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Abstract

In this paper, we propose the USIP detector: an Un-

supervised Stable Interest Point detector that can detect

highly repeatable and accurately localized keypoints from

3D point clouds under arbitrary transformations without

the need for any ground truth training data. Our USIP

detector consists of a feature proposal network that learns

stable keypoints from input 3D point clouds and their re-

spective transformed pairs from randomly generated trans-

formations. We provide degeneracy analysis and suggest

solutions to prevent it. We encourage high repeatability

and accurate localization of the keypoints with a proba-

bilistic chamfer loss that minimizes the distances between

the detected keypoints from the training point cloud pairs.

Extensive experimental results of repeatability tests on sev-

eral simulated and real-world 3D point cloud datasets from

Lidar, RGB-D and CAD models show that our USIP de-

tector significantly outperforms existing hand-crafted and

deep learning-based 3D keypoint detectors. Our code is

available at the project website.1

1. Introduction

3D interest point or keypoint detection refers to the prob-

lem of finding stable points with well-defined positions that

are highly repeatable on 3D point clouds under arbitrary

SE(3) transformations. These detected keypoints play im-

portant roles in many computer vision and robotics tasks,

where 3D point clouds are widely adopted as the data struc-

ture to represent objects and scenes in the 3D space. Exam-

ples include geometric registration for 3D object modeling

[1] or point cloud-based SLAM [20], and 3D object [12, 16]

or place recognition [30]. In these tasks, the detected key-

points are respectively used as correspondences to compute

rigid transformations, and locations to extract representative

signatures for efficient retrievals.

Despite the high number of successful hand-crafted de-

tectors proposed for 2D images [22, 17, 11], significantly

lesser hand-crafted detectors [28] with limited success are

∗Jiaxin Li now works at nuTonomy, an APTIV company.
1https://github.com/lijx10/USIP
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Figure 1. Examples of keypoints detected by our USIP detector

on four datasets: (a) ModelNet40 [31], object model. (b) Oxford

RobotCar [18], outdoor SICK LiDAR. (c) KITTI [9] (Trained on

Oxford), outdoor Velodyne LiDAR.

proposed for hand-crafted detectors on 3D point clouds.

This difference can be largely attributed to the difficulty

in hand-crafting powerful algorithms to extract meaningful

information solely from the Euclidean coordinates of the

point cloud in comparison to images that contain richer in-

formation from the additional RGB channels. The problem

is further aggravated by the fact that it is difficult to hand-

craft 3D detectors to handle 3D point clouds in arbitrary

transformations, i.e., different reference coordinate frames.

Very few deep learning-based 3D keypoint detectors ex-

ist (only one deep learning-based approach [32] exists to

date) in contrast to its increasing success on learning 3D

keypoint descriptors [6, 5, 34, 13]. This is due to the lack

of ground truth training datasets to supervise deep learning-

based detectors on 3D point clouds. Unlike 3D descriptors

that are supervised by easily available ground truth regis-

tered overlapping 3D point clouds [6, 5, 13, 34, 32, 10], it

is impossible for anyone to identify and label the “ground

truth” keypoints on 3D point clouds.

We propose the USIP detector: an Unsupervised Stable

Interest Point deep learning-based detector that can detect

highly repeatable, and accurately localized keypoints from

3D point clouds under arbitrary transformations without the

need for any ground truth training data. To this end, we de-

sign a Feature Proposal Network (FPN) that outputs a set of

keypoints and their respective saliency uncertainties from

an input 3D point cloud. Our FPN improves keypoint local-

ization by estimating their positions on contrary to existing

3D detectors [26, 32, 35] that select existing points in the

point cloud as keypoints, which causes quantization errors.

During training, we apply randomly generated SE(3) trans-
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formations on each point cloud to get a set of correspond-

ing pairs of transformed point clouds as inputs to the FPN.

Furthermore, we identify and prevent the degeneracy of our

USIP detector. We encourage high repeatability and accu-

rate localization of the keypoints with a probabilistic cham-

fer loss that minimizes the distances between the detected

keypoints from the training point cloud pairs. Additionally,

we introduce a point-to-point loss to enforce the constraint

of getting keypoints that lie close to the point cloud. We

verify our USIP detector by performing extensive experi-

ments on several simulated and real-world 3D point cloud

datasets from Lidar, RGB-D and CAD models. Some qual-

itative results are shown in Fig 1. Our key contributions:

• Our USIP detector is fully unsupervised, thus avoids

the need for ground truth that are impossible to obtain.

• We provide degeneracy analysis of our USIP detector

and suggest solutions to prevent it.

• Our FPN improves keypoint localization by estimating

the keypoint position instead of choosing it from an

existing point in the point cloud.

• We introduce the probabilistic chamfer loss and point-

to-point loss to encourage high repeatability and accu-

rate keypoint localization.

• The use of randomly generated transformations on

point clouds during training inherently allows our net-

work to achieve good performance under rotations.

2. Related Work

Unlike the recent success of deep learning-based 3D key-

point descriptors [6, 5, 13, 34, 32, 10], most existing 3D

keypoint detectors remain hand-crafted. A comprehensive

review and evaluation of existing hand-crafted 3D keypoint

detectors can be found in [28]. Local Surface Patches (LSP)

[3] and Shape Index (SI) [7] are based on the maximum and

minimum principal curvatures of a point, and consider the

point as a keypoint if it is a global extremum in a predefined

neighborhood. Intrinsic Shape Signatures (ISS) [35] and

KeyPoint Quality (KPG) [19] select salient points that has

a local neighborhood with large variations along each prin-

cipal axis. MeshDoG [33] and Salient Points (SP) [2] con-

struct a scale-space of the curvature with the Difference-of-

Gaussian (DoG) operator similar to SIFT [17]. Points with

local extrema values over an one-ring neighborhood are se-

lected as keypoints. Laplace-Beltrami Scale-sapce (LBSS)

[29] computes the saliency by applying a Laplace-Beltrami

operator on increasing supports for each point.

More recently, LORAX [8] proposes the method of pro-

jecting the point set into a depth map and use Principal

Component Analysis (PCA) to select keypoints with com-

monly found geometric characteristics. All hand-crafted

approaches share the common trait of relying on the lo-

cal geometric properties of the points to select keypoints.

Hence, the performances of these detectors deteriorate un-

der disturbances such as noise, density variations and/or

arbitrary transformations. To the best of our knowledge,

the only existing deep learning-based 3D keypoint detector

is the weakly supervised 3DFeatNet [32], which is trained

with GPS/INS tagged point clouds. However, the training

of 3Dfeat-Net is largely focused on learning discriminative

descriptors using the Siamese architecture with an attention

score map that estimates the saliency of each point as its

by-product. It does not ensure good performance of the key-

point detection. In comparison, our USIP is designed to en-

courage high repeatability and accurate localization of the

keypoints. Furthermore, our method is fully unsupervised

and does not rely on any form of ground truth datasets.

3. Our USIP Detector

Fig. 2(a) shows the illustration of the pipeline to train

our USIP detector. We denote a point cloud from the

training dataset as X = [X0, · · · , XN ] ∈ R
3×N . A

set of transformation matrices {T1, · · · , TL}, where Tl ∈
SE(3) is randomly generated and applied to the point

cloud X to form L pairs of training inputs denoted as

{{X, X̃1}, · · · , {X, X̃L}}, where X̃l = Tl ◦ X ∈ R
3×N .

Here, we use the operator ◦ to denote matrix multiplica-

tion under homogeneous coordinate with a slight abuse of

notation. We drop the indices l for brevity and refer to a

triplet of training pair of point clouds and their correspond-

ing transformation matrix as {X, X̃, T}. During training,

X and X̃ are respectively fed into the FPN, which out-

puts M proposal keypoints and its saliency uncertainties

denoted as {Q = [Q1, · · · , QM ],Σ = [σ1, · · · ,σM ]T } and

{Q̃ = [Q̃1, · · · , Q̃M ], Σ̃ = [σ̃1, · · · , σ̃M ]T } for the respec-

tive point cloud. Qm ∈ R
3, Q̃m ∈ R

3, σm ∈ R
+ and

σ̃m ∈ R
+. We enforce σm ∈ R

+ and σ̃m ∈ R
+ so that

it is a valid rate parameter in our probabilistic chamfer loss

(see later paragraph). To improve keypoint localization, it

is not necessary for all Qm ∈ Q to be any of the points in

X. Similar condition applies to all Q̃m ∈ Q̃.

We undo the transformation on Q̃ with a slight abuse of

notation to get Q� = T−1 ◦ Q̃ ∈ R
3×M , so that Q� can be

compared directly to Q. Here, we made an assumption that

the saliency uncertainties remain unaffected after the trans-

formation, i.e., Σ� = Σ̃. The objectives of detecting key-

points that are highly repeatable and accurately localized

from 3D point clouds under arbitrary transformations can

now be achieved by formulating a loss function that mini-

mizes the difference between Q and Q�. To this end, we

propose the loss function: L = Lc + λLp, where Lc is the

probabilistic chamfer loss that minimizes the probabilistic

distances between all correspondence pairs of keypoints in

Q and Q�. Lp is the point-to-point loss that minimizes the
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(a)

(b)

Figure 2. (a) The training pipeline of USIP detector. (b) The architecture of our Feature Proposal Network (FPN). See text for more detail.

distance of the estimated keypoints to their respective near-

est neighbor in the point cloud. λ is a hyperparameter that

adjust the relative contribution of Lc and Lp to the total loss.

Probabilistic Chamfer Loss A simple way to minimize

the distance between Q and Q� is to use the chamfer loss:

M
�

i=1

min
Q�

j
∈Q�

�Qi −Q�

j�
2
2 +

M
�

j=1

min
Qi∈Q

�Qi −Q�

j�
2
2, (1)

that minimizes the distance of each point in one point cloud

with its nearest neighbor in the other point cloud. However,

the M proposals are not equally salient. The receptive field

of a point Qi can be a featureless surface since the receptive

field is limited to a small volume. In this case, it is detri-

mental to force the FPN to minimize the distance between

Qi and Q�

j , where Q�

j is the nearest neighbor of Qi in Q�.

To mitigate the above problem, we design our FPN to

learn the saliency uncertainties Σ and Σ
� of the proposal

keypoints Q and Q� with a probabilistic chamfer loss Lc.

In particular, we propose to formulate Lc with an exponen-

tial distribution that measures the probabilistic distances be-

tween Q and Q� with the saliency uncertainties Σ and Σ
�.

More formally, the probability distribution between Qi and

Q�

j for i = 1, · · · ,M is given by:

p(dij | σij) =
1

σij

exp

�

−
dij
σij

�

, where

σij =
σi + σ�

j

2
> 0, dij = min

Q�

j
∈Q�

�Qi −Q�

j�2 ≥ 0.

(2)

p(dij | σij) is a valid probability distribution since it inte-

grates to 1. A shorter distance dij between the proposal key-

points Qi and Q�

j gives a higher probability that Qi and Q�

j

are highly repeatable and accurately localized keypoints in

the point clouds X and X̃. Assuming i.i.d for all dij ∈ Dij ,

the joint distribution between Q and Q� is given by:

p(Dij | Σij) =
M
�

i=1

p(dij | σij). (3)

It is important to note that the probability distribution is not

symmetrical when the order of the point cloud is swapped,

i.e., Q� and Q, due to a different set of nearest neighbors,

i.e., dij �= dji and σij �= σji. Hence, the joint distribution

between Q� and Q is given by:

p(Dji | Σji) =

M
�

j=1

p(dji | σji), where

σji =
σ�

j + σi

2
> 0, dji = min

Qi∈Q
�Qi −Q�

j�2 ≥ 0.

(4)

Finally, the probabilistic chamfer loss Lc between Q�

and Q is given by the negative log-likelihood of the joint

distributions defined in Eq. 3 and 4:

Lc =
M
�

i=1

− ln p(dij | σij) +
M
�

j=1

− ln p(dji | σji)

=
M
�

i=1

�

lnσij +
dij
σij

�

+
M
�

j=1

�

lnσji +
dji
σji

�

. (5)
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We analyze the physical meaning of σij or σji by comput-

ing the extrema of Eq. 2 from its first derivative over σij :

∂p(dij | σij)

∂σij

=
dij exp(−dij/σij)

σ3
ij

−
exp(−dij/σij)

σ2
ij

,

(6)

and solve for the stationary points:

∂p(dij | σij)

∂σij

= 0 ⇒ σij = dij . (7)

Furthermore, the second derivative p��(dij | σij)|σij=dij
<

0 means that given a fixed dij �= 0, the highest probability

p(dij | σij) is achieved at σij = dij . Consider any triplet

of proposal keypoints {Qi, Q
�

j , Q
�

k}, where dij and dki are

the distances between the nearest neighbors {Qi, Q
�

j} and

{Q�

k, Qi} (Qi can be the nearest neighbor in both orders of

Q and Q� since chamfer distance is not bijective). σ�

k has to

take a large value when dij → 0 and dkj is large because we

have shown that σij = dij and σki = dki at optimum. Fur-

thermore, dij → 0 and dkj is large implies that {Qi, Q
�

j}
are repeatable and accurately localized keypoints while Q�

k

is not. Hence, a large saliency uncertainty σ�

k for a bad pro-

posal keypoint Q�

k at optimum shows that our probabilistic

chamfer loss is guiding the FPN to learn correctly.

Point-to-Point Loss To avoid quantization error in the

positions of the keypoints, we design the FPN such that it

is not necessary that the proposal keypoints Q to be any of

the points in X. However, this can cause the FPN to give

erroneous proposal keypoints Q that are far away from the

point cloud X. We circumvent this problem by adding a

loss function Lp that penalizes Qm ∈ Q for being too far

from X. We also apply similar penalty on Q̃ and X̃. This

loss can be formulated as either the point-to-point loss [1]:

Lpoint =
M
�

i=1

min
Xj∈X

�Qi−Xj�
2
2+

M
�

i=1

min
X̃j∈X̃

�Q̃i−X̃j�
2
2, (8)

where Xj ∈ X is the nearest neighbor of Qi or the point-

to-plane loss [23, 4]:

Lplane =
M
�

i=1

N T
j (Qi −Xj) +

M
�

i=1

Ñ T
j (Q̃i − X̃j), (9)

where Nj and Ñj are the nearest surface normal in X to Qi

and X̃ to Q̃i, respectively. We set Lp = Lpoint by default

since we found experimentally that both loss functions give

similar performances.

4. Feature Proposal Network

The network architecture of our FPN is shown in

Fig. 2(b). We first sample M nodes denoted as S =

[S1, · · · , SM ] ∈ R
3×M with Farthest Point Sampling (FPS)

from a given input point cloud X ∈ R
3×N . A neigh-

borhood of points is built for each node Sm ∈ S us-

ing point-to-node grouping [15, 14], which is denoted as

{{X1
1 |S1, ..., X

K1

1 |S1}, · · · , {X
1
M |SM , ..., XKM

M |SM}}.

K1, · · · ,KM represents the number of points associated

with the each of the nodes in S. The advantage of point-to-

node association over node-to-point kNN search or radius-

based ball-search is two-fold: (1) Every point in X is asso-

ciated with one node, while some points may be left out

in node-to-point kNN search and ball-search. (2) Point-

to-node grouping automatically adapts to various scale and

point density, while kNN search and ball-search are vul-

nerable to density variation and varying scales, respec-

tively. To make FPN translation equivariant, we normal-

ize each neighborhood point {X1
m|Sm, · · · , XKm

m |Sm} into

{X̂1
m|Sm, · · · , X̂Km

m |Sm} by subtracting from its respec-

tive node Sm, i.e., X̂km
m = Xkm

m − Sm. Each clus-

ter of normalized local neighborhood points is then fed

into a PointNet-like network [21] shown in Fig. 2(b) to

get a local feature vector Gm associated with Sm. A

kNN grouping layer is applied on the set of local fea-

ture vectors {G1|S1, · · · , GM |SM} to achieve hierarchi-

cal information aggregation. Specifically, the k near-

est neighbors of each pair of (Gm|Sm) are retrieved as

{(G1
m|S1

m)|Sm, · · · , (GK
m|SK

m )|Sm}. These kNN local fea-

ture vectors are then normalized by subtracting with its re-

spective Sm to get a position-independent neighborhood de-

noted as {G1
m|ŜK

m )|Sm, · · · , (GK
m|ŜK

m )|Sm}, where ŜK
m =

SK
m − Sm, before feeding into another network to get a

set of feature vectors {H1, · · · , HM}. A simple Multi-

Layer Perceptron (MLP) is then used to estimate M pro-

posal keypoints {Q̂1|S1, · · · , Q̂M |SM}, where Q̂m ∈ R
3,

and saliency uncertainties {σ1, · · · ,σM}, where σm ∈ R
+

from {H1, · · · , HM}. Finally, we un-normalize each Q̂m

with Sm, i.e., Qm = Q̂m + Sm to get the final proposal

keypoints {Q1, · · · , QM}. It is important to note that the

size of the receptive field is controlled by the number of

proposals M and K in kNN layers and it determines the

level-of-detail for each feature. Large receptive field leads

to features that are salient on a large-scale and vice versa.

5. Degeneracy Analysis

Let us denote the FPN as f(Y) : Y → R
3×M , where

Y = [Y1, · · · , YN ] ∈ R
3×N is the input of the network. We

further denote a transformation matrix T ∈ SE(3), where

R ∈ SO(3) and t ∈ R
3 are the rotation matrix and trans-

lation vector in T . We get Y� = RY ⊕ t, where ⊕ is the

operator to denote the addition of t to every 3× 1 entries of

the other term. We say that the network is degenerate when

it outputs trivial solutions where f(Y�) ≡ Rf(Y) ⊕ t is

satisfied for all R and t.
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Lemma 1. f(Y�) ≡ Rf(Y) ⊕ t when f(.) outputs the

centroid of the input point cloud, i.e., f(Y) = 1

N

�

n Yn

and f(Y�) = 1

N

�

n Y
�

n.

Proof. Putting Y �

n = RYn + t into f(Y�) = 1

N

�

n Y
�

n,

we get f(Y�) = 1

N

�

n(RYn + t) = R( 1

N

�

n Yn) + t =
Rf(Y)⊕ t. Hence, f(Y �) ≡ Rf(Y )⊕ t which completes

our proof that the network degenerates when it outputs the

centroid of the input point cloud.

Lemma 2. f(Y�) ≡ Rf(Y)⊕ t when f(.) is translational

equivariant, i.e., f(·) ⊕ t = f(· ⊕ t), and outputs points

that are in the linear subspace of any principal axis from

the input point cloud denoted as U = [U1, U2, U3] ∈ R
3×3,

i.e., f(Y) = [c1U
T
i , · · · , cMUT

i ]T and

f(Y�) = f(RY ⊕ t)

= f(RY)⊕ t (translation equivariance)

= [c1U
�

i

T
, · · · , cMU �

i

T
]T ⊕ t,

(10)

where Ui can be any principal axis in U and c1, · · · , cM
are scalar coefficients in R.

Proof. Let V = 1

N

�

n(Yn − Ȳ )(Yn − Ȳ )T and V � =
1

N

�

n(Y
�

n − Ȳ �)(Y �

n − Ȳ �)T denote the covariance ma-

trices of Y and Y�, respectively. Ȳ = 1

N

�

n Yn and

Ȳ � = 1

N

�

n Y
�

n are the centroids of Y and Y�, respectively.

Putting Y �

n = RYn + t into Ȳ � and V �, we get:

V � = R
1

N

�

n

(Yn − Ȳ )(Yn − Ȳ )TRT = RV RT . (11)

Taking the Singular Value Decomposition (SVD) of V and

V �, we get V = UDUT and V � = U�D�U�T , where D

and D� are the 3 × 3 diagonal matrices of singular values,

and U and U� are the 3 × 3 Eigenvectors that are also the

principal axes of Y and Y�, respectively. Putting the SVD

of V and V � into Eq. 11, we get:

V � = RV RT = RUDUTRT = (RU)D(RU)T

≡ U�D�U�T ⇒ U� = RU.
(12)

Putting the relationship from Eq. 12 into f(Y�) =

[c1U
�

i
T
, · · · , cMU �

i
T
]T ⊕ t, we get:

f(Y�) = R[c1U
T
i , · · · , cMUT

i ]T ⊕ t ≡ Rf(Y)⊕ t, (13)

which completes our proof that the network degenerates

when it outputs a set of points on any principal axis.

Discussions We note that the network requires sufficient

global semantic information of the input point cloud, e.g.,

the input is the whole point cloud or clusters of local neigh-

bor points that contain large receptive fields, to learn the

trivial solutions of centroid or set of points on the principal

axes. Hence, the degeneracies can be easily prevented by

limiting the receptive fields of the FPN. We achieve this by

setting the the number of clusters M and K nearest neigh-

bors of the clusters in the FPN (refer to Sec. 4 for the def-

initions of M and K) to reasonable values. Small values

for M or high values for K increases the receptive field and

causes the FPN to degenerate. Fig. 3 show some examples

of the degeneracies with different K values at M = 64.

It is interesting to note that the principal axis degeneracy

occurs when K is set to a mid-range value, and centroid

degeneracy occurs when K is set to a high value. This im-

plies that larger receptive fields, i.e., a higher global seman-

tic information is needed for the network to learn the cen-

troid. We also notice experimentally that the degeneracies

(both centroid and principal axis) occur in point clouds with

more regular shapes, e.g. objects from ModelNet40 where

the centroid and principal axes are more well-defined.

(a) (b) (c)

Figure 3. Increasing K values in FPN causes degeneracies (M =
64). (a) No degeneracy with K = 9 (low value). (b) Principal

axis degeneracy with K = 24 (mid-range value). (c) Centroid

degeneracy with K = 64 (high value).

6. Experiments

Following [28], we evaluate the repeatability (Sec. 6.1),

distinctiveness (Sec. 6.2) and computational efficiency

(Sec. 6.4) of our USIP detector on 4 datasets in Tab. 1.

Implementation Details Three USIP detectors are re-

spectively trained for outdoor Lidars, RGB-D scans and ob-

ject models. Specifically, we use the Oxford [18] for out-

door Lidar, “RGB-D reconstruction dataset” [34] for RGB-

D, and ModelNet40 [31] for object models. The PCL [26]

implementations of the classical detectors, i.e., ISS [35],

Harris-3D [11] and SIFT-3D [17] are used for the compar-

isons. We take the pretrained models of 3DFeat-Net [32]

for KITTI [9] and Oxford, and train separate models for

Redwood and ModelNet40 using its open-sourced codes.

Qualitative Visualization Fig. 7 shows some results from

our USIP detector on ModelNet40. Our USIP learns key-

points on corners, edges, center of small surfaces, etc. Key-

points in the first row of Fig. 7 are selected with Non-

Maximum Suppression (NMS) and thresholding on the

saliency uncertainty σ. In the second row, keypoints are

selected with only NMS. Keypoints with small σ are shown

in bright red and get darker with larger σ.
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Figure 4. Relative repeatability when different number of keypoints are detected. Left to right: KITTI, Oxford, Redwood, ModelNet40.
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Figure 5. Relative repeatability when Gaussian noise N (0,σnoise) is added to the input point clouds. Keypoint number is fixed to 128.
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Figure 6. Relative repeatability when the input point cloud is randomly downsampled by some factors. Keypoint number is fixed to 128.

Figure 7. Examples of keypoints from our USIP on ModelNet40.

KITTI Oxford Redwood ModelNet40

Type Velodyne lidar SICK lidar RGB-D CAD Model

Scale (diameter) 200m 60m 10m 2

# point 16,384 16,384 10,240 5,000

� in Eq. 14 0.5m 0.5m 0.1m 0.03

Rotation 2D 2D 3D 3D

Noise Sensor Sensor Gaussian Gaussian

Occlusion Yes Yes Yes No

Density Variation Yes No No No

Missing Parts Yes Yes Yes No

Table 1. Datasets used in evaluating keypoint repeatability.

6.1. Repeatability

Repeatibility refers to the ability of a detector to detect

keypoints in the same locations under various disturbances

such as view-point variations, noise, missing parts, etc. It

is often taken as the most important measure of keypoint

detectors because it is a standalone measure that depends

only on the detector (without a descriptor). Given two point

clouds {X, X̃} of a scene captured from different view-

points such that {X, X̃} are related by a rotation matrix

R ∈ SO(3) and a translational vector t ∈ R
3. A keypoint

detector detects a set of keypoints Q = [Q1, · · · , QM ] and

Q̃ = [Q̃1, · · · , Q̃M ] from {X, X̃}, respectively. A keypoint

Qi ∈ Q is repeatable if the distance between RQi + t and

its nearest neighbor Q̃j ∈ Q̃ is less than a threshold �, i.e.,

�RQi + t− Q̃j�2 < �. (14)

Test Datasets We evaluate repeatability on KITTI, Ox-

ford, Redwood and ModelNet40. Note that our USIP is not

trained on KITTI nor Redwood. The KITTI and Oxford

test datasets are prepared by 3DFeat-Net [32]. Each pair

of point clouds {X, X̃} are captured from nearby locations

of within 10m and manually augmented with random 2D

rotations. {X, X̃} in Redwood are from simulated RGB-D

cameras with 3D rotations / translations and Gaussian noise.

The overlap between {X, X̃} is as low as 30%. In Model-

Net40, X̃ is obtained by augmenting X with random 3D

rotations. Details of the datasets are shown in Tab. 1.

Relative Repeatability We use relative repeatability that

normalizes over the total number of detected keypoints |Q|
for fair comparisons, i.e., repeatability = |Qrep|/|Q|, where
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Qrep is the number of keypoints that passed the repeatability

test in Eq. 14. We set the parameters of each keypoint de-

tector in each dataset to generate 4, 8, 16, 32, 64, 128, 256

and 512 keypoints or close to these numbers when it is not

possible to set the detectors (SIFT-3D, Harris-3D and ISS)

to generate exact number of keypoints. Note that in general

the repeatability should be proportional to the number of

keypoints. In the extreme case that Q = X, i.e., each point

is regarded as a keypoint, the repeatability is the same as the

percentage of overlap between {X, X̃}. As shown in Fig. 4,

our USIP outperforms other detectors by a significant mar-

gin on the 4 datasets over 8 different # of keypoints.

Robustness to Noise The original points in KITTI and

Oxford are already corrupted with sensor noise. We further

augment the point clouds in the 4 datasets with Gaussian

noise N (0,σnoise), where σnoise is up to 0.6m for KITTI

and Oxford, 0.12m for Redwood and 0.12 (no unit) for

ModelNet40. The number of keypoints is fixed to 128. Our

USIP is a lot more robust than other detectors as shown in

Fig. 5. In KITTI and Oxford, the performances of other de-

tectors fall to the level of random sampling when σnoise ≥
0.2m, while our USIP does not show significant drop in per-

formance even with σnoise ≥ 0.6m. In Redwood, other

methods except USIP and ISS deteriorate to random sam-

pling with σnoise ≥ 0.02m. In ModelNet40, our method

maintain high repeatability of 91% with σnoise = 0.02,

while all other methods drop below 8%.

Robustness to Downsampling We evaluate the repeata-

bility of the detectors on input point clouds downsampled

by some factors using random selection. The results are

shown in Fig. 6, where the down-sample factor denoted as

α means the number of points is reduced to 1

α
of the original

number shown in Tab. 1. We can see that the repeatability

of our USIP remains satisfactory even with a 16× down-

sampling on KITTI, Oxford and ModelNet40. The only ex-

ception is the Redwood dataset, where almost all detectors

perform poorly on high downsample factors.

6.2. Distinctiveness: Point Cloud Registration

Distinctiveness is a measure of the performance of key-

point detectors and descriptors for finding correspondences

in point cloud registration. Hence, distinctiveness is not as

good as repeatability as an evaluation criterion on keypoint

detectors because it is confounded with the performance of

the descriptor. We mitigate this limitation by evaluating

point cloud registration over several existing keypoint de-

scriptors. We also use the results to show that our USIP

detector works with different existing keypoint descriptors.

Experiment Setup We follow the point cloud registration

pipeline from 3DFeat-Net [32] on their KITTI test dataset.

Four descriptors are used to perform keypoint description,

i.e., three off-the-shelf descriptors: 3DFeatNet, FPFH [25],

SHOT[27], and our own descriptor inspired by 3DFeat-Net

with minor modifications, which is denoted as “Our Desc.”

(details are in our supplementary material). Registration of

a pair of point clouds involves 4 steps: (a) Extract keypoints

and their corresponding descriptor vectors from each point

cloud. (b) Establish keypoint-to-keypoint correspondences

by nearest neighbor search of the descriptor vectors. (c) Per-

form RANSAC on the two matched keypoint sets to find the

rotation and translation that have the most inliers. (d) Com-

pare the resulted rotation and translation with the ground

truth. A pair of point cloud is regarded as successfully

registered if Relative Translational Error (RTE) < 2m, and

Relative Rotation Error (RRE) < 5◦.

Registration Results We perform registration evalua-

tions over the combination of 6 keypoint detectors and 4

descriptors. The registration failure rate and keypoint in-

lier ratio are shown in Tab. 2. Compared to other detectors,

our USIP achieves the lowest registration failure rate and

the highest inlier ratio with a considerable margin on all the

4 descriptors. The significance of the results in Tab. 2 is

two fold. First, our USIP works well with various hand-

crafted and deep learning-based descriptors. Second, our

USIP produces more distinctive keypoints since it consis-

tently outperforms other keypoint detectors over different

descriptors. The experimental configurations in Tab. 2 is

not the optimal setting for our USIP detector and descrip-

tor nor the 3DFeatNet because we have to fix the number

of keypoints for fair comparison. In Tab. 3, we illustrate

the best registration results for our USIP and 3DFeatNet on

KITTI without limitation on the number of keypoints. In

addition, we show the visualization of keypoint matching

results of two examples from KITTI and Oxford in Fig. 8.

Figure 8. Keypoints and matches from our USIP detector and “Our

Desc.”. Best view with color and zoom-in.

6.3. Ablation Study

Point-to-node grouping vs. kNN / ball grouping Point-

to-node grouping ensures the use of every point in the point

cloud without cumbersome tuning of any hyperparameter

since it associates each point with its nearest node, i.e.,

one of the M points sampled from Farthest Point Sampling

(FPS). Hence, no information is lost. In contrast, kNN and

ball-search groupings do not guarantee this due to the sen-

sitivity of the hyperparameter settings (#NN k and radius r
for kNN and ball-search, respectively). Tab. 4 shows exper-

imentally a drop in performance on the KITTI dataset with

kNN and ball-search groupings. We further note that kNN
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Registration Failure Rate (%) Inlier Ratio (%)

Our Desc. 3DFeatNet[32] FPFH[24] SHOT[27] Our Desc. 3DFeatNet FPFH SHOT

Random 18.83 42.14 49.95 68.39 7.47 4.48 5.45 4.46

SIFT-3D[26, 17] 15.44 42.63 79.72 84.49 7.36 5.47 4.24 4.11

ISS[26, 35] 5.97 25.96 37.09 69.83 8.52 4.71 4.44 3.45

Harris-3D[26, 11] 3.81 13.56 49.49 51.29 10.57 6.58 4.78 5.00

3DFeatNet[32] 2.61 2.26 12.15 11.76 15.66 10.76 9.55 8.46

USIP 1.41 1.55 8.37 5.40 32.20 22.48 18.77 18.21
Table 2. Point cloud registration results on KITTI. The number of keypoints is fixed to 256.

Detector Descriptor Fail(%) Inlier(%) RTE(m) RRE (◦)

3DFeat-Net 3DFeat-Net 0.57 12.9 0.26± 0.26 0.56± 0.46
USIP Our Desc. 0.24 28.0 0.21± 0.24 0.42± 0.32

Table 3. Point cloud registration on KITTI with optimal settings.

is used in the subsequent layers since the grouping is cen-

tered on each of the M sampled points from FPS, i.e., it is

now impossible for any points to be discarded.

M=512, # keypoint=128 point-to-node kNN, k=64 Ball, r=2m

Repeatability (%) 53.6 46.9 43.8

Table 4. Keypoint repeatability with various grouping methods.

Probabilistic Chamfer loss vs. normal Chamfer loss

Fig. 9 shows the results from the network with our prob-

ablistic Chamfer loss vs normal Chamfer loss on the KITTI

and ModelNet40 datasets, respectively. Our probabilistic

Chamfer loss clearly outperforms the normal Chamfer loss

on both datasets. Note that Non-Maximum Suppression

(NMS) is not used in normal Chamfer loss since it does not

give the keypoint uncertainty σ required for thresholding.
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Figure 9. Relative repeatability. Left: KITTI. Right: ModelNet40.

Effect of point-to-point loss As shown by the example

in Fig. 10, the point-to-point loss is needed to constrain the

keypoints close to the input point cloud since the FPN does

not require any keypoint to be in the input point cloud.

Figure 10. Visualization of USIP keypoints with point-to-point

loss enabled, i.e., λ = 1 (left) and disabled, i.e., λ = 0 (right).

Keypoints are closer to the point cloud with point-to-point loss.

6.4. Computational Efficiency

Hand-crafted detectors are deployed with single thread

C++ codes on an Intel i7 6950X CPU. Our USIP and

3DFeatNet are deployed on a Nvidia 1080Ti, with PyTorch

and TensorFlow, respectively. Computational efficiency is

evaluated with 2,391 KITTI point clouds. Scalability over

number of keypoints. Tab. 5 shows the time needed to

compute the saliency of M = {128, 256, 512, 1024} key-

points from a KITTI frame of 16,384 input points. We see

that there is no substantial increase in the computational

time. Scalability over number of input points. The com-

putational times of all other 3D detectors increase with in-

creasing input points since saliency is computed for every

point in the input point cloud. In contrast, USIP requires

lower computational time by directly computing saliency

for M keypoints. Tab. 6 shows the time taken to compute

256 keypoints from input point clouds of increasing size

with different methods. The computational times of other

methods increase substantially, while USIP remains low.

# of Keypoints 128 256 512 1024

Average Time (Seconds) 0.004 0.007 0.011 0.028

Table 5. Average time for USIP to extract keypoints.

Input Point # 4096 8192 16,384 32,768 65,536

Random 0.0001 0.0003 0.0005 0.0013 0.0025

SIFT-3D 0.07 0.11 0.16 0.175 0.18

ISS 0.04 0.11 0.39 1.45 6.15

Harris-3D 0.03 0.06 0.15 0.38 1.12

3DFeatNet 0.05 0.14 0.44 1.45 5.34

USIP 0.005 0.007 0.011 0.023 0.052

Table 6. Average time (seconds) taken to compute 256 keypoints

from input point clouds of increasing size with different methods.

7. Conclusion

In this paper, we present the USIP detector, an unsuper-

vised deep learning-based keypoint detector for 3D point

clouds. A probabilistic chamfer loss is proposed to guide

the network to learn highly repeatable keypoints. We pro-

vide mathematical analysis and solutions for network de-

generacy, which are supported by experimental results. Ex-

tensive evaluations are performed with Lidar scans, RGB-D

images and CAD models. Our USIP detector out-performs

existing detectors by a significant margin in terms of re-

peatability, distinctiveness and computational efficiency.
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