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Abstract

Existing deep learning-based interactive image segmen-

tation approaches typically assume the target-of-interest is

always a single object and fail to account for the poten-

tial diversity in user expectations, thus requiring excessive

user input when it comes to segmenting an object part or

a group of objects instead. Motivated by the observation

that the object part, full object, and a collection of ob-

jects essentially differ in size, we propose a new concept

called scale-diversity, which characterizes the spectrum of

segmentations w.r.t. different scales. To address this, we

present MultiSeg, a scale-diverse interactive image segmen-

tation network that incorporates a set of two-dimensional

scale priors into the model to generate a set of scale-varying

proposals that conform to the user input. We explicitly en-

courage segmentation diversity during training by synthe-

sizing diverse training samples for a given image. As a re-

sult, our method allows the user to quickly locate the clos-

est segmentation target for further refinement if necessary.

Despite its simplicity, experimental results demonstrate that

our proposed model is capable of quickly producing diverse

yet plausible segmentation outputs, reducing the user in-

teraction required, especially in cases where many types of

segmentations (object parts or groups) are expected.

1. Introduction

Interactive image segmentation takes user input (e.g.

clicks) to guide the segmentation process toward the de-

sired output. Unlike semantic image segmentation which is

fully automated, interactive image segmentation is a semi-

automated process, allowing extra user input to be added

for refinement until the segmentation performance is satis-

factory. It has become a popular research topic in the past

decades with a wide application domains such as data anno-

tation, local image/video editing, image composition, and

medical image analysis.

Existing deep learning-based interactive image segmen-

tation methods [16, 18, 23, 26, 27, 36] have demonstrated

significant improvement over the previous techniques using
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Figure 1: (Top row) Existing interactive image segmen-

tation techniques typically do not account for diversity in

segmentations. Despite their excellent performance on ex-

tracting single object, they usually demand extensive user

input when segmenting a local part or a group of multiple

objects. (Bottom row) Our porposed MultiSeg produces a

set of scale-varying segmentations conforming to the given

user input. Positive (foreground) and negative (background)

clicks are represented by green and blue clicks, respectively.

hand-crafted features, typically allowing users to extract ac-

curate segmentation masks with just a few user inputs. Al-

though these models excel in extracting single object given

some user input, in practice, the target-of-interest may not

always be a single object. It could be a local part within the

object or a group of objects that this object belongs to. How-

ever, previous techniques do not account for such diversity

in segmentation, thus demanding additional user input when

the segmentation target is not a single object.

Figure 1 illustrates how conventional segmentation

methods ([36]) can struggle with handling varying user-

desired segmentations. As shown in the first column, such a

model is effective in extracting the single object (person),

requiring only one foreground click in this case. How-

ever, when the segmentation target is a local part (the flower
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bouquet), a significant number of background clicks are re-

quired to deselect the person’s body as shown in the second

column. On the other hand, when it comes to segmenting

a group of objects (third column), we notice a significant

degradation in the segmentation quality for the first object

(the bride) when an additional foreground click is added to

the second object. Such methods are neither designed nor

trained to produce diverse segmentation results.

Our key idea is to produce a set of diverse segmenta-

tions as recommendations to the user where each segmenta-

tion should conform to the user input. As the user provides

more evidence, the model should quickly converge to one of

them. In a recent work, Li et al. [22] have shown that train-

ing with a diversity loss to encourage the network to capture

different segmentation modes can improve the segmenta-

tion performance. However, the diversity training frame-

work in [22] is unconstrained in that there’s no mechanism

to encourage different branches to be either meaningful or

different from one another. Most importantly, this approach

still assumes a single true segmentation given the user clicks

and therefore still cannot capture the multi-candidates na-

ture of segmentation mentioned above. We argue that a

good segmentation system needs to be able to suggest re-

sults that are both diverse and meaningful. Achieving this

is a highly non-trivial task as the the number of plausible

segmentations is in general unknown beforehand and it is

unclear how to best define the spectrum of diversity for seg-

mentation results.

Motivated by the observation that different segmenta-

tions (object parts, full objects, and a group of multiple

objects) essentially differ in size, we propose to impose a

set of two dimensional scale priors to characterize the spec-

trum of segmentations such that each segmentation output

is constrained to be of a certain scale while conforming to

the user input. With this, we present MultiSeg, a scale-

diverse interactive image segmentation network that pro-

duces a set of scale-varying proposals conditioned on the

user input in a single forward pass. Specifically, given

an (image, user input) pair, our model produces multiple

outputs consistent with the user inputs, where each branch

seeks a possible user-expected segmentation within a given

horizontal and vertical scale. To train this model, we syn-

thesize the diversity-aware training data containing simu-

lated user clicks along with multiple possible ground-truths

corresponding to each input click set.

Figure 1 (bottom row) shows an example result produced

by our method. Note that the flower bouquet, single person,

and the three people can be obtained with just a single fore-

ground click. Extensive experimental analysis demonstrates

that our model is capable of generating a set of diverse yet

plausible segmentations consistent with the user input.

To further improve the user experience, we introduce an

objectness classifier to select the most meaningful out of all

the proposals. We then recommend the top proposals to the

user. As a result, the user does not have to inspect each seg-

mentation carefully and a quick glance is usually sufficient

to check if a better segmentation exists among the propos-

als. Moreover, the MultiSeg can reuse the corresponding

scale information to constrain the subsequent segmentation

outputs when the user selected an alternative proposal.

The key contributions of our work are as follows:

• We propose to characterize the diversity in segmen-

tations using a scale factor and we call this scale-

diversity.

• We propose a new architecture that incorporates the

scale diversity and generates a set of scale-varying pro-

posals conditioned on the user input.

• We introduce a novel pipeline to synthesize diverse

training samples to explicitly encourage the segmen-

tation diversity.

2. Related Works

Interactive Image Segmentation: Early interactive image

segmentation methods mainly exploit boundary properties

for segmentation [17, 29] while more recent approaches are

based on graphical models, such as graph cut [4, 21, 33],

random walker [11] and geodesic approaches [2, 7, 31].

Various forms of priors have also been proposed to further

improve the segmentation performance [10, 12, 35]. Nev-

ertheless, these approaches rely on low-level features, such

as color or texture, which often lead to poor segmentation

quality especially in cases of complex background or vary-

ing illumination conditions.

More recently, deep-learning based interactive segmen-

tation methods have shown remarkably improved accuracy

compared to the traditional approaches. Xu et al. [36] trans-

formed sparse user clicks into Euclidean distance maps and

concatenated them with the input image to train an FCN in

an end-to-end manner. Liew et al. [23] exploited the local

regional context surrounding the user input together with

a multi-scale global contextual prior for local refinement.

[26] proposed an iterative training procedure to address the

mismatch between training and testing. Hu et al. [16] pro-

posed a fully convolutional two-stream fusion network that

processes the input image and user clicks individually be-

fore fusing them such that the user input has a more direct

impact on the segmentation output. Polygon-RNN [1, 5],

on the other hand, formulated interactive image segmenta-

tion as a polygon prediction problem where a recurrent neu-

ral network is used to sequentially predict the vertices of

the polygons outlining the object-to-segment. DEXTR [27]

transformed extreme points (left-most, right-most, top and

bottom pixels) into a Gaussian heatmap and concatenated

with the image to perform segmentation. Le et al. [18] pro-

posed an interactive boundary prediction network that takes

663



FCN … …

scale
128×64 128×128 256×128 512×256

0.56 0.07 0.64 0.75

Scale-diverse segmentations
score

NMS
+

Graph Cut

Top 3 predictionsImage with clicks

Figure 2: Overview of MultiSeg. Given an image and the distance-transformed user input, the FCN model outputs a set

of scale-varying segmentation masks and corresponding object scores based on a set of predefined two-dimensional scales.

Finally, we run NMS to keep at most the top N predictions as recommendations to the user.

boundary clicks as inputs. Nonetheless, none of the afore-

mentioned methods address the diversity in segmentations,

especially when the number of user input is small.

Diverse Predictions: While there is a large body of work

on making diverse predictions [3, 9, 13, 19, 20], we briefly

discuss works that produce a diverse set of solutions in in-

teractive image segmentation. Batra et al. [3] trained a

single-output model and then find the top M most proba-

ble solutions during inference using a greedy method which

applies a penalty to each new solution if it is close to pre-

viously discovered solutions. However, there exists train-

test disparity since the model is not aware of multiple out-

puts during training. Furthermore, the discovered solutions

are not guaranteed to be semantically meaningful. More re-

cently, Li et al. [22] formulated interactive image segmenta-

tion under a multiple choice learning setting where the loss

for each training sample is backpropagated to the branch

that gives the lowest loss during the forward pass. Neverthe-

less, the number of modes are data-dependent and the model

will suffer from mode-collapse when one or more branches

fail to receive any training signal. There is no definable

meaning or organization behind the output of each branch

and no way to direct the training to ensure that the full diver-

sity of possible segmentations are learned. Unlike existing

works where the diversity is either obtained via some con-

strained optimizations or learned in an unconstrained man-

ner that may not cover the desired range of diversity, we

provide a clear definition of diversity, i.e. scale, that allows

both diverse and interpretable solutions. To our best knowl-

edge, this is the first interactive image segmentation work

that attempts to define the diversity in segmentations.

3. Method

We discuss our definition of diversity in Section 3.1, fol-

lowed by details of the network architecture in Section 3.2,

and the generation of diverse training data in Section 3.3.

3.1. Scale-Diversity

Given a set of user inputs, our goal is to generate a set

of diverse and semantically meaningful segmentations that

conform to the user input. However, without having a con-

crete definition of diversity, it remains unclear how to sep-

arate or distinguish the different segmentation outputs. A

plausible choice is to represent the spectrum of segmenta-

tions based on some hierarchical partitioning. For example,

a person can be partitioned into body parts and clothing.

Therefore, placing a positive click on the shirt enables ex-

traction of both the shirt and the full person. Nevertheless,

such training data could be expensive to obtain. Moreover,

modeling the hierarchical relationships is a non-trivial task.

Instead, we propose a simple yet effective option, which

is to characterize the variation of segmentations in terms

of scale, and we call this scale-diversity. For instance, the

flower bouquet, single person, and the three people in Fig-

ure 1 can be represented with different scale factors.

Inspired by the recent object detection pipeline [25, 32],

we define the two-dimensional (horizontal and vertical)

scale S based on different combinations of aspect ratios

and sizes. This two-dimensional parameterization provides

a greater degree of freedom to represent various segmenta-

tions as compared to a one-dimensional representation such

as area. Consider a color image X ∈ R
H×W×3 and some

user input U ∈ R
H×W×2, we formulate the task of gen-

erating a diverse set of segmentations as learning a map-

ping function f(; θ, S) that is parameterized by θ and condi-

tioned on a set of predefined scales S (given in Section 4.1):

Ŷ = f(X,U; θ, S) (1)

where Ŷ = {Ŷ1, Ŷ2, ..., ŶM} ∈ R
H×W×M is the set

of scale-diverse segmentation outputs where segmentation

output Ym corresponds to the m-th scale and M is the num-

ber of predefined scales. In the next section, we will discuss

the network architecture in detail.

3.2. Scale-Diverse Interactive Segmentation

As shown in Figure 2, our model takes as input the image

to segment and a set of user-provided positive and negative

clicks and generates M scale-varying segmentation masks

with the corresponding object scores indicating the pres-

ence of a plausible segmentation at each scale. Then, we
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perform non-maximum suppression (NMS) and keep only

the top N (e.g. N=3) predictions as recommendations to

the user. Following [23, 36], we apply graph cut [4] to the

network prediction to obtain the final segmentation mask.

Input representation Following [22, 23, 36], we first

transform the positive clicks C+ and negative clicks C− to

two truncated Euclidean distance maps U = (U+,U−) be-

fore concatenating with the input image to form a 5-channel

input (X,U) to the network. See more details in [36].

Network architecture Here, we present the architecture

of our segmentation network f . In this work, we employ the

ResNet-101 [15] variant of DeepLabv3+ [6] as our back-

bone architecture.

In order to convert the DeepLabv3+ to our scale-diverse

interactive segmentation network, we made the following

three modifications: 1) the first convolution filter is modi-

fied to accept the additional two channels of user input U;

2) the output layer is modified to have M outputs/branches

that correspond to M different scales; 3) a global average

pooling layer followed by a new fully connected layer with

M outputs are appended before the decoder to predict an

object score for each of the M segmentation masks.

Note that the proposed scale-diversity is generic. Any

FCN-based interactive image segmentation network can be

easily turned into a scale-diverse interactive segmentation

counterpart with minor modifications as described above.

Training Next, we describe how to train our model to

produce scale-diverse segmentation masks. Given a ground

truth segmentation mask Y, we first compute a tight bound-

ing box enclosing the ground truth mask. Then, we generate

a set of “anchors” centering at the same center as the ground

truth bounding box but with different scales and look for the

set of scales SY that overlap with the ground truth bound-

ing box with intersection-over-union (IoU) larger than 0.5.

In the cases where there is no scale with overlap larger than

0.5, we simply set the scale with the largest IoU as the

ground truth scale. Then, we backpropagate the loss only

through those branches:

L =
1

|SY|

∑

s∈SY

�(f(X,U; θ, {s}),Y) (2)

where � is the standard sigmoid cross-entropy loss.

Prediction of object score Since not all the scales nec-

essarily correspond to some meaningful segmentations, we

also train our MultiSeg to predict an object score that indi-

cates whether a particular scale contains object(s). Specif-

ically, we append a global average pooling layer, followed

by a fully connected layer at the output of the encoder to

yield M confidence scores for the M scale-diverse segmen-

tations. Since the distribution of positive/negative samples

is usually imbalanced due to the fact there is only a small set

of scales that contain object(s), we train the score prediction

branch with a class-balancing sigmoid cross entropy loss.

3.3. Generating Diverse Training Samples

In the previous section, we described how each ground

truth object is assigned to the corresponding branch for

training. However, this does not guarantee diversity in the

segmentation outputs. Instead, we propose to obtain the

diversity in segmentations by synthesizing diverse training

data with a new click sampling strategy to explicitly encour-

age the model to learn to generate diverse predictions given

the same set of user input. Note that any existing segmen-

tation dataset with instance-level annotations can be used

without the need to collect new training samples.

For each object, we first extract all the neighboring ob-

jects and build a hierarchical list of segmentations based

on different combinations of objects1. We then randomly

sample K samples from the list of segmentations for train-

ing. Specifically, given K ground truth masks Y =
{Y1,Y2, ...,YK}, we use the following loss to encourage

the model to learn the diversity in segmentations:

L =
1

|Y|

∑

Y∈Y

1

|SY|

∑

s∈SY

�(f(X,U; θ, {s}),Y) (3)

When only a single ground truth is given, this loss reduces

to Eq.(2). Note that we combine the neighboring objects in

a class-agnostic manner, i.e. we ignore the object classes

when forming a diverse set of ground truths. This allows

us to cover common coocurring objects (e.g. a person in a

chair). Using depth ordering to combine objects with simi-

lar depth and taking object-object interactions into account

might be useful to decide if two neighboring objects should

be segmented altogether but this is beyond the scope of this

work. This will be further investigated in the future.

Sampling of Clicks We follow the clicks sampling pro-

tocol proposed by [36] to generate a set of positive and

negative clicks. However, this strategy is not aware of

the presence of multiple possible segmentations when sam-

pling clicks for training. To explicitly encourage the model

to learn to produce multiple equally plausible segmenta-

tions given the same set of user clicks, we also include

another click sampling strategy by sampling positive and

negative clicks only on the common foreground and back-

ground among the K ground truth masks. After sampling

1The hierarchical list of segmentations refer to the different combina-

tions of objects that include the sampled object. For example, given an

object instance a and its neighboring instances b, c, the hierarchical list of

segmentations will be {a}, {a, b}, {a, c} and {a, b, c}.
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the clicks, we also add in all other segmentation masks that

are consistent with those clicks for training.

3.4. Inference

During testing, given some user clicks, M diverse seg-

mentations can be obtained in just a single forward pass.

However, it is impractical for the user to inspect each and

every segmentation mask each time when a new click is

added since this takes significantly longer time than adding

a new click alone. This is further complicated by the

fact that not all the segmentations produced are necessar-

ily semantically meaningful. Moreover, some segmenta-

tion branches may not have a semantically meaningful ob-

ject(s) at that scale, and the branch will likely to produce

the object(s) that is closest to that scale. Thus, nearby scale

branches may produce similar segmentation outputs.

To overcome this, during testing, we perform non-

maximum suppression (NMS) to remove redundant propos-

als and keep at most the top N segmentations (we set N to 3

in this work) as recommendations to the user. In this case, a

quick glance is usually sufficient to quickly locate the clos-

est segmentation. An example is shown at Figure 3.

Given an initial positive click, we take the segmentation

mask with the highest predicted object score as our default

output, which will be overlaid on the main canvas for fur-

ther processing. When an alternative proposal is selected

instead, the scale prior obtained from the corresponding

branch will be reused by taking the segmentation output

from that branch as the default output in the next round.

Otherwise, we always take the segmentation mask from the

branch that yields the highest object score in the first round

as our default output.

Interestingly, we noticed that inspection of the segmenta-

tion list is usually required only in the first few rounds when

the target of segmentation is still ambiguous. As the interac-

tive segmentation process moves on, the model eventually

narrows down to one of the solutions given more clicks and

the user can focus on adding new clicks for refinement.

4. Experiments

As the goal of this paper is to produce diverse segmen-

tations for improving interactive segmentation in scale di-

verse tasks, we evaluate the quality of our diverse segmen-

tations as well as perform a user study showing the practical

effectiveness of our approach in more real world situations

where the target selection varies in scale and number of ob-

jects. However, we first evaluate our method on traditional

single object segmentations. While our goal is not to pro-

duce single object segmentation with the minimal amount

of clicks, but rather to better handle scale-diverse segmen-

tation tasks, it is useful to see how our method compares to

prior works that have fine-tuned to this more limited task in

order to verify that we have not lost this ability.

Main 
Canvas

Target

List of 
Segmentations

Figure 3: User interface for the user study

4.1. Implementation Details

We trained our MultiSeg network on the PASCAL VOC

dataset [8] augmented with extra labels from SBD [14]

(10,582 images) following the common practice. The gen-

eration of diverse training data and simulation of user clicks

have been discussed in Section 3.3. All images are resized

to 512 × 512 during training. We adopt random horizon-

tal flipping as the only data augmentation. The network is

initialized from the DeepLabv3+ model pre-trained on Ima-

geNet [34], MS COCO [24], and PASCAL VOC dataset [8].

For the new layers and the two extra channels in the first

convolutional layer, we randomly initialize them from a

Gaussian distribution with standard deviation of 0.01. The

learning rate is set to 1× 10−8, with momentum of 0.9 and

weight decay of 5 × 10−4. We trained our model using

stochastic gradient descent with a batch size of 5 images on

a single NVIDIA Pascal Titan X GPU for 20 epochs. All

our experiments are conducted on PyTorch framework.

For all the experiments, we use 3 sizes of 64, 128, 256

and 3 aspect ratios of 1:1, 1:2, and 2:1. On top of that, we

also include 3 additional scales of 16 × 16, 32 × 32, and

512 × 512 to cover the extremely small and large objects,

resulting in M=12. Although our model needs to predict

M=12 diverse predictions, an average single forward pass

that produces all M segmentations only takes less than 100

ms using a Pascal Titan X GPU, making it suitable for prac-

tical interactive segmentation application.

4.2. Segmentation of Single Object

We first evaluate the performance of our MultiSeg

method in segmenting single object by comparing it with

the state-of-the-art interactive image segmentation methods

on three public benchmarks with instance-level annotations,

including PASCAL VOC validation set [8], GrabCut [33]

and Berkeley dataset [28].

The standard practice for evaluating the performance of

a single-output interactive image segmentation system is as

follows: given an initial positive click at the center of the

segmentation target, the model outputs an initial prediction.
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Segmentation

Models

PASCAL

(85% IoU)

GrabCut

(90% IoU)

Berkeley

(90% IoU)

DIOS [36] 6.88 6.04 8.65

RIS-Net [23] 5.12 5.00 6.03

ITIS [26] 3.80 5.60 -

DEXTR [27] 4.00 4.00 -

LDN [22] - 4.79 -

FCTSFN [16] 4.58 3.76 6.49

DIOS (ours) 3.51 1.96 4.31

MultiSeg (ours) 3.88 2.30 4.00

#clicks 3.56 2.22 3.87

#select 0.32 0.08 0.13

Table 1: Comparison with the state-of-the-art interactive

segmentation methods. The values are the average number

of clicks to achieve a specific IoU on a given dataset.

Subsequent clicks are iteratively added to the center of the

largest wrongly labeled region and this step is repeated until

the maximum number of clicks (fixed as 20) is reached. The

IoU at each step is recorded. The average number of clicks

required to achieve a certain IoU on a particular dataset is

reported. The clicks number is thresholded to 20 if the tar-

get IoU cannot be achieved within 20 clicks.

However, since our model produces multiple segmen-

tations, we also have to consider the amount of interac-

tions needed when selecting one of the proposals (#select).

As described in Section 3.4, given the first positive click,

our MultiSeg produces at most N segmentations after run-

ning NMS. We take the segmentation mask with the highest

object score (Ŷdefault) as our default segmentation output.

Meanwhile, we also find the best segmentation mask w.r.t.

the ground truth (Ŷbest) and compute its overlap with the

default output. If the IoU of the two masks is smaller than

T1 (implying Ŷdefault and Ŷbest are very different) and the

relative improvement in IoU is larger than T2, we will in-

crease #select by one and the segmentation output from that

branch will serve as the default output for the next round.

Subsequent clicks are added in the same way as before. We

set T1 and T2 to 0.5 and 0.05, respectively. The total number

of interactions (the sum of #clicks and #select) is reported.

The quantitative results are summarized in Table 1. We

first notice that our MultiSeg model, despite not being

trained specifically to segment single objects, performs

comparably to or even outperforms the other state-of-the-

art methods that were trained to do so. One could argue

that earlier methods use older backbone architectures, and

thus our improvement could be based solely on that (though

some use similar advanced architectures: DEXTR [27] uti-

lizes ResNet-101 with a PSP head while ITIS [26] uses an

Xception-based DeepLabv3+). To further investigate this,

we retrained DIOS using our exact same backbone archi-

tecture, and we do see a large jump in its performance. We

Models #Clicks #Select #Total

DIOS 9.13 - 9.13

MultiSeg-RDL 8.14 3.87 12.01

MultiSeg 7.65 0.96 8.61

Table 2: Quantitative evaluation on Fashionista dataset.

achieve very similar results to the improved DIOS with-

out having the strong bias toward segmenting single object.

This demonstrates that our MultiSeg retained the capability

to segment single objects while it was learning the ability

to generate diverse segmentations. Interestingly, we also

notice that MultiSeg outperforms all other methods on the

Berkeley dataset as it deals better with samples comprising

of multiple objects in this dataset.

4.3. Segmentation of Local Parts

Here, we examine the generalization capability of the

models when segmenting smaller parts within the objects.

We use the Fashionista [37] which contains 685 images with

18 categories for testing. For each image, we randomly

sample one of the ground truths for evaluation.

In addition to the DeepLabv3+ based DIOS which repre-

sents single-output model, we also compare our model with

another baseline by replacing the scale-diversity setting

with the ranked diversity loss introduced in [22]. Specifi-

cally, it was trained with a diversity loss that backpropagates

the loss of each ground truth mask through the segmentation

branch with the smallest loss during the forward pass and a

ranking loss that imposes an ordering on the generated out-

puts. We call this model MultiSeg-RDL. Note that since all

methods use the same backbone architecture, thus allowing

us to directly compare single object segmentation, the di-

versity loss approach and our scale-diversity approach. The

evaluation scheme remains the same as before. It is noted

that for the MultiSeg-RDL baseline, we always take the pre-

diction from the first segmentation branch as the default

proposal regardless if an alternative branch was selected in

the previous round since the model was trained to rank its

solutions. The results are summarized in Table 2.

Not surprisingly, since the “human” class has been seen

in the training, the default segmentation usually covers the

full person. Thus, our MultiSeg requires about 1 #select

in order to segment the smaller local parts. MultiSeg-

RDL trained with ranked diversity loss requires a signifi-

cant number of #select since it does not reuse the diversity

information when an alternative branch is selected. On the

other hand, as expected, the single-solution model, DIOS

performs poorly when segmenting object parts possibly be-

cause the mismatch between training and testing (the model

was trained to segment object instances but is asked to seg-

ment subparts) introduces a strong bias towards selecting

the complete object. Thus, a large number of clicks are

needed to “deselect” the body parts. On the other hand, our
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Figure 4: m-diversity score on the (a) complete VOC

dataset and (b) images with multiple ground truths only.

MutliSeg trained with scale-diversity constrains its proposal

to adhere to a predefined scale, thus alleviating the bias de-

spite it was not trained to segment object parts before.

4.4. Evaluating Diverse Segmentations

Since the main idea of this paper is to produce a set of

diverse segmentations for recommendation to the user, here

we evaluate the diverse predictions of our model. Inspired

by the k-best oracle evaluation scheme used in most diverse

predictions literature [13, 20], we propose a new evaluation

metric called m-diversity score to evaluate the diverse seg-

mentations when multiple right answers exist. Specifically,

given K possible ground truths Y = {Y1,Y2, ...,YK} and

M ranked diverse predictions Ŷ = {Ŷ1, Ŷ2, ..., ŶM} from

the model, the m-diversity score is defined as follows:

m-diversity score =
1

K

∑

Y∈Y

max
Ŷ∈Ŷ

IoU(Y, Ŷ) (4)

For each ground truth answer, we find the closest predic-

tion from the M outputs and compute its accuracy in term of

IoU. The m-diversity score is simply defined as the average

accuracy across all the K possible ground truths. Sweeping

M (by taking the top M predictions after NMS) allows us

to plot a non-decreasing curve of average accuracy against

the number of predictions allowed as shown in Figure 4.

We evaluate the segmentation diversity of our model on

the PASCAL VOC validation set [8]. For each image, we

randomly sample an object and find its neighbor(s) to form a

sequence of possible ground truths based on different com-

binations of objects. Then, we randomly sample a posi-

tive and a negative click on the common foreground and

background, respectively for evaluation. Figure 4 shows

the average m-diversity score on the complete VOC vali-

dation set. Among all the sampled instances, two-thirds do

not have any neighboring object. Thus, we also report the

average m-diversity score on those samples with neighbors

in Figure 4(b).

We first notice that the diversity score of DIOS does

not vary with m since it produces a single solution only.

We also compared with another baseline which was trained

without the simulated training data described in Section 3.3

(MultiSeg-SingleGt). As expected, this baseline performs

worse than our full model, suggesting that the explicit syn-

thesis of diverse training samples is beneficial for the gen-

eration of diverse solutions. On the other hand, MultiSeg-

RDL also performs worse than our full MultiSeg model,

indicating that explicitly defining output branches by scale

is useful. In comparing Figure 4(a) and 4(b), we see that

the gap from MultiSeg to other baseline methods is larger

when restricting the evaluation to test with multiple possible

ground truth segmentations consistent with the user input.

Next, we also visualize the proposals generated by our

MultiSeg, MultiSeg-SingleGt and MultiSeg-RDL in Fig-

ure 5. We observe that MultiSeg-RDL yields visually sim-

ilar results across all the proposals. As it had no mecha-

nism to encourage each branch to produce a unique out-

put, it seemingly never learned the desired diversity. Sim-

ilarly, MultiSeg-SingleGt trained without the diverse train-

ing samples, also produces proposals with limited diversity.

On the other hand, our MultiSeg enforces each segmenta-

tion branch to extract the most likely region within the cor-

responding predefined scale. Thus, a diverse set of scale-

varying outputs can be obtained with just a single positive

click. More qualitative results are shown in Figure 6. Given

only a positive and negative clicks, our MultiSeg can gen-

erate a wide variety of segmentations. More interestingly,

our model can segment object parts (arm, hat and wheels)

despite it was not trained with parts annotations before.

4.5. User Study

We also conducted a user study to justify the ef-

fectiveness of the presented approach with the real hu-

man input. We collected 50 images from PASCAL

VOC [8], COCO [24], Berkeley [28], Fashionista [37] and

DAVIS [30] to compile a benchmark that consists of sin-

gle object instance, parts, and multiple objects. It should

be noted that the same image could be associated with more

than one annotation, simulating the practical scenario where

anything in the same image could be segmented.

A snapshot of our user interface is shown in Figure 3.

The user can choose to either add a positive or negative

click using the left and right mouse click, respectively on

the main canvas or select one of the proposals suggested on

the right panel. The target segmentation (the ground truth

that we want our participants to segment) is shown on a sep-

arate floating window. The chosen segmentation mask will

be overlaid on the main canvas for display.

We recruited five participants where each participant

is requested to perform 30 interactive segmentation tasks.

Each sample is tested with three different models (DIOS,
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Figure 5: Diverse predictions from (a) MultiSeg, (b) MultiSeg-SingleGt and (c) MultiSeg-RDL given a single positive click

only. The input image with the click is shown on the left.

Segmentation 1 Segmentation 2 Segmentation 3 Segmentation 1 Segmentation 2
Figure 6: Given only one positive click (green) and one negative click (blue), the top 2 or 3 segmentation results of our

MultiSeg after NMS and graph cut optimization are presented.

MultiSeg-RDL and MultiSeg) and the order of the models

is randomized, such that the participants were not aware of

the segmentation model driving the interface. We record

#clicks, #select and the actual time needed until either 20

clicks are placed or 85% of IoU is reached. The results are

shown in Table 3. Our MultiSeg uses the least amount of

interactions and time to achieve 85% IoU.

5. Conclusion

In this work, we presented MultiSeg, a scale-diverse in-

teractive image segmentation network that incorporates a

set of two-dimensional scale priors into the model for gen-

erating a set of scale-varying segmentations that are consis-

tent with the user input. To enable this, we also introduced a

novel diverse training data generation pipeline to explicitly

encourage the model to learn the diversity. Extensive exper-

imental results have demonstrated that our proposed model

is capable of producing multiple diverse and semantically

meaningful segmentations, being useful for building a more

efficient interactive segmentation system.

Models #Clicks #Select #Total Time (s)

DIOS 4.62 - 4.62 8.84

MultiSeg-RDL 4.24 0.14 4.38 9.47

MultiSeg 3.30 0.24 3.54 7.55

Table 3: User study.

Acknowledgements Jiashi Feng was partially supported by NUS IDS R-

263-000-C67-646, ECRA R-263-000-C87-133 and MOE Tier-II R-263-

000-D17-112. This work is supported in part by gifts from Adobe.

669



References

[1] David Acuna, Huan Ling, Amlan Kar, and Sanja Fidler. Ef-

ficient interactive annotation of segmentation datasets with

Polygon-RNN++. In CVPR, 2018.

[2] Xue Bai and Guillermo Sapiro. A geodesic framework for

fast interactive image and video segmentation and matting.

In ICCV, 2007.

[3] Dhruv Batra, Payman Yadollahpour, Abner Guzman-Rivera,

and Gregory Shakhnarovich. Diverse m-best solutions in

markov random fields. In ECCV, 2012.

[4] Yuri Y Boykov and Marie-Pierre Jolly. Interactive graph cuts

for optimal boundary & region segmentation of objects in nd

images. In ICCV, 2001.

[5] Lluis Castrejon, Kaustav Kundu, Raquel Urtasun, and Sanja

Fidler. Annotating object instances with a polygon-rnn. In

CVPR, 2017.

[6] Liang-Chieh Chen, Yukun Zhu, George Papandreou, Flo-

rian Schroff, and Hartwig Adam. Encoder-decoder with

atrous separable convolution for semantic image segmenta-

tion. arXiv preprint arXiv:1802.02611, 2018.

[7] Antonio Criminisi, Toby Sharp, and Andrew Blake. GeoS:

Geodesic image segmentation. In ECCV, 2008.

[8] Mark Everingham, Luc Van Gool, Christopher KI Williams,

John Winn, and Andrew Zisserman. The pascal visual object

classes (VOC) challenge. IJCV, 2010.

[9] Michael Firman, Neill D. F. Campbell, Lourdes Agapito, and

Gabriel J. Brostow. Diversenet: When one right answer is not

enough. In CVPR, 2018.

[10] Daniel Freedman and Tao Zhang. Interactive graph cut based

segmentation with shape priors. In CVPR, 2005.

[11] Leo Grady. Random walks for image segmentation. TPAMI,

2006.

[12] Varun Gulshan, Carsten Rother, Antonio Criminisi, Andrew

Blake, and Andrew Zisserman. Geodesic star convexity for

interactive image segmentation. In CVPR, 2010.

[13] Abner Guzmán-rivera, Dhruv Batra, and Pushmeet Kohli.

Multiple choice learning: Learning to produce multiple

structured outputs. In NeurIPS, 2012.

[14] Bharath Hariharan, Pablo Arbelez, Lubomir Bourdev,

Subhransu Maji, and Jitendra Malik. Semantic contours from

inverse detectors. In ICCV, 2011.

[15] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.

Deep residual learning for image recognition. In CVPR,

2016.

[16] Yang Hu, Andrea Soltoggio, Russell Lock, and Steve Carter.

A fully convolutional two-stream fusion network for interac-

tive image segmentation. Neural Networks, 2019.

[17] Michael Kass, Andrew Witkin, and Demetri Terzopoulos.

Snakes: Active contour models. IJCV, 1988.

[18] Hoang Le, Long Mai, Brian Price, Scott Cohen, Hailin Jin,

and Feng Liu. Interactive boundary prediction for object se-

lection. In ECCV, 2018.

[19] Stefan Lee, Senthil Purushwalkam Shiva Prakash, Michael

Cogswell, David Crandall, and Dhruv Batra. Why M heads

are better than one: Training a diverse ensemble of deep net-

works. arXiv preprint arXiv:1511.06314, 2015.

[20] Stefan Lee, Senthil Purushwalkam Shiva Prakash, Michael

Cogswell, Viresh Ranjan, David Crandall, and Dhruv Batra.

Stochastic multiple choice learning for training diverse deep

ensembles. In NeurIPS, 2016.

[21] Yin Li, Jian Sun, Chi-Keung Tang, and Heung-Yeung Shum.

Lazy snapping. In ACM ToG, 2004.

[22] Zhuwen Li, Qifeng Chen, and Vladlen Koltun. Interactive

image segmentation with latent diversity. In CVPR, 2018.

[23] Jun Hao Liew, Yunchao Wei, Wei Xiong, Sim-Heng Ong,

and Jiashi Feng. Regional interactive image segmentation

networks. In ICCV, 2017.

[24] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays,

Pietro Perona, Deva Ramanan, Piotr Dollár, and C Lawrence

Zitnick. Microsoft COCO: Common objects in context. In

ECCV, 2014.

[25] Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian

Szegedy, Scott Reed, Cheng-Yang Fu, and Alexander C

Berg. Ssd: Single shot multibox detector. In ECCV, 2016.

[26] Sabarinath Mahadevan, Paul Voigtlaender, and Bastian

Leibe. Iteratively trained interactive segmentation. In

BMVC, 2018.

[27] Kevis-Kokitsi Maninis, Sergi Caelles, Jordi Pont-Tuset, and

Luc Van Gool. Deep extreme cut: From extreme points to

object segmentation. In CVPR, 2018.

[28] Kevin McGuinness and Noel E O’Connor. Toward auto-

mated evaluation of interactive segmentation. Computer Vi-

sion and Image Understanding, 2011.

[29] Eric N Mortensen and William A Barrett. Intelligent scis-

sors for image composition. In International conference on

computer graphics and interactive techniques, 1995.

[30] Federico Perazzi, Jordi Pont-Tuset, Brian McWilliams,

Luc Van Gool, Markus Gross, and Alexander Sorkine-

Hornung. A benchmark dataset and evaluation methodology

for video object segmentation. In CVPR, 2016.

[31] Brian L Price, Bryan Morse, and Scott Cohen. Geodesic

graph cut for interactive image segmentation. In CVPR,

2010.

[32] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun.

Faster r-cnn: Towards real-time object detection with region

proposal networks. In NeurIPS, 2015.

[33] Carsten Rother, Vladimir Kolmogorov, and Andrew Blake.

Grabcut: Interactive foreground extraction using iterated

graph cuts. In ACM ToG, 2004.

[34] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, San-

jeev Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy,

Aditya Khosla, Michael Bernstein, et al. Imagenet large

scale visual recognition challenge. IJCV, 2015.

[35] Sara Vicente, Vladimir Kolmogorov, and Carsten Rother.

Graph cut based image segmentation with connectivity pri-

ors. In CVPR, 2008.

[36] Ning Xu, Brian Price, Scott Cohen, Jimei Yang, and

Thomas S Huang. Deep interactive object selection. In

CVPR, 2016.

[37] Kota Yamaguchi, M Hadi Kiapour, Luis E Or-

tiz, and Tamara L Berg. Parsing clothing in

fashion photographs. In CVPR, 2012. Dataset:

https://github.com/lemondan/HumanParsing-Dataset.

670


