
AGSS-VOS: Attention Guided Single-Shot Video Object Segmentation

Huaijia Lin1 Xiaojuan Qi2 Jiaya Jia1,3

1The Chinese University of Hong Kong 2University of Oxford 3Tencent YouTu Lab

linhj@cse.cuhk.edu.hk, xiaojuan.qi@eng.ox.ac.uk, leojia@cse.cuhk.edu.hk

Abstract

Most video object segmentation approaches process ob-

jects separately. This incurs high computational cost when

multiple objects exist. In this paper, we propose AGSS-VOS

to segment multiple objects in one feed-forward path via

instance-agnostic and instance-specific modules. Informa-

tion from the two modules is fused via an attention-guided

decoder to simultaneously segment all object instances in

one path. The whole framework is end-to-end trainable

with instance IoU loss. Experimental results on Youtube-

VOS and DAVIS-2017 dataset demonstrate that AGSS-VOS

achieves competitive results in terms of both accuracy and

efficiency.

1. Introduction

Video object segmentation (VOS) aims at segmenting

objects in all frames of a video. It finds various applications

in video editing, autonomous driving, robotics, human-

computer interaction, to name a few. In this paper, we study

this problem in the semi-supervised setting, in which anno-

tation of one or multiple objects is given for the first frame

in a video. The task is then to segment all corresponding

objects in the rest of the video.

Successful approaches [26, 29, 2, 7, 15] on video object

segmentation in the semi-supervised setting can be coarsely

cast into three categories. One major stream [26, 29, 25]

is to separately segment objects and does not consider one-

pass multi-object processing. The efficiency is shown in

Fig. 1 (in the red curve). Another line of research [15, 11]

utilizes region proposals to generate mask proposals. They

adopt re-identification networks to find and associate ob-

jects. Albeit improving performance, these systems are still

time-consuming, i.e., taking 37 seconds per frame [15], and

need post-processing to handle false positive object propos-

als. Recently, embedding-based solutions [2, 7, 17] that

measure pixel distance in the embedding space demonstrate

great efficiency and accuracy trade-off. These methods have

indispensable pixel-wise distance calculation process with

O(N2) time complexity on O(N) pixels. They are still dif-
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Figure 1. Comparison of accuracy (in histogram) and computation

speed (by the curve) regarding different object numbers of RGMP

[26] and our method. Input frame size 832×448 is used in DAVIS-

2017 test-dev set. On large object numbers, our method efficiency

is less affected.

ficult to handle high-res videos with memory constraint.

To tackle the above challenges, we propose an end-to-

end attention guided single-shot video object segmentation

(AGSS-VOS) framework to simultaneously segment all ob-

jects in one feed-forward pass without utilizing complex ob-

ject proposals or time consuming pixel-wise distance calcu-

lation. The key idea is to adopt an instance-agnostic mod-

ule to capture knowledge shared by all instances, and an

instance-specific module to generate instance-specific fea-

tures. Output from the two modules is fused via an attention

mechanism to segment object instances.

Specifically, without discriminating among different ob-

ject instances, the instance-agnostic module takes all ob-

jects and encodes them into one common feature with fully

convolutional neural networks. The instance-specific mod-

ule then encodes different objects into separate attention

features. The generated two types of features are combined

via multiplication and are further utilized to generate masks

of instances. Finally, they are normalized to produce the ob-

ject segmentation prediction for the target frame. The whole

framework is end-to-end trainable with instance IoU loss.
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Our framework saves computation by processing the ref-

erence and target frames involving all objects only once in

the instance-agnostic module, while retaining high accuracy

via our light-weighted instance-specific component and at-

tention guided decoding scheme. As shown in Fig. 1 (in

blue curve), the running time of AGSS-VOS for segment-

ing multiple objects increases much slower than the single

object propagation baseline RGMP [26] as object number

increases. Meanwhile, we achieve comparable accuracy.

We experiment with our method on both Youtube-VOS

and DAVIS-2017 datasets. Results demonstrate that our

method is efficient. The contribution is summarized below.

• We propose an end-to-end attention guided single-shot

video object segmentation framework to simultane-

ously segment multiple objects in one feed-forward

path.

• We model instance-specific information as attention

features to discriminate among different objects on top

of instance-agnostic feature.

• Our approach exhibits high efficiency while retaining

reasonable accuracy.

2. Related Work

Existing semi-supervised VOS approaches can be

roughly categorized into three directions: 1) single object

based VOS where each object instance is separately pro-

cessed; 2) region proposal based VOS; 3) embedding based

VOS.

Single Object VOS In the inference stage, many single-

object video object segmentation approaches rely on on-

line learning technique, which needs time-consuming fine

tuning on the first annotated frame. OSVSO [1] trained a

convolutional network in the training set and adopted on-

line learning in the target video. OnAVOS [24, 23] and

OSVOS-S [16] extended OSVOS via an online adaptation

mechanism and an instance segmentation network. Mask-

Track [18] utilized previous frame mask to guide current

segmentation. LucidTracker [10] extended MaskTrack by

an extensive data augmentation strategy. LSE [4] proposed

location sensitive embedding strategy to refine foreground

prediction.

There are offline training approaches without computa-

tional expensive online fine-tuning. Yang et al. [29] manip-

ulated the intermediate layer of the segmentation network

with a modulator to adapt the change of visual and spatial

information for each target object. FAVOS [3] utilized a

tracking based approach to track bounding boxes for object

parts and segmented boxes with a ROI segmentation net-

work. MaskRNN [6] adopted a Mask R-CNN [5] based

framework to predict box and corresponding mask for each

object. Tokmakov et al. [21] and Xu et al. [27] proposed

convGRU and convLSTM to build a memory module for re-

cursively long-term prediction. AGAM [9] learned a prob-

abilistic generative model of the target and background fea-

ture distributions for efficient segmentation.

The most related work to ours is RGMP [26], which pro-

posed a Siamese encoder-decoder network with two-stream

input. The reference stream takes the reference frame with

the annotated object as input and the target stream takes the

target frame with the previous mask as input. The two-

stream information is encoded to the same deep feature

space and is fused with a global convolution block. The

fused feature is further decoded with skip connection from

the target stream to produce segmentation for the target

frame. RGMP is designed for single-object segmentation

while our approach adopts RGMP as an instance-agnostic

module to acquire knowledge shared by all instances in one

feed-forward path.

Region Proposal Based VOS Approaches along this line

adopt region proposal networks (RPN [20]) to generate mul-

tiple object proposals shared by all target objects in one

feed-forward path. DyeNet [11] has a Re-MP module for

object propagation and a Re-ID module on the RPN for

associating objects and retrieving missing objects. PRe-

MVOS [15, 13, 14] combined four stream networks, includ-

ing Mask R-CNN [5] to generate mask proposals, to achieve

impressive results with online learning. Although these ap-

proaches are able to achieve high accuracy, the dependency

on region proposal networks makes it complex in training.

Region proposal based approaches typically require post-

processing to remove false positive proposals.

Embedding Based VOS Embedding based VOS ap-

proaches [2, 7] learn mapping pixels in the reference and

target frames in the same embedding space. Different in-

stances are grouped together by comparing feature space

distance. FEELVOS [17] extended the method of [2] for

multiple object segmentation, which shares the same goal as

ours. The whole system can predict multiple objects in one

feed-forward path and can be trained in an end-to-end man-

ner. Albeit improving accuracy and efficiency, the approach

still suffer from resource issues to handle high-resolution

videos due to pixel-pixel embedding.

3. Our Method

Our AGSS-VOS architecture is illustrated in Figure 2.

It includes an instance-agnostic module (Figure 2(a)) to

extract high-level features shared by all instances, and an

instance-specific module (Figure 2(b)) to produce instance-

aware feature maps. The two modules are linked via an
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(a) Instance-Agnostic Module

(b) Instance-Specific Module
(c) Attention-Guided 
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Figure 2. Overview of AGSS-VOS, consisting of (a) an Instance-Agnostic module, (b) an Instance-Specific module and (c) an Attention-

Guided decoder. It, St and Pt denote the image, ground-truth segmentation mask and prediction result in frame t. Ot−1,t denotes optical

flow between frames t − 1 and t while Pt−1,t denotes warped mask from frames t − 1 to t. S
ag
0

and P
ag
t−1,t denote the instance-agnostic

masks defined in Equations (1) and (2). The relative spatial sizes and channel dimensions of feature maps are given. The key feature maps

are visualized by summing all channels (best view in color).

attention-guided decoder (Figure 2(c)) to produce segmen-

tation results for the target frame.

3.1. Network Structure

Preliminaries We first present the preliminaries of our

overall network structure illustrated in Figure 2. In the

semi-supervised video object segmentation setting, the first

frame, a.k.a. reference frame I0, is annotated by hu-

man, indicating objects that need to be segmented in the

rest of frames. We utilize I0 2 RH×W×3 and S0 2

{0, 1}N×H×W to represent reference frame and corre-

sponding annotated object segmentation where H and W
are image height and width respectively, and N is the to-

tal number of object instances annotated in the reference

frame. Pixels with values 0 and 1 in S0 denote background

and foreground pixels for each object instance respectively.

The target frame t is the frame that needs to be segmented.

Similarly, we utilize It 2 RH×W , St 2 {0, 1}N×H×W

and Pt 2 [0, 1]N×H×W to represent the target frame t, cor-

responding ground truth object segmentation mask and ob-

ject prediction results. Beside, SP
t 2 {0, 1}N×H×W de-

notes prediction segmentation results in frame t. To equip

the system with temporal reasoning capability, we extract

optical flow Ot−1,t between previous frame It−1 and target

frame It.

Instance-Agnostic Module We build our instance-

agnostic module on top of the architecture proposed in

RGMP [26]. To produce the instance-agnostic feature F ia
t

for segmenting target frame It, the module takes as input the

reference frame I0 with its corresponding agnostic ground-

truth mask Sag
0 2 {0, 1}H×W , the target frame It with its

corresponding agnostic warped mask P ag
t−1,t 2 [0, 1]H×W .

To align previous frame annotation with the target frame,

we warp Pt−1 with flow field Ot−1,t. The warped mask is

denoted as Pt−1,t 2 [0, 1]N×H×W . For the agnostic mask

Sag
0 and P ag

t−1,t, the pixel value of position (h,w) 2 H⇥W
is

Sag
0 (h,w) = max

1≤n≤N
S0(n, h, w), (1)

P ag
t−1,t(h,w) = max

1≤n≤N
Pt−1,t(n, h, w). (2)

As illustrated in Figure 2(a), the target frame It with the ag-

nostic warped mask P ag
t−1,t and the reference frame I0 with

the corresponding agnostic mask Sag
0 are first processed by

a two-stream Siamese encoder, which maps them into two

semantic feature maps separately. The two feature maps

are then concatenated and decoded to generate instance-

agnostic feature maps F ia
t 2 R

H

8
×W

8
×256, where H and

W are the original image height and width.

In contrast to the original RGMP framework, which pro-

cesses and segments one object each, we take RGMP as a
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Figure 3. Visualization of the instance-specific visual feature and

attention feature. For each feature map, the results are obtained by

summing the channel dimension and taking the absolute values.

For each object instance, the visual feature captures visual texture

information. The attention feature highlights the most relevant re-

gions.

generic feature extractor – our method extracts the feature

map shared by all instances at one feed-forward path.

Instance-Specific Module To discriminate among differ-

ent object instances, we propose the instance-specific mod-

ule, which is a light-weight neural network to encode dif-

ferent object instances into instance visual features F vs
t 2

RN×H

4
×W

4
×256 and instance attention features F atn

t 2

RN×H

8
×W

8
×256. Layer k in F vs

t and F atn
t , denoted as F vs

t,k

and F atn
t,k respectively, represent the corresponding features

for the k-th object. To generate instance visual features, the

prediction results for the previous frame Pt−1 is first warped

to be aligned with frame t according to the predicted optical

flow Ot−1,t.

The i-th map in the warped object segmentation

P(t−1,t),i 2 [0, 1]H×W represents the i-th object instance

warped mask. Then, the visual-feature extractor takes the

channel-wise concatenation of Pt−1,t and the target im-

age It as input, and produces the instance visual feature

F vs
t 2 RN×H

4
×W

4
×256 as illustrated in Figure 2(b). The

instance visual feature map is further combined with the

down-sampled object instances masks Pt−1,t , which is sub-

sampled by a ratio of 4 to align with the spatial dimension

of F vs
t .

The concatenated features are utilized by the the atten-

tion generator (Figure 2(d)) to generate the instance atten-

tion feature F atn
t 2 RN×H

8
×W

8
×256. The attention genera-

tor aims to generate the instance attention feature in a com-

putational and memory efficient manner, which includes

only three convolutional layers as illustrated in Figure 2(d).

The first convolution layer with kernel size 1 ⇥ 1 is uti-

lized to integrate and refine channel-wise input (i.e., F vs
t

and down-sampled P(t−1,t)). The rest two convolutional

layers adopt 3 ⇥ 3 kernel size for aggregating spatial and

channel information. The last convolutional layer with ker-

nel size 3 ⇥ 3 and stride 2 is to down-sample the feature

map to generate instance attention feature F atn
t , which has

the same spatial size as F ia
t . Empirically, we find that re-

moving the activation function after the last convolutional

layer produces better results than using ReLU or sigmoid

activation function.

Figure 3 presents an example of the instance-specific vi-

sual feature F vs
t,k and attention feature F atn

t,k for each object

instance. The visual texture information of each object in-

stance is captured by the visual and attention feature, high-

lighting the most relevant regions to filter out potentially

noisy regions. These two features complement each other

to decode the specified object instance from the instance-

agnostic feature.

Attention-Guided Decoder Equipped with the instance-

specific features, i.e., F vs
t and F atn

t , and instance-agnostic

feature F ia
t , we further propose the attention-guided de-

coder (Figure 2(c)) to separately predict the probability

mask Pt,k for each object instance k at the target frame t.

First, to introduce instance-specific priors for mining dis-

criminative information from the instance-agnostic feature

F ia
t for instance k, we combine F ia

t and instance attention

feature F atn
t,k to generate extracted instance-agnostic feature

F ia
t,k for instance k as

F ia
t,k = F atn

t,k � F ia
t , (3)

where � denotes element-wise multiplication, and F atn
t,k

represents the attention feature for the k-th object. The

learned attention generator enables us to obtain the most rel-

evant information for defining the corresponding instance.

Then the extracted instance-agnostic feature F ia
t,k is com-

bined with the instance visual feature F vs
t,k via a refinement

module, which harvests complementary information from

instance-agnostic and instance-specific feature maps. The

refined feature is further processed by the final prediction

module, which has one 3 ⇥ 3 convolution with output of

channel dimension 2 and a 4⇥ bilinear up-sampling opera-

tion to match the original image resolution. Softmax non-

linearity is finally applied to the output to produce the fore-

ground prediction probability mask Pt,k 2 [0, 1]H×W for

instance k.

Probabilistic Normalization Till now, different object

instances are separately predicted. However, they are cor-

related and constrained by the fact that one pixel can only

be assigned to one object instance. To better capture this
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intuition, we propose to utilize softmax aggregation func-

tion [26] to normalize prediction of each pixel considering

its object probability among all N object instances.

The probabilities are normalized as

P̂t,k(h,w) =
Pt,k(h,w)/(1� Pt,k(h,w))

PN

i=0 Pt,i(h,w)/(1� Pt,i(h,w))
. (4)

In this equation, (h,w) 2 {1, 2, ..., H} ⇥ {1, 2, ...,W} in-

dicates all pixel locations. Pt,0 is the background probabil-

ity map for frame t, which is not predicted in the attention

guided module. We derive it by considering all foreground

prediction results via

Pt,0(h,w) = 1� max
1≤i≤N

Pt,i(h,w). (5)

The above probabilistic normalization strategy also en-

ables us to directly derive the object segmentation result

SP
t 2 {0, 1}N×H×W as Equation (6) without any post-

processing:

SP
t (k, h, w) = 1[k = argmax

k∈{0,1,...,N}

P̂t,k(h,w)]. (6)

1[·]=1 if and only if · is true. The post-processing is

adopted in almost all state-of-the-art approaches [15, 7],

which needs parameter tuning. In contrast, we simultane-

ously handle all object instances prediction in our one pass

segmentation framework. It enables us to formulate our

instance-aware IoU loss function as detailed in Sec. 3.2.

3.2. Training Loss

To train our proposed AGSS-VOS framework, we adopt

IoU Loss [12] formulated in Equation (7). P̂t,k and St,k de-

note the normalized prediction mask and ground truth mask

for instance k in frame t, respectively.

L(P̂t, St) = 1−

1

N

NX

k=1

P
h,w min(P̂t,k(h,w), St,k(h,w))

P
h,w max(P̂t,k(h,w), St,k(h,w)))

(7)

The IoU loss is utilized to handle large size variation among

different object instances since it has similar effect on both

small and large objects. Further, it is designed to inspire the

network to produce discriminative probability distributions

for different instances since it jointly considers probability

belonging to all instances.

4. Experiments

We evaluate our approach on challenging Youtube-VOS

[28] and DAVIS-2017 [19] datasets. We also perform com-

prehensive ablation experiments in Section 4.4 to validate

the effectiveness of each component, i.e., instance-agnostic

module, instance-specific module, and attention-guided de-

coder.

4.1. Implementation Details

Structure Details The instance-agnostic module is built

on top of RGMP [26] except that we take the output of the

second refine module as the instance-agnostic feature. The

last refinement module is moved to the attention guided de-

coder. The feature extractor in the instance-specific module

consists of two residual blocks.

Training Details In the training phase, we randomly sam-

ple a fixed-length sub-sequence in all videos. The first

frame in the sampled sequence is utilized as the reference

frame. We add two types of data augmentation: 1) flipping

each frame horizontally; 2) reversing the sampled sequence.

Similar to [26], we use recurrent training scheme to sim-

ulate error accumulation and soft mask from the previous

frame. Besides, we set a tolerance threshold: if the IoU of

previous mask is lower than a threshold, this mask is sub-

stituted with the ground truth one since a low-quality mask

could misguide the target-frame segmentation. We initialize

IAM with pre-trained weights in [26] to accelerate conver-

gence.

Optical flow is calculated with FlowNet-2 [8] whose

weights are updated during the training process. The sam-

pled frame is re-sized to 640 ⇥ 320 and the length of the

sampled sequence is 8 (frames). We use Adam optimizer

and poly learning policy with the initial learning rate 1e� 5
for 10-epoch training. Training on Youtube-Vos training

set takes about one day with one NVIDIA TITAN Xp GPU

card.

4.2. Evaluation Metrics

The predicted video object segmentation is compared

with the ground truth in terms of the following metrics.

• Mask accuracy J : the mean intersection-over-union

(mIoU) between the predicted segmentation and

ground-truth masks.

• Contour accuracy F : the F-measures of the contour-

based precision and recall between the contour points

of the predicted segmentation and ground-truth masks.

• Overall score G: the average score of J and F .

4.3. Comparsion with State-of-the-arts

Youtube-VOS We train our framework on the Youtube-

VOS [28] training set, which contains 3,471 videos and

approximately half of them contain multiple objects. We

evaluate our model on the validation set, which contains

474 videos. The results are evaluated on the open evalu-

ation server [28]. We evaluate on the validation set since

the Youtube-VOS test set server is not open.

Youtube-VOS also evaluate J ,F on seen and unseen ob-

jects separately. Objects with categories existing in both
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Method OL J seen (%) J unseen (%) F seen (%) F unseen (%) G Overall (%) Time (s)

OSMN [29] 60.0 40.6 60.1 44.0 51.2 0.24

RGMP [26] 59.5 45.2 - - 53.8 -

S2S [27] 66.7 48.2 65.5 50.3 57.6 0.27

AGAM [9] 66.9 61.2 - - 66.0 -

MaskTrack [18] X 59.9 45.0 59.5 47.9 53.1 20.6

OnAVOS [24] X 60.1 46.6 62.7 51.4 55.2 22.3

OSVOS [1] X 59.8 54.2 60.5 60.7 58.8 17.2

S2S(+OL) [27] X 71.0 55.5 70.0 61.2 64.4 15.4

AGSS-VOS 71.3 65.5 75.2 73.1 71.3 0.08

Table 1. Quantitative results of video object segmentation on Youtube-VOS validation set. ‘OL’ denotes using online learning. ‘time (s)’

denotes the running time per frame.

Method OL J F J&F Time (s)

RGMP [26] 64.8 68.6 66.7 0.28

VideoMatch [7] 56.5 - - 0.35

VideoMatch [7] X 61.4 - - 2.62

OnAVOS [22] X 61.0 66.1 63.6 26

PReMVOS [15] X 73.9 81.7 77.8 37.4

AGSS-VOS 63.4 69.8 66.6 0.10

AGSS-VOS (pre. YTV) 64.9 69.9 67.4 0.10

Table 2. Quantitative comparison of different methods on DAVIS-

2017 validation set. ‘OL’ denotes online training. ‘pre. YTV’

denotes pre-training on Youtube-VOS dataset [28].

Method OL J F J&F Time (s)

RGMP [26] 51.3 54.4 52.8 0.42

OnAVOS [22] X 53.4 59.6 56.5 39

PReMVOS [15] X 67.5 75.7 71.6 41.3

AGSS-VOS 51.5 57.1 54.3 0.11

AGSS-VOS (pre. YTV) 54.8 59.7 57.2 0.11

Table 3. Quantitative comparison of different methods on DAVIS-

2017 test-dev set. ‘OL’ denotes online training. ‘pre. YTV’ de-

notes pre-training on Youtube-VOS dataset [28].

the training and validation sets are denoted as seen objects,

while objects with categories only existing in validation set

are denoted as unseen objects.

In Table 1, we show comparison with previous start-

of-the-art approaches on Youtube-VOS [28] dataset. Our

method achieves a new state-of-the-art of 71.3% in terms

of overall scores using only 0.08 second per frame. “OL”

in Table 1 denotes online learning in the inference stage.

This strategy can help boost the performance. But it is not

practical.

Compared with approaches without online learning [29,

27, 9, 26], our AGSS-VOS approach consistently performs

better. Moreover, our approach (0.08s/frame) is much faster

than the previous efficient approach [29] with 0.24s/frame.

Compared with the approaches by online learning [1, 18,

24, 27], our method is 200⇥ times more efficient than com-

pared approaches. In terms of quality, our results are also

decent.

DAVIS-2017 DAVIS-2017 [19] contains 60 video se-

quences for training, 30 sequences for validation and 30
sequences for testing. Most of the video sequences con-

tain multiple objects. The AGSS-VOS model is trained

on the DAVIS-2017 training set and evaluated on the

validation/test-dev set. Besides, we notice that pre-training

on the Youtube-VOS training set and fine-tuning on the

DAVIS training set boost the performance.

The comparison with other state-of-the-art methods are

demonstrated in Tables 2 and 3. Our method achieves three

times faster than the previous fastest approach [26] with

comparable accuracy. We note that the accuracy of PRe-

MVOS [13] is higher since it uses online learning.

4.4. Ablation Studies

Analysis of Different Components We do extensive ab-

lation experiments to analyze the effectiveness of dif-

ferent components, e.g. instance-agnostic module (IAM),

instance-specific module (ISM), probabilistic normalization

strategy (NM) and Optical Flow (OF). Quantitative results

are illustrated in Table 4.

Table 4 (line 1) shows the result of removing instance-

specific module in AGSS-VOS. In this setting, the instance-

agnostic feature F ia
t is directly multiplied with warped

video object segmentation prediction Pt−1,t (Figure 2).

The overall score decreases more than 4% compared with

AGSS-VOS model (Table 4 (line 5)). As shown in Figure 4,

after removing the instance-specific module, the framework

fails to enhance the difference between the two horses. It

demonstrates usefulness of the proposed instance-specific

module for multi-object segmentation in videos.

Table 4 (line 2) shows the quantitative results of our sys-

tem without instance-agnostic module (IAM). In this set-

ting, the instance-specific features (F vs
t and F atn

t in Fig-

ure 2) are directly utilized to produce the object segmenta-

tion results. Experimental results show that the overall score

drops more than 12% compared with AGSS-VOS model

(Table 4 (line 5)). As shown in Figure 4, the segmentation

quality becomes much worse without using the instance-
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OF IAM ISM NM J seen (%) J unseen (%) F seen (%) F unseen (%) G overall (%)

1 X X X 69.5 59.3 73.2 66.1 67.0

2 X X X 60.2 51.7 63.0 59.7 58.6

3 X X X 69.3 61.3 73.7 70.0 68.6

4 X X X 69.9 59.9 73.9 67.2 67.8

5 X X X X 71.3 65.5 75.2 73.1 71.3

Table 4. Ablation study of component effect on the Youtube-VOS [28] dataset. ‘OF’ denotes warping the previous mask to the target frame

via optical flow. ‘IAM’ denotes the instance-agnostic module. ‘ISM’ denotes the instance-specific module. ‘NM’ denotes probabilistic

normalization.
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Figure 4. Effect of the Instance-Agnostic Module (IAM) and the

Instance-Specific Moodule (ISM). ’-ISM’ and ’-IAM’ denote re-

moving the instance-specific module and instance-agnostic mod-

ule respectively.
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Figure 5. Effect of probabilistic normalization (NM). ’-NM’ de-

notes the abandonment of probabilistic normalization. Without

normalization, segmentation of the backpack strap cannot be re-

tained.

agnostic module. It demonstrates that the instance-agnostic

module actually learns crucial information for video object

segmentation.

Table 4 (line 3) shows the result by removing the proba-

bilistic normalization process and directly utilizing the out-

put for training. The performance drops by 2% compared

with Table 4 (line 5). Figure 5 demonstrates the effect of

probabilistic normalization. By normalizing the probability

of each prediction, the AGSS-VOS model is able to retain

segmentation of small objects e.g. the backpack strap, in a

long range of frames.

In addition, we evaluate utilizing optical flow to align the

Frame 0 Frame 5 Frame 95

-O
F

O
ur

s
Figure 6. Effect of optical flow (OF). ’-OF’ denotes the abandon-

ment of optical flow. Without optical flow, the box in the mirror is

segmented mistakenly.
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Figure 7. Illustration of running time of each module in AGSS-

VOS in case of one-object with one-feed-forward. OF and FW

denote calculation of optical flow and warping the previous mask

using optical flow. IAM and ISM denote the instance-agnostic

module and instance-specific module, respectively. AGD denotes

attention-guided decoder.

previous segmentation prediction Pt−1 to the current frame

Pt−1,t. Experimental results without optical flow alignment

drop by 3% as shown in Table 4 (line 4). Figure 6 demon-

strates the effect of optical flow. Without aligning the previ-

ous frame’s mask, the AGSS-VOS model segments the box

in the mirror mistakenly. This demonstrates that utilizing

optical flow to align the input helps the system better seg-

ment objects in motion scenarios.

Runtime Analysis We show the running time of each

module of AGSS-VOS in the case of one-object with one-
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Figure 8. Illustration of the result of our method on the DAVIS-2017 and YouTube-VOS datasets. Frames are sampled uniformly. The last

row shows failure mode of our approach.

feed-forward in Figure 7. Optical flow computation (OF)

and instance-agnostic module (IAM) occupy more than

92% of the total computational time. This part of computa-

tion time does not increase along with the number of object

instances since operations only need to be computed once

for one frame regardless of the number of object instances.

While the optical flow warping (FW), instance-specific

module (ISM), and attention guided decoder (AGD) need to

be computed for each instance separately, they only occupy

less than 8% of the computation time. Benefited from rich

representation of the instance-agnostic module, we design

the light-weight instance-specific module capturing rough

position information of the instances represented as atten-

tion maps. The whole system gains high efficiency in pro-

cessing multiple objects in one path without sacrificing ac-

curacy.

4.5. Qualitative Results

Qualitative results on DAVIS-2017 [19] and Youtube-

VOS [28] datasets are shown in Figure 8. These sequences

all contain multiple objects with diverse motion, shape, and

size. Our AGSS-VOS produces high-quality results in these

challenging scenarios. For example, our system can suc-

cessfully segment the small moving bottle in Figure 8 (the

first row) – noticing part of it moves out of the screen in

some frames. In the last row, AGSS-VOS fails to segment

people after occlusion. The challenging scenarios can be

addressed by incorporating multiple guidance frames, or re-

identification techniques [15, 11], which will be our future

direction.

5. Conclusion

In this paper, we have proposed AGSS-VOS for single-

shot video-object segmentation. Our framework includes an

instance-agnostic module, an instance-specific module and

an attention-guided decoder. The instance-agnostic mod-

ule extracts the instance-agnostic feature for all the objects,

while the instance-specific module generates the instance-

specific visual and attention features for each object, repre-

sented as attention maps. In the attention-guided decoder,

the instance-agnostic feature is multiplied by the instance

attention features, which are further refined with the in-

stance visual feature to produce prediction of each object.

Moreover, we have designed the probabilistic normaliza-

tion strategy to enable end-to-end optimizing scores of all

instances. Our system is reasonably accurate and quite ef-

ficient compared with previous state-of-the-art methods es-

pecially when multiple objects exist in the videos.
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