persons of interest, resolu-

tion mismatch can be expected, which would degrade per-

son re-ID performance in real-world scenarios. To over-

come this problem, we propose a novel generative adver-

sarial network to address cross-resolution person re-ID, al-

lowing query images with varying resolutions. By advanc-

ing adversarial learning techniques, our proposed model

learns resolution-invariant image representations while be-

ing able to recover the missing details in low-resolution in-

put images. The resulting features can be jointly applied for

improving person re-ID performance due to preserving res-

olution invariance and recovering re-ID oriented discrimi-

native details. Our experiments on five benchmark datasets

confirm the effectiveness of our approach and its superiority

over the state-of-the-art methods, especially when the input

resolutions are unseen during training.

1. Introduction

Person re-identification (re-ID) [49] aims at recognizing

the same person across images taken by different cameras,

and is an active research topic in computer vision. A vari-

ety of applications ranging from person tracking [1], video

surveillance system [25], to computational forensics [42]

are highly correlated this research topic. Nevertheless, due

to the presence of background clutter, occlusion, illumina-

tion or viewpoint changes, person re-ID remains a challeng-

ing task for practical applications.

Driven by the recent success of convolutional neural net-

works (CNNs), several learning-based methods [19, 34, 39,

51] have been proposed. Despite promising performances,

these methods are typically developed under the assumption
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Figure 1: Illustration and challenges of cross-resolution

person re-ID. Note that existing approaches typically lever-

age SR models with pre-selected resolutions followed by

person re-ID modules. This cannot not be easily applied to

query images with varying or unseen resolutions.

that both query and gallery images are of similar or suffi-

ciently high resolutions. This assumption, however, may not

hold in practice since image resolutions would vary drasti-

cally. For instance, query images captured by surveillance

cameras are often of low resolution (LR) whereas those in

the gallery set are carefully selected beforehand and are of

high resolution (HR). As a result, direct matching of LR

query images and HR gallery ones would lead to non-trivial

resolution mismatch problems.

To address cross-resolution person re-ID, most existing

methods [22, 44] employ super-resolution (SR) models to

convert LR inputs into their HR versions followed by person

re-ID. However, these methods suffer from two limitations.

First, each employed SR model is designed to upscale im-

age resolutions by a particular factor. Thus, these methods

need to pre-determine the resolutions of LR queries so that
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the corresponding SR models can be applied. However, de-

signing SR models for each possible resolution input makes

these methods hard to scale. Second, in the real-world sce-

nario, queries can be with various resolutions even with the

resolutions that are unseen during training. As illustrated in

Figure 1, queries with varying or unseen resolutions would

restrict the applicability of the person re-ID methods that

employ SR models since one cannot assume the resolutions

of the input images will be known in advance.

In this paper, we propose Cross-resolution Adversarial

Dual Network (CAD-Net) for cross-resolution person re-

ID. The key characteristics of CAD-Net are two-fold. First,

to address the resolution variations, CAD-Net derives the

resolution-invariant representations via adversarial learn-

ing. This allows our model to handle images of varying

and even unseen resolutions. Second, CAD-Net learns to

recover the missing details in LR input images. Together

with the resolution-invariant features, our model generates

HR images preferable for person re-ID, achieving the state-

of-the-art performance on cross-resolution person re-ID. It

is worth noting that the above image resolution recovery and

cross-resolution person re-ID are realized by a single model

learned in an end-to-end fashion.

The contributions of this paper are highlighted below:

• We propose an end-to-end trainable network which

advances adversarial learning strategies for cross-

resolution person re-ID.

• Our model learns resolution-invariant representations

while recovering the missing details in LR input im-

ages, resulting in improved cross-resolution person re-

ID performance.

• Our model is able to handle query images with vary-

ing or even unseen resolutions without the need to pre-

determine the input resolutions.

• Extensive experimental results on five challenging

datasets confirm that our method performs favorably

against the state-of-the-art person re-ID approaches.

2. Related Work

Person re-ID. A variety of existing methods [2, 3, 10,

24, 34, 37, 38] are developed to address various challenges

in person re-ID, such as background clutter, viewpoint

changes, and pose variations. For instance, Yang et al. [51]

learn a camera-invariant subspace to deal with the style

variations caused by different cameras. Liu et al. [35] de-

velop a pose-transferable framework based on the genera-

tive adversarial network (GAN) [16] to yield pose-specific

images for tackling the pose variations. Several meth-

ods [30, 39, 40] addressing background clutter leverage at-

tention mechanisms [4, 5, 9, 33] to emphasize the discrim-

inative parts. Another research trend focuses on domain

adaptation [8, 20] for person re-ID [13, 45]. By viewing

image-to-image translation methods as a data augmentation

technique, these methods employ image translation mod-

ules, e.g., CycleGAN [52], to generate viewpoint specific

images with labels. However, the above approaches typi-

cally assume that both query and gallery images are of simi-

lar or sufficiently high resolutions, which might not be prac-

tical for real-world applications.

Cross-resolution person re-ID. A number of methods [6,

22, 23, 31, 43, 44] have been proposed to address the prob-

lem of resolution mismatch in person re-ID. Li et al. [31]

jointly perform multi-scale distance metric learning and

cross-scale image domain alignment. Jing et al. [23] de-

velop a semi-coupled low-rank dictionary learning frame-

work to seek a mapping between HR and LR images.

Wang et al. [43] learn a discriminating scale-distance func-

tion space by varying the image scale of LR images when

matching with the HR ones. Nevertheless, these methods

adopt hand-crafted descriptors, which cannot easily adapt

the developed models to the tasks of interest, and thus may

lead to sub-optimal person re-ID performance.

Recently, three CNN-based methods [6, 22, 44] are pre-

sented for cross-resolution person re-ID. The network of

SING [22] is composed of several SR sub-networks and

a person re-ID module to carry out LR person re-ID. On

the other hand, CSR-GAN [44] cascades multiple SR-

GANs [28] and progressively recovers the details of LR im-

ages to address the resolution mismatch problem. In spite of

their promising results, such methods require the training of

pre-defined SR models. As mentioned earlier, the degree of

resolution mismatch, i.e., the resolution difference between

the query and gallery images, is typically unknown before-

hand. Moreover, if the resolution of the input LR query is

unseen during training, the above methods cannot be easily

applied or might not lead to satisfactory performance. Apart

from these methods, RAIN [6] aligns the feature distribu-

tions of HR and LR images, showing some performance

improvement over existing algorithms.

Similar to RAIN [6], our method also performs feature

distribution alignment between HR and LR images. Our

model differs from RAIN [6] in two aspects. First, our

model derives resolution-invariant representations and re-

covers the missing details in LR input images. By jointly

considering features of both modalities, our algorithm fur-

ther improves the performance. Second, the HR image re-

covery is learned in an end-to-end fashion, allowing our

model to recover HR images preferable for person re-ID.

Experimental results demonstrate that our approach can be

applied to input images of varying and even unseen resolu-

tions using only a single model.

Cross-resolution vision applications. The issues regard-

ing cross-resolution handling have been studied in the lit-

erature. For face recognition, existing approaches typically
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Figure 2: Overview of Cross-resolution Adversarial Dual Network (CAD-Net). CAD-Net comprises Cross-Resolution

GAN (CRGAN) and Cross-Modal Re-ID network. The former learns resolution-invariant representations and recovers the

missing details in LR input images, while the latter considers both feature modalities for cross-resolution person re-ID.

rely on face hallucination algorithms [46, 53] or SR mecha-

nisms [12, 14, 26] to super-resolve the facial details. Un-

like the above existing methods that focus on synthesiz-

ing the facial details, our model learns to recover re-ID

oriented discriminative details. Together with the derived

resolution-invariant features, our model would considerably

boost the person re-ID performance while allowing query

images with varying and even unseen resolutions.

3. Proposed Method

In this section, we first provide an overview of our pro-

posed approach. We then describe the details of each net-

work component as well as the loss functions.

3.1. Algorithmic Overview

We define the notations to be used in this paper. In the

training stage, we have access to a set of N HR images

XH = {xH
i }Ni=1 and its corresponding label set YH =

{yHi }Ni=1, where xH
i ∈ R

H×W×3 and yHi ∈ R are the ith

HR image and its label, respectively. To allow our model to

handle images of different resolutions, we generate a syn-

thetic LR image set XL = {xL
i }

N
i=1 by down-sampling each

image in XH , followed by resizing them back to the original

image size via bilinear up-sampling (i.e., xL
i ∈ R

H×W×3),

where xL
i is the synthetic LR image of xH

i . Obviously, the

label set YL for XL is identical to YH .

As shown in Figure 2, our network comprises two com-

ponents: Cross-Resolution Generative Adversarial Network

(CRGAN) and Cross-Modal Re-ID network. To achieve

cross-resolution person re-ID, our CRGAN simultaneously

learns a resolution-invariant representation f ∈ R
h×w×d

(h×w is the spatial size of f whereas d denotes the number

of channels) from the input cross-resolution images, while

producing the associated HR images as the decoder outputs.

The recovered HR output image will be encoded as an HR

representation g ∈ R
h×w×d by the HR encoder. For person

re-ID, we first concatenate f and g to form a joint repre-

sentation v = [f, g] ∈ R
h×w×2d. The classifier then takes

the joint representation v as input to perform person identity

classification. The details of each component are elaborated

in the following subsections.

As for testing, our network takes a query image resized

to H × W × 3 as the input, and computes the joint rep-

resentation v = [f, g] ∈ R
h×w×2d. We then apply global

average pooling (GAP) to v for deriving a joint feature vec-

tor u = GAP(v) ∈ R
2d, which is applied to match the

gallery images via nearest neighbor search with Euclidean

distance. It is worth repeating that, the query image during

testing can be with varying resolutions or with unseen ones

during training (verified in experiments).

3.2. Cross­Resolution GAN (CRGAN)

In CRGAN, we have a cross-resolution encoder E which

converts input images across different resolutions into

resolution-invariant representations, followed by a high-

resolution decoder G recovering the associated HR versions.

Cross-resolution encoder E . Since our goal is to per-

form cross-resolution person re-ID, we encourage the cross-
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resolution encoder E to extract resolution-invariant features

for input images across resolutions (e.g., HR images XH

and LR ones XL). To achieve this, we advance adversar-

ial learning strategies and deploy a resolution discriminator

DF in the latent feature space. This discriminator DF takes

the feature maps fH and fL as inputs to determine whether

the input feature maps are from XH or XL. To be more

precise, we define the feature-level adversarial loss LDF

adv as

LDF

adv = ExH∼XH
[log(DF (fH))]

+ ExL∼XL
[log(1−DF (fL))],

(1)

where fH = E(xH) and fL = E(xL) ∈ R
h×w×d denote

the encoded HR and LR image features, respectively.1

With loss LDF

adv, our resolution discriminator DF aligns

the feature distributions across resolutions, carrying out the

learning of resolution-invariant representations.

High-resolution decoder G. In addition to learning the

resolution-invariant representation f , our CRGAN further

synthesizes the associated HR images. This is to recover

the missing details in LR input images, together with the

person re-ID task to be performed later in the cross-modal

re-ID network.

To achieve this goal, we have an HR decoder G in our

CRGAN which reconstructs (or recovers) the HR images

as the outputs. To accomplish this, we apply an HR recon-

struction loss Lrec between the reconstructed HR images

and their corresponding HR ground-truth images. Specifi-

cally, the HR reconstruction loss Lrec is defined as

Lrec = ExH∼XH
[‖G(fH)− xH‖1]

+ ExL∼XL
[‖G(fL)− xH‖1],

(2)

where the HR ground-truth image associated with xL is xH .

Following Huang et al. [21], we adopt the ℓ1 norm in the

loss Lrec as it preserves image sharpness. We note that both

XH and XL will be shuffled during training. That is, im-

ages of the same identity but different resolutions will not

necessarily be observed by CRGAN at the same time.

It is worth noting that, while the aforementioned HR re-

construction loss Lrec could reduce information loss in the

latent feature space, we follow Ledig et al. [28] and intro-

duce skip connections between the cross-resolution encoder

E and the HR decoder G. This would facilitate the learning

process of image reconstruction, as well as allowing more

efficient gradient propagation.

To encourage the HR decoder G to produce more per-

ceptually realistic HR outputs and associate with the task

of person re-ID, we further adopt adversarial learning in

the image space and introduce an HR image discriminator

DI which takes the recovered HR images (i.e., G(fL) and

1For simplicity, we omit the subscript i, denote HR and LR images as

xH and xL, and represent their corresponding labels as yH and yL.

G(fH)) and their corresponding HR ground-truth images as

inputs to distinguish whether the input images are real or

fake [28, 44]. Specifically, we define the image-level adver-

sarial loss LDI

adv as

L
DI

adv
= ExH∼XH

[log(DI(xH))] + ExL∼XL
[log(1 − DI(G(fL)))]

+ ExH∼XH
[log(DI(xH))] + ExH∼XH

[log(1 − DI(G(fH)))].
(3)

It is also worth repeating that the goal of this HR de-

coder G is not simply to recover the missing details in LR

input images, but also to have such recovered HR images

aligned with the learning task of interest (i.e., person re-ID).

Namely, we encourage the HR decoder G to perform re-ID

oriented HR recovery, which is further realized by the fol-

lowing cross-modal re-ID network.

3.3. Cross­Modal Re­ID

As shown in Figure 2, the cross-modal re-ID network

first applies an HR encoder F , which takes the recon-

structed HR image from CRGAN as input, to derive the HR

feature representation g ∈ R
h×w×d. Then, a classifier C is

learned to complete person re-ID.

As for the input to the classifier C, we jointly consider

the feature representations of two different modalities for

person identity classification, i.e., the resolution-invariant

representation f and the HR representation g. The former

preserves content information, while the latter observes the

recovered HR details for person re-ID. Thus, we have the

classifier C take the concatenated feature representation v =
[f, g] ∈ R

h×w×2d as the input. In this work, the adopted

classification loss Lcls is the integration of the identity loss

Lid and the triplet loss Ltri [19], and is defined as

Lcls = Lid + Ltri, (4)

where the identity loss Lid computes the softmax cross en-

tropy between the classification prediction and the corre-

sponding ground-truth one hot vector, while the triplet loss

Ltri is introduced to enhance the discrimination ability dur-

ing person re-ID process and is defined as

Ltri = E(xH ,yH)∼(XH ,YH) max(0, φ+ dHpos − dHneg)

+ E(xL,yL)∼(XL,YL) max(0, φ+ dLpos − dLneg),
(5)

where dpos and dneg are the distances between the positive

(same label) and the negative (different labels) image pairs,

respectively, and φ > 0 serves as the margin. We note that

weighted identity classification loss [7] can also be adopted

to improve person identity classification.

It can be seen that the above cross-resolution person

re-ID framework is very different from existing one like

CSR-GAN [44], which addresses SR and person re-ID sep-

arately. More importantly, the aforementioned identity loss

Lid not only updates the classifier C, but also refines the HR
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decoder G in our CRGAN. This is the reason why our CR-

GAN is able to produce re-ID oriented HR outputs, i.e., the

recovered HR details preferable for person re-ID.

Full objective. The total loss function L for training our

proposed CAD-Net is summarized as follows:

L = Lcls + λDF

adv · L
DF

adv + λrec · Lrec + λDI

adv · L
DI

adv, (6)

where λDF

adv, λrec, and λDI

adv are the hyper-parameters used to

control the relative importance of the corresponding losses.

We note that losses LDF

adv, Lrec, and LDI

adv are developed to

learn CRGAN, while loss Lcls is designed to update both

CRGAN and cross-modal re-ID network.

To train our network using training HR images and their

down-sampled LR ones, we minimize the HR reconstruc-

tion loss Lrec for updating our CRGAN, and the classifica-

tion loss Lcls for jointly updating CRGAN and cross-modal

re-ID network. The image-level adversarial loss LDI

adv is

computed for producing perceptually realistic HR images

while the feature-level adversarial loss LDF

adv is optimized

for learning resolution-invariant representations.

4. Experiments

We first provide the implementation details, followed

by dataset descriptions and settings. Both quantitative and

qualitative results are presented, including ablation studies.

4.1. Implementation Details

We implement our model using PyTorch. ResNet-

50 [18] pretrained on ImageNet is used to build the cross-

resolution encoder E and the HR encoder F . Note that

since E and F work for different tasks, these two compo-

nents do not share weights. The classifier C is composed of

a global average pooling layer and a fully connected layer

followed a softmax activation. The architecture of the res-

olution discriminator DF is the same as that adopted by

Tsai et al. [41]. The structure of the HR image discrimi-

nator DI is similar to ResNet-18 [18]. Our HR decoder G
is similar to that proposed by Miyato et al. [36]. Compo-

nents DF , DI , G, and C are all randomly initialized. We use

stochastic gradient descent to train the proposed model. For

components E , G, F , and C, the learning rate, momentum,

and weight decay are 1× 10−3, 0.9, and 5× 10−4, respec-

tively. For the two discriminators DF and DI , the learning

rate is set to 1×10−4. The batch size is 32. The margin φ in

the triplet loss Ltri is set to 2. We set the hyper-parameters

in all the experiments as follows: λDF

adv = 1, λrec = 1, and

λDI

adv = 1. All images of various resolutions are resized to

256 × 128 × 3 in advance. We train our model on a single

NVIDIA GeForce GTX 1080 GPU with 12 GB memory.

4.2. Datasets

We evaluate the proposed method on five datasets, each

of which is described as follows.

CUHK03 [29]. The CUHK03 dataset comprises 14, 097
images of 1, 467 identities with 5 different camera views.

Following CSR-GAN [44], we use the 1, 367/100 train-

ing/test identity split.

VIPeR [17]. The VIPeR dataset contains 632 person-

image pairs captured by 2 cameras. Following SING [22],

we randomly divide this dataset into two non-overlapping

halves based on the identity labels. Namely, images of a

subject belong to either the training set or the test set.

CAVIAR [11]. The CAVIAR dataset is composed of

1, 220 images of 72 person identities captured by 2 cam-

eras. Following SING [22], we discard 22 people who only

appear in the closer camera, and split this dataset into two

non-overlapping halves according to the identity labels.

Market-1501 [48]. The Market-1501 dataset consists of

32, 668 images of 1, 501 identities with 6 camera views. We

use the widely adopted 751/750 training/test identity split.

DukeMTMC-reID [50]. The DukeMTMC-reID dataset

contains 36, 411 images of 1, 404 identities captured by 8
cameras. We adopt the benchmarking 702/702 training/test

identity split.

4.3. Experimental Settings and Evaluation Metrics

We evaluate the proposed method using cross-resolution

person re-ID setting [22] where the test (query) set is com-

posed of LR images while the gallery set contains HR im-

ages only. In all of the experiments, we adopt the standard

single-shot person re-ID setting [22, 32] and use the average

cumulative match characteristic as the evaluation metric.

4.4. Evaluation and Comparisons

Following SING [22], we consider multiple low-

resolution (MLR) person re-ID and evaluate the pro-

posed method on four synthetic and one real-world bench-

marks. To construct the synthetic MLR datasets (i.e., MLR-

CUHK03, MLR-VIPeR, MLR-Market-1501, and MLR-

DukeMTMC-reID), we follow SING [22] and down-sample

images taken by one camera by a randomly selected down-

sampling rate r ∈ {2, 3, 4} (i.e., the size of the down-

sampled image becomes H
r

× W
r

× 3), while the im-

ages taken by the other camera(s) remain unchanged. The

CAVIAR dataset inherently contains realistic images of

multiple resolutions, and is a genuine and more challeng-

ing dataset for evaluating MLR person re-ID.

We compare our approach with methods developed

for cross-resolution person re-ID, including JUDEA [31],
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Table 1: Results of cross-resolution re-ID (%). Bold and underlined numbers indicate top two results, respectively.

Method
MLR-CUHK03 MLR-VIPeR CAVIAR MLR-Market-1501 MLR-DukeMTMC-reID

Rank 1 Rank 5 Rank 10 Rank 1 Rank 5 Rank 10 Rank 1 Rank 5 Rank 10 Rank 1 Rank 5 Rank 10 Rank 1 Rank 5 Rank 10

JUDEA [31] 26.2 58.0 73.4 26.0 55.1 69.2 22.0 60.1 80.8 - - - - - -

SLD2L [23] - - - 20.3 44.0 62.0 18.4 44.8 61.2 - - - - - -

SDF [43] 22.2 48.0 64.0 9.3 38.1 52.4 14.3 37.5 62.5 - - - - - -

SING [22] 67.7 90.7 94.7 33.5 57.0 66.5 33.5 72.7 89.0 74.4 87.8 91.6 65.2 80.1 84.8

CSR-GAN [44] 71.3 92.1 97.4 37.2 62.3 71.6 34.7 72.5 87.4 76.4 88.5 91.9 67.6 81.4 85.1

CamStyle [51] 69.1 89.6 93.9 34.4 56.8 66.6 32.1 72.3 85.9 74.5 88.6 93.0 64.0 78.1 84.4

FD-GAN [15] 73.4 93.8 97.9 39.1 62.1 72.5 33.5 71.4 86.5 79.6 91.6 93.5 67.5 82.0 85.3

Ours (f only) 77.6 96.2 98.5 41.2 66.3 75.6 41.5 75.3 85.6 80.1 90.6 93.2 73.4 84.4 86.8

Ours (g only) 79.7 97.4 98.7 41.7 66.4 76.1 38.9 73.1 90.6 82.2 91.3 94.5 74.1 85.1 88.2

Ours 82.1 97.4 98.8 43.1 68.2 77.5 42.8 76.2 91.5 83.7 92.7 95.8 75.6 86.7 89.6

SLD2L [23], SDF [43], SING [22], and CSR-GAN [44],

and methods developed for standard person re-ID, including

CamStyle [51] and FD-GAN [15]. For methods developed

for cross-resolution person re-ID, the training set contains

HR images and LR ones with all three down-sampling rates

r ∈ {2, 3, 4} for each person. For methods developed for

standard person re-ID, the training set contains HR images

for each identity only.

Table 1 reports the quantitative results recorded at ranks

1, 5, and 10 on all five adopted datasets. For CSR-

GAN [44] on MLR-CUHK03, CAVIAR, MLR-Market-

1501, and MLR-DukeMTMC-reID, and CamStyle [51] and

FD-GAN [15] on all five adopted datasets, their results are

obtained by running the released code with the default im-

plementation setup. For SING [22], we reproduce their re-

sults on MLR-Market-1501 and MLR-DukeMTMC-reID.

We note that the performance of our method can be fur-

ther improved by applying pre-/post-processing methods,

attention mechanisms, or re-ranking. For fair comparisons,

no such techniques are used in all of our experiments.

Results. In Table 1, our method performs favorably

against all competing methods on all five datasets. We

observe that our method consistently outperforms the best

competitors [15, 44] by 4% ∼ 8% at rank 1. The perfor-

mance gains can be ascribed to three main factors. First,

unlike most existing person re-ID methods, our model per-

forms cross-resolution person re-ID in an end-to-end learn-

ing fashion. Second, our method learns resolution-invariant

representations, allowing our model to recognize persons in

images of different resolutions. Third, our model learns to

recover the missing details in LR input images, thus provid-

ing additional discriminative evidence for person re-ID.

The advantage of deriving joint representation v = [f, g]
can be assessed by comparing with two of our variant meth-

ods, i.e., Ours (f only) and Ours (g only). In method “Ours

(f only)”, the classifier C only takes the resolution-invariant

representation f as input. In method “Ours (g only)”, the

classifier C only takes the HR representation g as input. We

observe that deriving joint representation v consistently im-

proves the performance over these two baseline methods.

We note that method “Ours (f only)” achieves a better per-

formance than method “Ours (g only)” on the CAVIAR

dataset. We attribute the results to the higher resolution

variations exhibited in the CAVIAR dataset.

4.5. Evaluation of the Recovered HR Images

To demonstrate that our CRGAN is capable of recover-

ing the missing details in LR images of varying and even

unseen resolutions, we evaluate the quality of the recov-

ered HR images on the MLR-CUHK03 test set using SSIM,

PSNR, and LPIPS [47] metrics. We employ the ImageNet-

pretrained AlexNet [27] when computing LPIPS. We com-

pare our CRGAN with CycleGAN [52], SING [22], and

CSR-GAN [44]. For CycleGAN [52], we train the model to

learn a mapping between LR and HR images. We report the

quantitative results of the recovered image quality and per-

son re-ID in Table 2 with two different settings: (1) LR im-

ages of resolutions seen during training, i.e., r ∈ {2, 3, 4},

and (2) LR images of unseen resolution, i.e., r = 8.

For seen resolutions (i.e., left block), we observe that our

results using SSIM and PSNR metrics are slightly worse

than CSR-GAN [44] while compares favorably against

SING [22] and CycleGAN [52]. However, our method per-

forms favorably against these three methods using LPIPS

metric and achieves the state-of-the-art performance when

evaluating on cross-resolution person re-ID task. These re-

sults indicate that (1) SSIM and PSNR metrics are low-level

pixel-wise metrics, which do not reflect high-level percep-

tual tasks and (2) the end-to-end learning of cross-resolution

person re-ID would result in better person re-ID perfor-

mance and recover more perceptually realistic HR images

as reflected by LPIPS.

For unseen resolution (i.e., right block), our method per-

forms favorably against all three competing methods on all

the adopted evaluation metrics. These results suggest that

our method is capable of handling unseen resolution (i.e.,

r = 8) with favorable performance in terms of both image
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Table 2: Quantitative results of cross-resolution person re-ID on the MLR-CUHK03 test set. Left block: resolutions are

seen during training. Right block: resolution is not seen during training.

Method
Down-sampling rate r ∈ {2, 3, 4} (seen) Down-sampling rate r = 8 (unseen)

SSIM ↑ PSNR ↑ LPIPS [47] ↓ Rank 1 (%) ↑ SSIM ↑ PSNR ↑ LPIPS [47] ↓ Rank 1 (%) ↑

CycleGAN [52] 0.55 14.1 0.31 62.1 0.42 12.7 0.37 40.5

SING [22] 0.65 18.1 0.18 67.7 0.52 14.5 0.34 54.2

CSR-GAN [44] 0.76 21.5 0.13 71.3 0.67 17.2 0.25 62.1

Ours 0.73 20.2 0.07 82.1 0.71 19.8 0.11 78.6

1 2 4 8𝒓 1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8

Figure 3: Visual results of the recovered HR images on the MLR-CUHK03 test set. We present the visual comparison

among CycleGAN [52], SING [22], CSR-GAN [44], and the proposed CRGAN.

quality and person re-ID. Note that we only train our model

with HR images and LR ones with r ∈ {2, 3, 4}.

Figure 3 presents six examples. For each person, there

are four different resolutions (i.e., r ∈ {1, 2, 4, 8}). Note

that images with down-sampling rate r = 1 indicate that

the images remain their original sizes and are the corre-

sponding HR images of the LR ones. We observe that when

LR images with down-sampling rate r = 8 are given, our

model recovers the HR details with the highest visual qual-

ity among all competing methods. Both quantitative and

qualitative results above confirm that our model can handle

a range of seen resolutions and generalize well to unseen

resolutions using just one single model, i.e., CRGAN.

4.6. Ablation Study

To analyze the importance of each developed loss func-

tion, we conduct an ablation study on the MLR-CUHK03

dataset. Table 3 reports the quality of the recovered HR im-

ages and the performance of cross-resolution person re-ID

recorded at rank 1.

Image-level adversarial loss LDI

adv. When loss LDI

adv is

turned off, our model is not encouraged to produce percep-

tually realistic HR images as reflected by LPIPS, resulting

in a performance drop of 2.3% at rank 1.

Feature-level adversarial loss LDF

adv. Without loss LDF

adv,

our model does not learn resolution-invariant representa-

tions and thus suffers from the resolution mismatch issue.

Significant performance drops in the recovered image qual-

ity and person re-ID performance occur, indicating the im-

portance of our method for learning resolution-invariant

representations to address the resolution mismatch issue.

HR reconstruction loss Lrec. Once loss Lrec is excluded,

there is no explicit supervision to guide the CRGAN to per-

form image recovery, and the model implicitly suffers from

information loss in compressing visual images into seman-

tic feature maps. Severe performance drops in terms of the

recovered image quality and person re-ID performance are

hence caused.

Classification loss Lcls. Although our model is still able

to perform image recovery without loss Lcls, our model can-

not perform discriminative learning for person re-ID since

data labels are not used during training. Thus, significant

performance drop in person re-ID occurs.
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(a) Ours w/o LDF

adv
: colorized w.r.t identity. (b) Ours: colorized w.r.t identity. (c) Ours: colorized w.r.t resolution.

Figure 4: 2D visualization of the resolution-invariant feature vector w on the MLR-CUHK03 test set via t-SNE. Data

of different identities (each in a unique color) derived by our model without and with observing the feature-level adversarial

loss LDF

adv are shown in (a) and (b), respectively. The same data but with resolution-specific colorization, i.e., one color for

each down-sampling rate r ∈ {1, 2, 4, 8}, are depicted in (c). Note that images with r = 8 are not seen during training.

The ablation study demonstrates that the losses LDF

adv,

Lrec, and Lcls are crucial to our method, while the loss LDI

adv

is helpful for improving the performance of cross-resolution

person re-ID as well as the quality of the recovered images.

4.7. Resolution­Invariant Representation f

To demonstrate the effectiveness of our model in de-

riving the resolution-invariant representations, we first ap-

ply global average pooling to f to obtain the resolution-

invariant feature vector w = GAP(f) ∈ R
d. We then visu-

alize w on the MLR-CUHK03 test set in Figure 4.

To be more precise, we select 15 different identities, each

of which is indicated by a unique color, as shown in Fig-

ure 4a and Figure 4b. In Figure 4a, we observe that without

the feature-level adversarial loss LDF

adv, our model cannot

establish a well-separated feature space. When loss LDF

adv is

imposed, as shown in Figure 4b, the projected feature vec-

tors are well separated. These two figures indicate that with-

out loss LDF

adv, our model does not learn resolution-invariant

representations, thus implicitly suffering from the negative

impact induced by the resolution mismatch issue.

We note that the projected feature vectors in Figure 4b

are well separated, suggesting that sufficient person re-ID

ability can be exhibited by our model. On the other hand,

for Figure 4c, we colorize each image resolution with a

unique color in each identity cluster (four different down-

sampling rates r ∈ {1, 2, 4, 8}). We observe that the pro-

jected feature vectors of the same identity but different

down-sampling rates are all well clustered. We note that

images with down-sampling rate r = 8 are not present in

the training set (i.e., unseen resolution).

The above visualizations demonstrate that our model

learns resolution-invariant representations and generalizes

well to unseen image resolution (e.g., r = 8) for cross-

resolution person re-ID.

Table 3: Ablation study on the MLR-CUHK03 dataset.

Bold and underlined numbers indicate top two results, re-

spectively.

Method SSIM ↑ PSNR ↑ LPIPS [47] ↓ Rank 1 (%) ↑

Ours 0.73 20.2 0.07 82.1

Ours w/o LDI

adv
0.67 18.5 0.17 79.8

Ours w/o LDF

adv
0.54 14.2 0.34 67.6

Ours w/o Lrec 0.45 12.9 0.40 66.7

Ours w/o Lcls 0.72 21.4 0.11 1.7

5. Conclusions

We have presented an end-to-end trainable generative

adversarial network, CAD-Net, for addressing the reso-

lution mismatch issue in person re-ID. The core techni-

cal novelty lies in the unique design of the proposed CR-

GAN which learns the resolution-invariant representations

while being able to recover re-ID oriented HR details. Our

cross-modal re-ID network jointly considers the informa-

tion from two feature modalities, leading to better person

re-ID capability. Extensive experimental results demon-

strate that our approach performs favorably against existing

cross-resolution and standard person re-ID methods on five

challenging benchmarks, and produces perceptually higher

quality HR images using only a single model. Visualization

of the resolution-invariant representations further verifies

our ability in handling query images with varying or even

unseen resolutions. Thus, the use of our model for practical

person re-ID applications can be strongly supported.
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