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Abstract

We present a novel approach to align partial 3D recon-

structions which may not have substantial overlap. Using

floorplan priors, our method jointly predicts a room layout

and estimates the transformations from a set of partial 3D

data. Unlike the existing methods relying on feature de-

scriptors to establish correspondences, we exploit the 3D

“box” structure of a typical room layout that meets the

Manhattan World property. We first estimate a local lay-

out for each partial scan separately and then combine these

local layouts to form a globally aligned layout with loop

closure. Without the requirement of feature matching, the

proposed method enables some novel applications ranging

from large or featureless scene reconstruction and modeling

from sparse input. We validate our method quantitatively

and qualitatively on real and synthetic scenes of various

sizes and complexities. The evaluations and comparisons

show superior effectiveness and accuracy of our method.

1. Introduction

Indoor scene understanding and reconstruction have

been extensively researched in computer vision. In recent

years, the development of consumer RGB-D sensors has

greatly facilitated 3D data capture and enabled high-quality

reconstruction of indoor scenes. Although many methods

have been proposed for continuous camera localization to

register 3D depth data, it remains a challenge to scan some

scenes in a single pass. The main difficulty is caused by

interruptions in camera tracking, which results in a number

of partial scans with little overlap. This frequently occurs

in the following typical scenarios: (1) a large-scale scene

is scanned region-by-region rather than in a single pass to

reduce the workload or to meet the memory limit of a com-

puter; (2) when scanning featureless areas or doorways,

camera tracking often fails and so leads to several partial

scans without sufficient overlap or feature points; (3) when

a large scene is scanned using multiple robots, the scene is

usually explored by different agents in disjoint sub-regions

Figure 1: We present a method to jointly align a set of un-

ordered partial reconstructions and estimate a room layout.

which have little overlap [38], leading to a set of partial

scans. The alignment of such unordered partial 3D data is

an under-explored problem and it is challenging to the ex-

isting methods because of their requirements on the large

overlap and dense feature points for scan registration.

In this paper, we propose a method for registering par-

tial reconstructions of an indoor scene which may not have

sufficient overlap, as shown in Fig. 1. Our key observa-

tion is that the local layouts of partial reconstructions can

be viewed as the fragments of a global room layout which

typically has the following two characteristics: (1) the room

layout is a set of perpendicular or parallel walls, which is

referred to the Manhattan World (MW) property; (2) the

room layout forms a closed loop on a 2D floorplan. We

exploit these properties to develop an efficient method for

jointly predicting a room layout that has the above layout

properties and estimating the transformations from a set of

unordered partial reconstructions.

Most of the existing methods [2, 17] use boundary loop

detection to estimate a room layout because their input is

a long sequence of scans that have substantial overlap and

complete coverage of the indoor scene. In contrast, the

input to our method can be partially scanned data with-

out clear boundaries. By taking noises and occlusions

into consideration, our method is capable of reconstruct-

ing scenes with incomplete, disconnected or even occluded

walls. Given such a set of partial scans with detected lay-
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outs, we analyze the relationship between each local lay-

out with the global layout to achieve successful alignment,

while the existing methods would fail due to the lack of

sufficient overlap and features for establishing correspon-

dences. We formulate a novel optimal placement problem

to determine the rotation and translation of each partial scan

using the MW assumption and the layout properties, and

then produce the final transformations to align the scans and

predict a complete global room layout. The framework of

our method is illustrated in Fig. 2.

Without relying on feature matching, our method not

only works robustly when the partial reconstructions do not

have substantial overlap, but also enables a series of novel

applications, e.g., the reconstruction of featureless or large

scenes, modeling from sparse input, RGB-D stream down-

sampling, to name a few (Sec. 5).

We validate our approach qualitatively and quantitatively

on both real and synthetic scenes of various sizes and com-

plexities, and compare it with the state-of-the-art methods.

The evaluations and comparisons demonstrate that, given a

set of partial reconstructions, our method is able to com-

pute the accurate transformations to align them and recon-

struct a high-quality scene layout by effectively estimating

and combining local layouts of partial data.

2. Related Work

Indoor scene understanding has been a popular topic and

accumulated rich literature in the past decades. We review

the most relevant works and refer readers to the survey [25]

to have an overview.

3D data registration. In the last decade, a number of si-

multaneous localization and mapping (SLAM) techniques

are extensively employed to model 3D scenes using RGB-

D sensors. Some typical works include Kinect Fusion [26],

Elastic Fusion [36], ORB-SLAM [22] and so on. To es-

tablish robust correspondences between 3D data, a wide

range of geometric feature descriptors [27, 42, 11] are pro-

posed. Also, global registration approaches [41, 45] are de-

veloped to alleviate the local optimum issue when aligning

point sets. These methods are effective for feature match-

ing, surface alignment as well as 3D reconstruction. How-

ever, when it comes to the 3D data without sufficient overlap

and correspondences, these algorithms are likely to fail or

exhibit unacceptable inaccuracies (see Fig. 11 and Fig. 15).

Room layout estimation. Methods for room layout esti-

mation can be roughly divided into three categories based

on their inputs, i.e., single view RGB/RGB-D image,

panoramic RGB/RGB-D image, and dense point cloud.

Many works focusing on layout estimation from a single

image [16, 30, 8, 3, 29] have been continuously developed.

Due to the limitation of the narrow field-of-view caused by

a single standard image, researchers have tried to exploit

panoramic images [44, 2, 40] to recover the whole room

context. With the success of deep learning in vision tasks,

newest techniques [15, 46] rely on convolutional neural net-

works to map an RGB image to a room layout directly.

These methods using standard or panoramic RGB images

are highly dependent on feature points either for key struc-

ture detection or for pose estimation. Because of the in-

stability of image feature points, these methods will suffer

from inaccuracy as well as the incapability of handling com-

plex (they usually recover “cuboid” or “L” shape [15]) and

featureless scenes. Instead, our method uses depth data and

is independent of feature points to avoid these drawbacks.

RGB-D images include 3D range information of each

pixel, thus significantly improving the accuracy and the ro-

bustness of geometry reasoning. Some methods use a sin-

gle RGB-D image [35, 43] to estimate room layout, which

is also limited by the narrow field-of-view. With the supe-

riority of panoramic RGB-D images, higher-quality layout

analysis and structured modeling results have been achieved

[10, 37]. There are also a few methods using densely

scanned point clouds as input to estimate scene layouts

[23, 17, 19]. Most of these methods target a complete scene

in order to exploit the closed boundary nature of room lay-

out, while our method is able to cope with the more chal-

lenging partial scans which lack clear outer boundaries.

Indoor scene constraints. Intrinsic properties of indoor

scenes are widely used in indoor understanding and recon-

struction. Manhattan World (MW) assumption is the pre-

dominant rule, thus Manhattan frame estimation is well re-

searched for both RGB [16, 30] and RGB-D images [6, 12].

MW assumption serves as a guidance in many applications

such as layout estimation [16, 30, 8, 3, 29, 40], camera pose

estimation [33, 13] and reconstruction refinement [7, 9].

In addition to the MW assumption, indoor scenes have

plentiful lines and planes which provide strong cues for

many tasks. Elqursh and Elgammal [5] introduce a line-

based camera pose estimation method, while Koch et al.

[14] use 3D line segments to align the non-overlapping in-

door and outdoor reconstructions. Planar patch detection

and matching [34, 20, 4, 28, 31, 7, 17] are significantly used

strategies to improve the reconstruction accuracy. Some

works [34, 20, 4, 28] exploit plane correspondence to solve

for frame-to-frame camera poses. Halber et al. [7] and Lee

et al. [17] perform global registration leveraging structural

constraints to elevate the scan accuracy. Shi et al. [31] use

a CNN to learn a feature descriptor for planar patches in

RGB-D images. These approaches all hinge on the success

of feature matching at the overlapping areas, as opposed to

the scenario in this paper.

3. Approach

The input to our system is a set of partially scanned frag-

ments and we output the local layout of each fragment, the
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(a) Input partial data (b) Local floorplan estimation

(c) Global placement

(d) Optimal placement and refinement

(e) Partial data alignment

(f) Layout modeling

Figure 2: Overview of the proposed method. Given a set of unordered partial reconstructions (a), our algorithm first estimates

their local floorplans (b) respectively. Then we compute the poses (c) of all the local floorplans to find a global optimal

placement followed by a refinement process (d). Finally, we output the aligned complete reconstruction (e) and predict a final

room layout (f) accordingly.

transformations to align them, and a global scene layout. As

shown in Fig. 2, our approach consists of three main steps:

(1) local layout estimation of each partial reconstruction;

(2) optimal placement for global layout estimation; (3) pose

refinement to make walls well-aligned. Before running our

algorithm, we first extract point feature [27] to combine the

partial scans that have more than 60% alignment inliers into

one fragment; while the remaining scans can be considered

as insufficiently overlapping.

3.1. Local Layout Estimation

We assume that walls obey the MW assumption. In-

spired by Cabral and Furukawa [2], we formulate a graph-

based shortest path problem to find a floorplan path. As

opposed to their reliance on a complete point cloud with a

closed-loop as input, we come up with new strategies deal-

ing with partial input that may contain incomplete or par-

tially occluded walls.

Preprocessing. We extract the planes using RANSAC and

compute three MW directions {Xm, Ym, Zm} [12]. For

convenience, we set the Xm axis as the world up direction

by assuming that the camera optical axis is roughly hori-

zontal to the ground when the scanning begins, and the Ym

and Zm axes are the wall directions. Then the local cam-

era coordinates are aligned to the MW coordinates by the

minimal rotation.

Wall estimation graph. We project all points of the frag-

ment fk onto a grid with cell size s. A cell that receives

more than N projected vertices is considered as a high wall-

evidence cell, where we use s = 8cm and N = 20 in this

paper. We search over the grid to look for contiguous sets

of cells with high wall-evidence to extract candidate wall

segments, such as w1, w2 and w3 in Fig. 3.

Given a set of wall candidates, we build a wall estimation

graph (WE-graph) where the nodes are the candidate key-

points of wall structures (e.g., wall corners) and the edges

are the candidate walls. Due to noise and occlusion, the

High wall-evidence Keypoint Deduced keypoint

Source point Target point Shortest path

y

z

pA

p1
pB

p2

pC

w1

w2

w3

Figure 3: Local floorplan path determination. Points are

projected onto the ground plane and discretized into a grid.

endpoints (red cells in Fig. 3) may not exactly be wall cor-

ners. We therefore need to reason out more candidate key-

points (e.g., p1, p2) to derive a complete wall structure.

Here we consider two typical cases: (1) two neighboring

perpendicular candidate wall segments can be extended to

an intersection point which may imply a potential wall cor-

ner, e.g., p1 is deduced from w1 and w2 in Fig. 3; (2) two

neighboring misaligned parallel candidate wall segments

may imply an occluded wall in the invisible intermediate

region. See w2 and w3 in Fig. 3, we project pC ∈ w3 to

the line of w2 to deduce a new keypoint p2, and re-mark the

cells between p2 and pC as high wall-evidence.

We set both of the deduced points (blue cells) and the

wall endpoints (red cells) as the graph nodes. Then edges

are added for every pair of the nodes as long as they are

aligned to either Ym or Zm axis. The edge weight of a po-

tential wall w is defined as

L(w)−H(w)

H(w)
+ λ, (1)
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where L(w) is the length of w on the grid, and H(w) is the

number of high-evidence cells. The first term is to encour-

age edges to not only have fewer low wall-evidence cells

but also be longer. The second term is a constant complex-

ity penalty with λ = 0.1 (see the evaluation in Fig. 10).

Through these two terms, we encourage the final path to

have higher wall-evidence, be longer and simpler.

(a) (b) (c) (d)

Figure 4: Source and target point determination for a partial

scan. (a) Projection grid; (b) ST-graph; (c) minimal span-

ning forest (MSF); (d) source and target points derived from

the longest path on the MSF.

Source and target determination. To solve for the floor-

plan path from an incomplete reconstruction that does not

have a clear boundary, as shown in Fig. 4, we build another

graph (ST-graph) to determine the source and target points.

The edge weight in the ST-graph is the Euclidean distance

between two nodes in the grid coordinate system. We com-

pute the minimal spanning forest (MSF) of the graph to en-

courage the nodes to be connected by the minimal distance

cost. Then we solve for the longest path on the MSF. The

source and the target points are two endpoints of this longest

path, where the first point in the clockwise sequence is con-

sidered as the source and the other as the target.

Finally, we find the minimum cost path from the source

to the target on the WE-graph as the local layout estimation

result.

3.2. Global Layout Placement

To determine the global layout, we need to find the rigid

transformations for all partial fragments that do not have

sufficient matched-overlap. We observe that under the MW

assumption, the rotation of each partial fragment can be

viewed as the alignment of its local MW coordinate to the

world one; the translations of the small-overlapping frag-

ments can be approximately viewed as the sequence in the

global loop closure path where all of the local paths are con-

catenated end-to-end, see Fig. 5 for an example.

Given the local MW coordinate axes {Xm, Ym, Zm} of

a fragment and the world coordinate axes {Xw, Yw, Zw},

we first align the up direction Xm of the local MW coordi-

nate to the world up direction Xw (see Preprocessing in Sec.

3.1) . Then the remaining correspondences from Ym, Zm to

Yw, Zw have four different choices which compose the so-

lution space of rotations. Let f ∈ {1, ..., N} index all the

partial fragments, Rf ∈ {1, 2, 3, 4} the candidate rotations

of fragment f corresponding to the alignment from Ym to

Yw, Ym to −Yw, Ym to Zw or Ym to −Zw respectively, and

tf ∈ {1, ..., N} the clockwise sequence of the fragment f

on the floorplan loop.

A candidate placement is denoted as a tuple {f,R, t}
where the subscript is omitted for simplicity. It indicates

the rotations and sequences for all the fragments as well as

the room layout derived by the end-to-end concatenation of

the local layout paths. We then define the binary variables

xf,R,t ∈ {0, 1} to indicate whether the candidate placement

exists in the solution set. The total energy is defined as

min
x={xf,R,t}

El(x) + Ec(x) + Eb(x), (2)

s.t. ∀f
∑

R,t

xf,R,t = 1, ∀t
∑

f,R

xf,R,t = 1, (3)

where El is the complexity of a layout, Ec the closure mea-

surement, and Eb the similarity of the boundary between

adjacent fragments. The constraints in Eq. (3) enforce mu-

tual exclusion, i.e., each fragment and sequence index can

only appear once in the final solution.

Layout complexity term. We form the complexity term El

by summing up the number of wall corners and the number

of edges in the convex hull of the floorplan, where the low-

est energy encourages that the room not only contains fewer

corners but also has simpler overall structure. See Fig. 5,

(a) and (b) are two different placements for the same set of

local layouts. Although they have the same number of wall

corners, we prefer (a) since it has more aligned collinear

wall segments which lead to fewer edges in the convex hull.

(a) (b)

Figure 5: Two different placements via end-to-end local lay-

out concatenation.

Closure term. The second term Ec denotes the closure of

a layout path, by which we wish the gap between the start

point and the endpoint on the final path to be as small as

possible. See Fig. 5 for an example of computing this term,

the closure is measured by the Manhattan distance (in me-

ters) between the start point ps of xf,R,1 and the endpoint

pe of xf,R,N .

Boundary similarity term. As shown in Fig. 6, the cutting

plane going through the source or the target point on a local

floorplan path is defined as the boundary plane (e.g., Bi and

Bj). The points within 10cm of the cutting plane are con-

sidered as the boundary points (e.g., Pi and Pj). We refer to

5677



Bi Bj

Pi Pj

fi fj

floorplan floorplan

Figure 6: Analysis of the boundary similarity when fj is

placed next to fi. Bi and Bj are two adjacent boundary

planes; Pi and Pj are the boundary point sets around the

planes, which are used for computing boundary similarity.

the probabilistic method [1] to analyze the match quality of

the boundary points between two adjacent fragments, and

obtain a mismatch score between 0 and 1. We sum up the

mismatch scores of all adjacent pairs to compute Eb.

To solve this constrained 0-1 programming problem

(Eq. (2)), we search for the global minima based on a

DFS tree with alpha-beta pruning. Additionally, we also

prune the invalid branches where walls incorrectly cross

each other to further improve the efficiency.

3.3. Pose Refinement

The global layout placement encourages all fragments to

form a loop closure without taking wall alignment into con-

sideration. Thus in this step, we aim to refine the positions

of all fragments by constraining the layout alignment.

(a) (b)

Figure 7: Two types of wall joints between two adjacent

fragments fi and fj . (a) The connected walls are parallel;

(b) the connected walls are perpendicular.

Let the sequence of local layouts be {f1, f2, ..., fN} on

the loop. Since the walls are aligned to either Y or Z axis

of the world coordinate system, we define ti = (yi, zi) to

represent the translation to adjust the current position of the

layout fi. Meanwhile, we use qi and pj to denote the target

point in fi and the source point in fj respectively, while p′i
and q′j are their neighboring keypoints (corner-point or end-

point) in the same local layout accordingly (see Fig. 7 for

an illustration). There are two typical configurations of wall

connection when fj is placed next to fi and the constraints

are added accordingly as follows.

Parallel connection (Fig. 7 (a)). Two adjacent local lay-

outs fi and fj are joined by two parallel walls. The walls

are aligned along either the Y axis or the Z axis, while we

only discuss the Y -aligned case which is shown in Fig. 7

(a). First, the Z coordinates of qi and pj should be equal

or else the walls are misaligned. Second, given two joined

walls wi and wj with the lengths lwi
and lwj

respectively,

if lwi
≤ lwj

, then pj can not go across q′i or else wj will in-

tersect with w′
i which is illegal. The constraints are defined

as follows where α = min{lwi
, lwj

}:

zqi + zi = zpj
+ zj ,

(lwi
+ lwj

)− |(yq′
i
+ yi)− (yp′

j
+ yj)| < α.

(4)

Perpendicular connection (Fig. 7 (b)). Two adjacent local

layouts fi and fj are jointed by two perpendicular walls.

We only discuss the case of Fig. 7 (b) where wi is aligned

along the Y axis and wj the Z axis. To avoid illegal crossing

between wi and wj , pj cannot go across wi while qi cannot

go across wj . The constraints are defined as:

yqi + yi < ypj
+ yj

zpj
+ zj < zqi + zi.

(5)

To solve for the adjustments t = {(yi, zi)} for all pairs

of local layouts, we formulate an optimization problem to

minimize the distance between the joints of the adjacent lo-

cal layouts as follows:

min
t

∑

(i,j)∈C

((qi + ti)− (pj + tj))
2. (6)

Here C indicates the set of the pairs of the adjacent local

layouts. Finally, we obtain the translations {(yi, zi)} for all

local layouts by solving Eq. (6) under the constraints (4)

and (5), and update the final layout.

4. Experimental Results

We evaluate our algorithm using 101 scenes collected

from SUNCG dataset [32], SUN3D dataset [39] and our

real-world scanning. Each scene is given by a set of par-

tial reconstructions derived from the region-by-region cap-

turing or the failures of camera localization. A challenge

in our testing data is, there may not be sufficient overlap

among the partial data. Our dataset covers representative

indoor layouts of which the scene area varies from 2m×6m
to 18m× 20m, and the number of wall corners varies from

4 to 16. All the experiments are performed on a machine

with Intel Core i7-7700K 4.2GHz CPU and 32GB RAM.

Evaluation metrics. We evaluate the performance of our

method by the metrics defined below. A local or global lay-

out estimation is correct if the average distance error be-

tween the estimated wall keypoints and the ground truth

keypoints is below 5% relative to the length of the diag-

onal of the bounding box. A global placement is correct if

the placement can lead to a correct global layout estimation.

We use ACClocal to represent the percentage of the correct

local estimations against all of the partial fragments in the

dataset. Similarly, ACCglobal represents the percentage of
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Figure 8: Results of the partial reconstruction alignment and the global layout estimation.

the correct global placements against all scenes.

Figure 9: Results of the partial layout estimation.

Partial layout estimation. Our method is able to robustly

estimate a partial room layout given an incomplete re-

construction without a closed boundary. Our testing data

contains 401 various partial reconstructions, on which our

method achieves ACClocal = 98.3%. We also show some

qualitative results in Fig. 9. Note that: (1) some walls are

not captured in the point cloud but our method can still ro-

bustly estimate the correct layouts; (2) although our method

targets partial data, it can be directly applied to estimate the

layout of a complete reconstruction as well.

We evaluate the effect of different values of the complex-

ity penalty λ in Eq. (1). Fig. 10 shows that a large λ tends to

ignore the detailed structures and produce a simple layout.

We fix λ to 0.1 to generate all of the results in this paper.

λ = 0.05 λ = 0.1 λ = 0.2 λ = 0.5

Figure 10: The effect of the parameter λ of the penalty term.

Global layout placement. Fig. 8 shows some results of

the partial scan alignment and the global layout estimation.

Our method faithfully reconstructs some large-scale scenes

by combining a set of partially scanned point clouds. We

also quantitatively evaluate our method in Table 1. As an

ablation study, Table 1 shows the performance given differ-

ent configurations of the three terms in Eq. (2): (1) with-

out closure term; (2) without complexity term; (3) without

boundary similarity term; (4) full terms. The experiments

demonstrate that the full configuration using all these three

terms performs the best.

Configuration ACCglobal(%)

w/o closure term 22.8

w/o complexity term 67.5

w/o boundary similarity term 80.2

full terms 85.1

Table 1: Performance of our method on global layout place-

ment using different configurations.

Pose estimation error. We evaluate the pose estimation

error on the synthetic scenes collected from SUNCG [32]

dataset with ground truth camera poses. We also com-

pare our method with the state-of-the-art 3D registration al-

gorithms, including 3DMatch [42], Fast point feature his-

togram (FPFH) [27], and Orthogonal plane-based visual

odometry (OPVO) [13]. Note that OPVO is also proposed

under the MW assumption. Table 2 reports the angle error

of rotation and the distance error of translation relative to

the length of the diagonal of the bounding box. Since our

testing data may not have sufficient overlap, we find that ex-

isting methods based on feature descriptors perform poorly

under the same condition. Qualitative comparisons in Fig.

11 and quantitative comparisons in Table 2 both show that

the other methods produce unacceptable inaccuracies, while

our method achieves superior results.
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(a) (b) (c)

Figure 11: Qualitative comparison with point cloud align-

ment methods using feature descriptors. (a) 3DMatch [42];

(b) FPFH [27]; (c) ours.

Method Rotation(◦) Translation(%)

3DMatch [42] 43.41 21.82

FPFH [27] 40.05 29.12

OPVO [13] 43.06 20.04

Ours 8.79 9.15

Table 2: Quantitative comparison on the SUNCG synthetic

dataset [32] in terms of rotation angle error and translation

distance error.

Method Avg (%) Max(%)

MW Modeler [18] 1.22 4.47

PolyFit [24] 1.31 5.01

RAPTER [21] 1.40 7.84

Ours 0.90 2.57

Table 3: Comparison with the state-of-the-art structured

modeling methods in terms of layout reconstruction error.

Layout reconstruction quality. Manhattan-world Mod-

eler [24], PolyFit [18] and RAPTER [21] are the state-of-

the-art structured modeling methods for man-made scenes

which take as input scanned point clouds. To compare with

them in terms of layout reconstruction quality, we input to

these methods the complete point clouds of the scenes in

our dataset. Fig. 12 shows a set of qualitative comparison

results. We are able to obtain considerably better results

with accurate and high-quality wall structures.

Table 3 shows the quantitative comparison results with

these methods. We uniformly sample points on the ground

truth layout, and compute the distance error of the point

samples to their nearest faces in the reconstructed model.

We report the average and maximal error relative to the

length of the diagonal of the bounding box. The results

demonstrate that our method has smaller layout reconstruc-

tion errors than the other structured modeling methods.

Time efficiency. For the local layout estimation, on average

our algorithm takes about 0.1s per 10k points. An exception

is the scene of the last column in Fig. 8, where it takes about

200s to process a partial scan with 200k points. This is be-

cause a large number of small wall candidates are generated

in the local layout estimation step due to heavy noises. For

the pose determination and refinement, it takes less than 20s

with an input of fewer than 10 fragments.

(a)

(b)

(c)

(d)

(e)

Figure 12: Qualitative comparison on layout reconstruction

quality. (a) Input point clouds; (b) MW Modeler [18]; (c)

PolyFit [24]; (d) RAPTER [21]; (e) ours.

Ambiguity and failure case. The optimal placement of the

given local layouts may be ambiguous, which will result in

an incorrect sequence (Fig. 13 (a)) or an incorrect layout

(Fig. 13 (b)), although all the different results seem to be

reasonable. The boundary similarity term in Sec. 3.2 is de-

signed to alleviate this problem, however, if an ambiguity

still occurs, more constraints need to be added to derive the

correct result, e.g., user-specific fragment sequence.

Before running our algorithm, we first extract point fea-

ture [27] to combine the partial scans that have sufficient

overlap into larger fragments. If there is large overlap be-

tween partial reconstructions but not detected successfully,

our algorithm is likely to exhibit large error or output an in-

correct result. We show a failure case in Fig. 14, where our

result is not consistent with the ground truth.

(a) (b)

Figure 13: Ambiguity of placements. (a) Different place-

ments produce the same layout; (b) different placements

produce different layouts but both are reasonable.

5. Applications

Since our method does not depend on feature matching

to align 3D data, it facilitates several novel applications. In

this section, we demonstrate the following three.

Featureless scene reconstruction. For scenes that have a
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Ground truth Overlap is large but not detected Estimated layout

Figure 14: A failure case where the input fragments have

large overlap but not successfully detected by feature de-

scriptor matching.

large expanse of featureless walls, it is very difficult for the

existing methods to reconstruct them by continuous feature

tracking. Fig. 15 shows the advantage of our method in

reconstructing this kind of scene, while we directly align a

set of partial scans caused by camera interruptions without

using feature matching.

(a) (b) (c)

Figure 15: Reconstruction results of a scene with a large

expanse of featureless walls. (a) The reconstruction result

by continuous camera tracking using ORB-SLAM visual

odometry [22]; (b) our result by aligning partial scans; (c) a

featureless wall that fails camera localization in this scene.

Large scene reconstruction. As aforementioned, scanning

a large scene region-by-region is easier than in a single pass

due to the heavy workload, the accumulation error and the

memory limit of a computer. Fig. 16 shows the reconstruc-

tion results for a large scene using different strategies. In

practice, we pay more efforts to maintain the uninterrupted

scanning, but it still exhibits large accumulative errors. In-

stead, using region-based scanning, the scene is first divided

into sub-regions and scanning each one separately is easier.

Also, this strategy achieves better accuracy as illustrated.

Figure 16: Reconstruction results of a large scene. Left: the

result by continuous camera localization using ORB-SLAM

visual odometry [22]; right: our result by aligning a set of

partial scans.

Modeling from sparse input and down-sampling. The

proposed method can recover a room layout from a small

number of RGB-D images without adequate overlap, which

can be used to model a scene given sparse input and down-

sample the RGB-D stream in a scanning system (e.g., Mat-

terport scanning system) for efficiency. As shown in Fig.

17, our method successfully aligns the RGB-D sequences

and estimates the room layouts accordingly, which shows

the ability of our method in modeling from sparse input.

Figure 17: Room layout modeling and camera pose estima-

tion by stitching sparse RGB-D frames.

6. Conclusion

In this work, we propose a novel approach to jointly

align a set of partial reconstructions caused by camera in-

terruptions and predict a room layout. Instead of relying on

feature descriptor matching, our method is able to estimate

the transformations of the partial 3D data without sufficient

overlap, which is proved to be a challenge for the existing

methods. Technically, we first estimate a local layout for

each partial data and further formulate an optimal place-

ment problem to combine these local layouts into a global

loop closure under certain constraints. We have evaluated

our algorithm quantitatively and qualitatively and compared

it with the state-of-the-art methods, all of which demon-

strate the effectiveness of our method on the alignment of

small-overlapping partial scans as well as the global (par-

tial) room layout estimation.
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