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Abstract

Traditional 3D face models learn a latent representation

of faces using linear subspaces from limited scans of a sin-

gle database. The main roadblock of building a large-scale

face model from diverse 3D databases lies in the lack of

dense correspondence among raw scans. To address these

problems, this paper proposes an innovative framework to

jointly learn a nonlinear face model from a diverse set of

raw 3D scan databases and establish dense point-to-point

correspondence among their scans. Specifically, by treating

input scans as unorganized point clouds, we explore the

use of PointNet architectures for converting point clouds

to identity and expression feature representations, from

which the decoder networks recover their 3D face shapes.

Further, we propose a weakly supervised learning approach

that does not require correspondence label for the scans.

We demonstrate the superior dense correspondence and

representation power of our proposed method, and its

contribution to single-image 3D face reconstruction.

1. Introduction

Robust and expressive 3D face modeling is valuable for

computer vision problems, e.g., 3D reconstruction [7,24,41,

54] and face recognition [42, 43, 58], as well as computer

graphics problems, e.g., character animation [15, 31]. The

state-of-the-art 3D face representations mostly adopt linear

transformations [39, 59, 60], e.g., 3D Morphable Model

(3DMM) or higher-order tensor generalizations [1, 13, 14,

67], e.g., Blendshapes Model. However, these linear models

fall short of capturing the nonlinear deformations such as

high-frequency details and extreme expressions. Recently,

with the advent of deep learning, there have been several

attempts at using deep neural networks for nonlinear data-

driven face modeling [4, 32, 51, 65].

To model 3D face shapes, a large amount of high-quality

3D scans is required. The widely used 3DMM-based

BFM2009 [48] is built from scans of merely 200 subjects

in neutral expressions. Lack of expression may be com-

Figure 1: Comparison between 3D face modeling of (a)

existing methods and (b) our proposed method. Dense point-to-

point correspondence is a pre-requisite for the existing 3D face

modeling methods. Our proposed CNN-based approach learns

face models directly from raw scans of multiple 3D face databases

and establish dense point-to-point correspondence among all scans

(best viewed in color). Despite the diversity of scans in resolution

and expression, our model can express the fine level of details.

pensated with expression bases from FaceWarehouse [14]

or BD-3FE [70]. After more than a decade, almost all

existing models use less than 300 training subjects. Such a

small training set is far from adequate to describe the full

variability of faces. Until recently, Booth et al. [11, 12]

build the first Large-Scale Face Model (LSFM) from neutral

scans of 9,663 subjects. Unfortunately, with only the

resultant linear 3DMM bases being released instead of the

original scans, we cannot fully leverage this large database

to explore different 3D modeling techniques.

In fact, there are many publicly available 3D face

databases, as shown in Fig. 1. However, these databases are

often used individually, rather than jointly to create large-

scale face models. The main hurdle lies in the challenge
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of estimating dense point-to-point correspondence for raw

scans, which allows these scans to be organized in the same

vector space, enabling analysis as a whole.

Dense point-to-point correspondence is one of the most

fundamental problems in 3D face modeling [22, 26], which

can be defined as in [22]: given two 3D faces S and

S′, the correspondence should satisfy three perspectives:

i) S and S′ have the same number of vertices; ii) the

corresponding points share the same semantic meaning; iii)

the corresponding points lie in the same local topological

triangle context. Prior dense correspondence methods [3,

7, 24, 47] lack either accuracy, robustness or automation.

Moreover, few of them have shown success on multiple

databases. Beyond of the data scale, the challenge of dense

correspondence for multiple databases is certainly escalated

over single database: the quality of scans is often inevitably

corrupted with artifacts (e.g., hair and eyebrows), missing

data and outliers; facial morphology varies significantly due

to expressions like mouth opening and closing; different

databases contain high variability on the resolution.

To address these challenges, we propose a novel

encoder-decoder to learn face models directly from

raw 3D scans of multiple diverse databases, as well as

establish dense correspondence among them. Our approach

provides: i) a PointNet-based encoder that learns nonlinear

identity and expression latent representations of 3D faces;

ii) a corresponding decoder capable of establishing dense

correspondence for scans with a variety of expressions

and resolutions; iii) the decoder can be plugged into

existing image-based encoders for 3D face reconstruction.

Specifically, by treating raw scans as unorganized point

clouds, we explore the use of PointNet [50] for converting

point clouds to identity and expression representations,

from which the decoder recovers their 3D face shapes.

However, full supervision is often not available due to

the lack of ground-truth dense correspondence. Thus, we

propose a weakly-supervised approach with a mixture of

synthetic and real 3D scans. Synthetic data with topological

ground truth helps to learn a shape correspondence prior

in a supervised fashion, which allows us to incorporate

order-invariant loss functions, e.g., Chamfer distance [21],

for unsupervised training of real data. Meanwhile, a

surface normal loss retains the original high-frequency

details. For regularization, we use the edge length loss

to encourage the triangulation topology on the template

and the reconstructed point cloud to be the same. Finally,

a Laplacian regularization loss improves the performance

of mouth regions with extreme expressions. The above

strategies allow the network to learn from a large set of raw

3D scan databases without any label on correspondences.

In summary, the contributions of this work include:

⋄ We propose a new encoder-decoder framework that for

the first time jointly learns face models directly from raw

Table 1: Comparison of 3D face modeling from scans. ’Exp.’

refers to whether learns the expression latent space, ’Corr.’ refers

to whether requires densely corresponded scans in training.

Method Dataset Lin./nonL. #Subj. Exp. Corr.

BFM [48] BFM Linear 200 No Yes
GPMMs [45] BFM Linear 200 Yes Yes
LSFM [11, 12] LSFM Linear 9,663 No Yes
LYHM [19] LYHM Linear 1,212 No Yes

Multil. model [14] FWH Linear 150 Yes Yes

FLAME [39]
CAESAR
D3DFACS

Linear
3,800
10

Yes Yes

VAE [4] Proprietary Nonlin. 20 No Yes
MeshAE [51] COMA Nonlin. 12 No Yes
Jiang et al. [32] FWH Nonlin. 150 Yes Yes

Proposed 7 datasets Nonlin. 1, 552 Yes No

scans of multiple 3D face databases and establishes dense

correspondences among all scans.

⋄ We devise a weakly-supervised learning approach and

several effective loss functions for the proposed framework

that can leverage known correspondences from synthetic

data and relax the Chamfer distance loss for vertex corre-

spondence in an unsupervised fashion.

⋄ We demonstrate the superiority of our nonlinear model

in preserving high-frequency details of 3D scans, providing

compact latent representation, and applications of single-

image 3D face reconstruction.

2. Related Work

3D Face Modeling. Traditional 3DMMs [7, 8] model

geometry variation from limited data via PCA. Paysan

et al. [48] build BFM2009, the publicly available morphable

model in neutral expression, which is extended to emotive

face shapes [2]. Gerig et al. [24, 45] propose the Gaussian

Process Morphable Models (GPMMs) and release a new

BFM2017. Facial expressions can also be represented with

higher-order generalizations. Vlasic et al. [67] use a mul-

tilinear tensor-based model to jointly represent the identity

and expression variations. FaceWarehouse (FWH) [14] is

a popular multilinear 3D face model. The recent FLAME

model [39] additionally models head rotation. However, all

these works adopt a linear space, which is over-constrained

and might not well represent high-frequency deformations.

Deep models have been successfully used for 3D face

fitting, which recovers 3D shape from 2D images [20, 33–

35,52,59,62,72]. However, in these works the linear model

is learned a-priori and fixed during fitting, unlike ours where

the nonlinear model is learned during training.

In contrast, applying CNN to learn more powerful 3D

face models has been largely overlooked. Recently, Tran

et al. [63, 64] learn to regress 3DMM representation, along

with the decoder-based models. SfSNet [57] learns shape,

albedo and lighting decomposition of a face, from 2D

images, instead of 3D scans. Bagautdinov et al. [4] learn

nonlinear face geometry representations directly from UV

maps via a VAE. Ranjan et al. [51] introduce a convolution-
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Figure 2: Overview of our 3D face modeling method. A mixture of synthetic and real data is used to train the encoder-decoder network

with supervised (green) and unsupervised (red) loss. Our network can be used for 3D dense correspondence and 3D face reconstruction.

al mesh autoencoder to learn nonlinear variations in shape

and expression. Note that [4, 51] train with no more than

20 subjects and encode the 3D data to a single latent vector.

Jiang et al. [32] extend [51] to decompose a 3D face into

identity and expression parts. Unlike our work, these three

methods require densely corresponded 3D scans in training.

We summarize the comparison in Tab. 1.

3D Face Dense Correspondence. As a fundamental

shape analysis task, correspondence has been well studied

in the literature. Shape correspondence, a.k.a. registration,

alignment or simply matching [66], finds a meaningful

mapping between two surfaces. The granularity of mapping

varies greatly, from semantic parts [28, 53], group [17],

to points [38]. Within this range, point-to-point cor-

respondences for 3D face is the most challenging and

strict one. In original 3DMM [7], the 3D face dense

correspondence is solved with a regularized form of optical

flow as a cylindrical image registration task. This is

only effective in constrained settings, where subjects share

similar ethnicities and ages. To overcome this limitation,

Patel and Smith [47] use a Thin Plate Splines (TPS) [10]

warp to register scans into a template. Alternatively,

Amberg et al. [3] propose an optimal step Nonrigid Iterative

Closest Point (NICP) for registering 3D shapes. Booth et

al. [11,12] quantitatively compare these three popular dense

correspondence techniques in learning 3DMM. Additional

extensions are also proposed [22, 24, 25, 71].

Many algorithms [1, 9, 27] treat dense correspondence

as a 3D-to-3D model fitting problem. E.g., [9] propose a

multilinear groupwise model for 3D face correspondence

to decouple identity and expression variations. Abre-

vayaemph et al. [1] propose a 3D face autoencoder with a

CNN-based depth image encoder and multilinear model as a

decoder for 3D face fitting. However, these methods require

3D faces with an initial correspondence as input and the cor-

respondence problem is considered in the restrictive space

expressed by the model. Although insightful and useful, a

chicken-and-egg problem still remains unsolved [22].

To summarize, prior work tackle the problems of 3D

face modeling, and 3D face dense correspondence sepa-

rately. However, dense correspondence is a prerequisite

for modeling. If the correspondence has errors, they will

accumulate and propagate to 3D modeling. Therefore, these

two problems are highly relevant and our framework for the

first time tackles them simultaneously.

3. Proposed Method

This section first introduces a composite 3D face shape

model with latent representations. We then present the

mixture training data and our encoder-decoder network. We

finally provide implementation details and face reconstruc-

tion inference. Figure 2 depicts the overview of our method.

3.1. Problem Formulation

In this paper, the output 3D face scans are represented as

point clouds. Each densely aligned 3D face S ∈ R
n×3 is

represented by concatenating its n vertex coordinates as,

S = [x1, y1, z1;x2, y2, z2; · · · ;xn, yn, zn]. (1)

We assume that a 3D face shape is composed of identity and

expression deformation parts,

S = SId +∆SExp, (2)

where SId is the identity shape and ∆SExp is expression

difference. Since the identity and expression spaces are

independent, we further assume these two parts can be

described by respective latent representations, fId and fExp.

Specifically, as shown in Fig. 2, we use two networks

to decode shape component SId and ∆SExp from the
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Table 2: Summary of training data from related databases.

Database #Subj. #Neu. #Sample #Exp. #Sample

BU3DFE [70] 100 100 1,000 2,400 2,400
BU4DFE [69] 101 >101 1,010 >606 2,424
Bosphorus [56] 105 299 1,495 2,603 2,603
FRGC [49] 577 3,308 6,616 1,642 1,642
Texas-3D [30] 116 813 1,626 336 336
MICC [5] 53 103 515 − −

BJUT-3D [6] 500 500 5,000 − −

Real Data 1,552 5,224 17,262 7,587 9,405
Synthetic Data 1,500 1,500 15,000 9,000 9,000

corresponding latent representations. Formally, given a

set of raw 3D faces {Sraw
i }Ni=1, we learn an encoder E :

S
raw→fId, fExp that estimates the identity and expression

shape parameters fId∈R
lId , fExp∈R

lExp , an identity shape

decoder DId : fId→SId, and an expression shape decoder

DExp : fExp→SExp that decode the shape parameters to a

3D shape estimation Ŝ.

Recent attempts to encode 3D face shape in deep learn-

ing include point clouds, depth map [1], UV map based

mesh [4], and mesh surface [32, 51]. Point clouds are a

standard and popular 3D face acquisition format used by

Kinect, iPhone’s face ID and structured light scanners. We

thus design a deep encoder-decoder framework to directly

consume unorganized point sets as input and output densely

corresponded 3D shapes. Before providing the algorithm

details, we first introduce the real and synthetic training data

served for the weakly-supervised learning.

3.2. Training Data

To learn a robust and highly variable 3D face model,

we construct training data of seven publicly available 3D

databases with a wide variety of identity, age, ethnicity,

expression and resolution, listed in Tab. 2. However, for

these real scans, there are no associated ground-truth on

dense correspondence. Recently, some 3D databases are

released such as 4DFAB [16], Multi-Dim [40] and UHDB

3D [61,68]. While including them may increase the amount

of training data, they do not provide new types of variations

beyond the seven databases. We do not use the occlusion

and pose (self-occlusion) data of Bosphorus database, since

extreme occlusion or missing data would break semantic

correspondence consistency of 3D faces. For BU4DFE

database, we manually select one neutral and 24, expression

scans per subject. To keep the balance between real and

synthetic data, we use BFM2009 to synthesize 3D faces of

1,500 subjects, and use 3DDFA [73] expression model to

generate 6 random expressions for each subject. Figure 3

shows one example scan from each of the eight databases.

Preprocessing and data augmentation As visualized in

Fig. 4, we first predefine a template of 3D face topology

consisting of n = 29,495 vertices and 58,366 triangles,

which is manually cropped from BFM mean shape. Then,

we normalize the template into a unit sphere. The original

Figure 3: One sample from each of eight 3D face databases. They

exhibit a wide variety of expressions and resolutions.

Figure 4: Preprocessing. (1) Automatic 3D landmark detection

based on rendered images. (2) Guided by landmarks and

predefined template, the 3D scan is alignment and cropping.

synthetic examples contain 53,215 vertices, after removing

points on the tongue. For synthetic examples, we crop

their face region with same topological triangulation as the

template, perform the same normalization, and denote this

resultant 3D face set with ground-truth correspondence as

{Sgt
i }Mi=1, whose number of vertices is also n.

Since raw scans are acquired from different distances,

orientations or sensors, their point clouds exhibit enormous

variations in pose and scale. Thus, before feeding them

to our network, we apply a similarity transformation to

align raw scans to the template by using five 3D land-

marks. Following [11], we detect 2D landmarks on the

corresponding rendered images, from which we obtain 3D

landmarks by back-projection (Fig. 4 (1)). After alignment,

the points outside the unit sphere are removed. Finally, we

randomly sample n points as the input S
input
i ∈ R

n×3. If

the vertex number is less than n, we apply interpolating

subdivision [37] before sampling. As in Tab. 2, we perform

data augmentation for neutral scans by repeating random

sampling several times so that each subject has 10 neutral

training scans. Note that the above preprocessing is also

applied to synthetic data, except that their 3D landmarks

are provided by BFM. As a result, the point ordering of both

input raw and synthetic data is random.

3.3. Loss Function

This encoder-decoder architecture is trained end-to-end.

We define three kinds of losses to constrain the correspon-
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dence of the output shape and template, also to retain the

original global and local information. The overall loss is:

L = Lvt + λ1L
normal + λ2L

edge, (3)

where the vertex loss Lvt is to constrain the location

of mesh vertices, normal loss Lnormal is to enforce the

consistency of surface normals, and edge length loss is to

preserve the topology of 3D faces.

Here, we consider two training scenarios: synthetic and

real data. Supervision is typically available for the synthetic

data with ground truth (supervised case), but real scans are

obtained without correspondence label (unsupervised case).

Supervised loss In the supervised case, given the shape

S
gt (and Ŝ) and predefined triangle topology, we can easily

compute the corresponding surface normal ngt (and n̂) and

edge length e
gt (and ê). Therefore, for vertex loss, we can

use L1 loss Lvt(Ŝ,Sgt)=||Sgt − Ŝ||1. We measure the nor-

mal loss by cosine similarity distance Lnormal(n̂,ngt) =
1
n

∑

i(1 − n
gt
i · n̂i). If the predicted normal has a similar

orientation as the ground truth, the dot-product n
gt
i · n̂i will

be close to 1 and the loss will be small, and vice versa. The

third term Ledge encourages the ratio between edges length

in the predicted shape and ground truth to be close to 1.

Following [28], edge length loss is defined as,

Ledge(Ŝ,Sgt) =
1

#E

∑

(i,j)∈E

∣

∣

∣

∣

∣

∣

∥

∥

∥
Ŝi − Ŝj

∥

∥

∥

∥

∥S
gt
i − S

gt
j

∥

∥

− 1

∣

∣

∣

∣

∣

∣

, (4)

where E is the fixed edge graph of the template.

Unsupervised loss In the case where the correspondences

between the template and real scans are not available,

we still optimize the reconstructions, but regularize the

deformations toward correspondence. For reconstruction,

we use the Chamfer distance as the Lvt(Ŝ,Sraw) between

the input scans Sraw and the predicted Ŝ,

Lvt(Ŝ,Sraw) =
∑

p∈Ŝ

min
q∈Sraw

‖p− q‖
2
2 +

∑

q∈Sraw

min
p∈Ŝ

‖p− q‖
2
2 ,

(5)

where p is a vertex in the predicted shape, q is a vertex

in the input scan. When minq∈Sraw ‖p− q‖
2
2 > ǫ or

min
p∈Ŝ

‖p− q‖
2
2 > ǫ, we treat q as a flying vertex and the

error will not be counted.

In this unsupervised case, we further define loss on the

surface normal to characterize high-frequency properties,

Lnormal(n̂,nraw
(q) ), where q is the closest vertex for p that is

found when calculating the Chamfer distance, and n
raw
(q) is

the observed normal from the real scan. For the edge length

loss, Ledge is defined the same as Eqn. 4.

Refine In the unsupervised case, the normal loss

Lnormal(n̂,nraw
(q) ) always find the closet vertex q in S

raw.

Figure 5: (a) qi is the closet vertex of pi and q′i is computed by

the normal ray scheme. (b) the predefined mouth region.

The disadvantage of this closest vertex scheme is that

the counterpart qi is not necessary the true target for

correspondence in high-curvature regions (Fig. 5 (a)).

Therefore, the loss is not capable of capturing high-

frequency details in S
raw. To remedy this issue, as

suggested in [46], we consider the normal ray method

which computes the closest point of intersection of the

normal ray originated from pi with S
raw. As shown

in Fig. 5 (a), the normal ray in sharp regions would

find a better counterpart q′i. At the early stage of the

training process, we use the closet vertex scheme which

is computationally more efficient. When the loss gets

saturated, we switch to use the normal ray scheme.

For many expressive scans, some tongue points have

been recorded when the mouth is open, which are hard

to establish correspondence. To address this issue, on top

of the losses in Eqn. 3, we add a mouth region Laplacian

regularization loss Llap = ‖LSmouth‖2 to maintain relative

location between neighboring vertices. Here L is the

discrete Laplace-Beltrami operator and Smouth is the mouth

region vertex as predefined in Fig. 5 (b). See [36] for details

on Laplacian regularization loss.

3.4. Implementation Detail

Encoder/Decoder Network We employ the PointNet [50]

architecture as the base encoder. As shown in Fig. 2,

the encoder takes the 1024-dim output of PointNet and

appends two parallel fully-connected (FC) layers to gener-

ate identity and expression latent representations. We set

lId=lExp=512. The decoders are two-layer MLP network-

s, whose numbers of inputs and outputs are respectively

{lId(lExp), 1024} (ReLU), {1024, n×3}.

Training Process We train our encoder-decoder network

in three phases. First, we train the encoder and identity

decoder with neutral examples. Then, we fix the identity

decoder and train the expression decoder with expression

examples. Finally, the end-to-end joint training is conduct-

ed. In the first two phases, we start the training with only

synthetic data. When the loss gets saturated (usually in 10
epochs), we continue training using a mixture of synthetic

and real data for another 10 epochs. We optimize the

networks via Adam with an initial learning rate of 0.0001.

The learning rate is decreased by half every 5 epochs. We
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Figure 6: Qualitative results reflecting the contribution of loss

components. The first column is the input scan. Column 2-4 show

the reconstructed shapes with different loss combination.

explore the different batch sizes including strategies such

as 50% synthetic and 50% real data per batch, and find the

optimal batch size to be 1. λ1 and λ2 control the influence of

regularizations against Lvt. They are both set to 1.6×10−4

in our experiments. We set ǫ=0.001 and the weight of Llap

is 0.005.

3.5. SingleImage Shape Inference

As shown in Fig. 2, our identity and expression shape

decoders can be used for image-to-shape inference. Specif-

ically, we employ a SOTA face feature extraction network

SphereFace [44] as the base image encoder. This network

consists of 20 convolutional layers and FC layer, and

takes the 512-dim output of the FC layer as the face

representation. We append another two parallel FC layers to

generate the identity and expression latent representations,

respectively. Here, we use the raw scans from the 7 real

databases to render images as our training samples. With

the learnt ground truth identity and expression latent codes,

we employ a L1 latent loss to fine-tune this image encoder.

Since the encoder excels in face feature extraction and

latent loss has strong supervision, the encoder is fine-tuned

for 100 epochs with the batch size of 32.

4. Experimental Results

Experiments are conducted to evaluate our method in

dense correspondence accuracy, shape and expression rep-

resentation power, and single-image face reconstruction.

Evaluation Metric The ideal evaluation metric for 3D

shape analysis is per-vertex error. However, this metric is

not applicable to evaluating real scans due to the absence of

dense correspondence ground truth. An alternative metric

is per-vertex fitting error, which has been widely used in

3D face reconstruction [43] and 3D face-to-face fitting, e.g.,

LSFM [11], GPMMs [45]. The per-vertex fitting error is

the distance between every vertex of the test shape and

Figure 7: Raw scans (top) and their reconstructions with color-

coded dense correspondences (bottom), for one BU3DFE subject

in seven expressions: angry (AN), disgust (DI), fear (FE), happy

(HA), neutral (NE), sad (SA), and surprise (SU).

the nearest-neighbor vertex of the corresponding estimated

shape. Generally, the value of this error could be very small

due to the nearest-neighbor search. Thus, it sometimes can

not faithfully reflect the accuracy of dense correspondence.

To better evaluate the correspondence accuracy, prior 3D

face correspondence works [22, 24, 55] adopt a semantic

landmark error. With the pre-labeled landmarks on the

template face, it is easy to find p 3D landmarks {l̂i}
p
i=1 with

the same indexes on the estimated shape. By comparing

with manual annotations {l∗i }
p
i=1, we can compute the

semantic landmark error by 1
p

∑p

i=1

∥

∥

∥
l∗i − l̂i

∥

∥

∥
. Note that,

this error is normally much larger than per-vertex fitting

error due to inconsistent and imprecise annotations. Tab. 6

compares these three evaluation metrics.

4.1. Ablation Study

We qualitatively evaluate the function of each loss com-

ponent. As seen in Fig. 6, only using vertex loss severely

impairs the surface smoothness and local details; adding

surface normal loss preserves the high-frequency details.

adding edge length term refines the local triangle topology.

These results demonstrate that all the loss components

presented in this work contribute to the final performance.

4.2. Dense Correspondence Accuracy

We first report the correspondence accuracy on BU3DFE

database. BU3DFE contains one neutral and six expression

scans with four levels of strength, for each of 100 subjects.

Following the same setting in [55] and GPMMs [24], we use

all p = 83 landmarks of all neutral scans and expression

scans in the highest level for evaluation. Specifically,

the landmarks of the estimated shape are compared to

the manually annotated landmarks that are provided with

BU3DFE. We compare with four state-of-the-art dense

correspondence methods, NICP [3], Bolkart et al. [9],

Salazar et al. [55], and GPMMs [24]. Among them, NICP

has been widely used for constructing neutral morphable

model such as BFM 2009 and LSFM. For a fair comparison,

we re-implement NICP with extra landmark constraint so

that it can establish dense correspondence for expressive
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Table 3: Comparison of the mean and standard deviation of semantic landmark error (mm) on BU3DFE.

Face Region NICP [3] Bolkart et al. [9] Salaza et al. [55] GPMMs [24] Proposed (out) Proposed (in) Relative Impr.

Left Eyebrow 7.49±2.04 8.71±3.32 6.28±3.30 4.69±4.64 6.25±2.58 4.18±1.62 10.9%

Right Eyebrow 6.92±2.39 8.62±3.02 6.75±3.51 5.35±4.69 4.57±3.03 3.97±1.70 25.8%

Left Eye 3.18±0.76 3.39±1.00 3.25±1.84 3.10±3.43 2.00±1.32 1.72±0.84 44.5%

Right Eye 3.49±0.80 4.33±1.16 3.81±2.06 3.33±3.53 2.88±1.29 2.16±0.82 35.1%

Nose 5.36±1.39 5.12±1.89 3.96±2.22 3.94±2.58 4.33±1.24 3.56±1.08 9.6%

Mouth 5.44±1.50 5.39±1.81 5.69±4.45 3.66±3.13 4.45±2.02 4.17±1.70 -13.9%

Chin 12.40±6.15 11.69±6.39 7.22±4.73 11.37±5.85 7.47±3.01 6.80±3.24 5.8%

Left Face 12.49±5.51 15.19±5.21 18.48±8.52 12.52±6.04 12.10±4.06 9.48±3.42 24.1%

Right Face 13.04±5.80 13.77±5.47 17.36±9.17 10.76±5.34 13.17±4.54 10.21±3.07 5.1%

Avg. 7.56±3.92 8.49±4.29 8.09±5.75 6.52±3.86 6.36±3.92 5.14±3.03 21.2%

Table 4: Comparison of semantic landmark error (mean+STD in

mm) on FRGC v2.0. The landmarks are defined in [22].

Landmark
Creusot

et al. [18]
Gilant

et al. [74]
Fan

et al. [22]
Proposed

ex(L) 5.87±3.11 4.50±2.97 2.62±1.54 1.79±1.01
en(L) 4.31±2.44 3.12±2.09 2.53±1.66 1.61±0.97
n 4.20±2.07 3.63±2.02 2.43±1.36 2.69±1.43
ex(R) 6.00±3.03 3.74±2.79 2.60±1.71 2.00±0.95
en(R) 4.29±2.03 2.73±2.14 2.49±1.65 1.82±0.93
prn 3.35±2.00 2.68±1.48 2.11±1.17 2.36±1.37
Ch(L) 5.47±3.45 5.31±2.05 2.93±2.14 2.58±2.61
Ch(R) 5.64±3.58 4.38±2.08 2.84±2.17 2.60±2.58
ls 4.23±3.21 3.31±2.65 2.35±2.86 2.75±2.77
li 5.46±3.29 4.02±3.80 4.35±3.93 4.02±3.97

Avg. 4.88±0.91 3.74±0.83 2.73±0.62 2.42±0.70

3D scans. For the other three methods, we report results

from their papers. Both Salazar et al. [55] and Bolkart et

al. [9] are multilinear model based 3D face fitting method.

GPMMs [24] is a recent Gaussian process registration based

method. Note these four baselines do require labeled 3D

landmarks as input, while our method does not.

To further evaluate the generalization ability of the

proposed method for new scan data, we conduct two series

of experiments: (i) training using data from BU3DFE

database, denoted as Proposed (in), and (ii) training using

data outside BU3DFE database, denoted as Proposed (out).

As shown in Tab. 3, the Proposed (in) setting significant-

ly reduces errors by at least 21.2% w.r.t. the best baseline.

These results demonstrate the superiority of the proposed

method in dense correspondence. The error of Proposed

(out) setting shows a small increase, but is still lower than

the baselines. The relatively high semantic landmark error

is attributed by the imprecise manual annotations, espe-

cially on the semantic ambiguity contour, i.e., Chin, Left

Face and Right Face. Some example dense correspondence

results are shown in Fig. 7 and Supp..

We further compare semantic landmark error with the

very recent SOTA correspondence method [22], which is

an extension of ICP-based method, on the high-resolution

FRGC v2.0 database [49]. We also compare with two 3D

landmark localization works [18, 74]. Following the same

setting in [22], we compute the mean and standard deviation

of p = 10 landmarks for 4,007 scans. The results of

baselines are from their papers. As shown in Tab. 4, our

method improves the SOTA [22] by 11.4%, and preserves

Table 5: 3D scan reconstruction comparison (per-vertex error,

mm). lId denotes the dimension of latent representation.

lId 40 80 160

Linear 3DMM [48] 1.669 1.450 1.253

Nonlinear 3DMM [64] 1.440 1.227 1.019

Proposed 1.258 1.107 0.946

Figure 8: Shape representation power comparison. Our

reconstructions closely match the face shapes and the higher-dim

latent spaces can capture more local details.

high-frequency details for high-resolution 3D models (see

Fig.7 of Supp.). The landmark errors are much smaller than

BU3DFE since the annotations used here are more accurate

than BU3DFE’s. Thanks to the offline training process, our

method is two order of magnitude faster than the existing

dense correspondence methods: 0.26s (2ms with GPU)

vs. 57.48s of [3] vs. 164.60s of [22].

4.3. Representation Power

Identity shape We compare the capabilities of the pro-

posed 3D face models with linear and nonlinear 3DMMs

on BFM. The BFM database provides 10 test face scans,

which are not included in the training set. As these scans are

already established dense correspondence, we use the per-

vertex error for evaluation. For fair comparison, we train

different models with different latent space sizes. As shown

in Tab. 5, the proposed model has smaller reconstruction

error than the linear or nonlinear models. Also, the pro-

posed models are more compact. They can achieve similar

performances as linear and nonlinear models whose latent

spaces sizes are doubled. Figure 8 shows the visual quality

of three models’ reconstruction.
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Figure 9: Expression representation power comparison. Our

results better match the expression deformations than 3DDFA.

Table 6: Evaluation metric comparison on two databases.

Metric BFM BU3DFE

Per-vertex fitting error 0.572mm 1.065mm

Per-vertex error 0.946mm −

Semantic landmark error 1.493mm 5.140mm

Expression shape We compare the expression representa-

tion power of the proposed 3D face models with 3DDFA

expression model [73], a 29-dim model originated from

FaceWarehouse [14]. We use a 79-dim expression model

from [29] to randomly generate an expression difference

with Gaussian noise for each BFM test sample. Those

data are treated as the test set. For a fair comparison, we

train a model with the same expression latent space size

(lExp=29). Our model has significantly smaller per-vertex

error than 3DDFA: 1.424mm vs. 2.609mm. Figure 9

shows the visual quality of four scans’ reconstructions.

Shape representation on BU3DFE and BFM Table 6

compares the shape expressiveness of our model with the

three different metrics. Following the setting in Tab. 5, we

further calculate the per-vertex fitting error and semantic

landmark error (p = 51) for BFM test samples. We

also provide the per-vertex fitting error for the BU3DFE

reconstructions in Tab 3. From Tab. 6, compared to the ideal

per-vertex error, semantic landmark error is much larger

while per-vertex fitting error is smaller.

Shape representation on COMA We further evaluate our

shape representation on a large-scale COMA database [51].

For a fair comparison with FLAME [39] and Jiang et

al. [32], we follow the same setting as [32], and set our

latent vector size as 4 for identity and 4 for expression.

As in Tab. 7, our method shows better shape representation

compared to SOTA methods. While MeshAE [51] achieves

a smaller error (1.160mm), comparing ours with it is

not fair, as it has the advantage of encoding 3D faces

into a single vector without decomposing into identity and

expression. Also, their mesh convolution requires densely

corresponded 3D scans as input.

4.4. Singleimage 3D Face Reconstruction

With the same setting in [59], we quantitatively com-

pare our single-image shape inference with prior works on

Table 7: Comparison (per-vertex error, mm) with state-of-the-art

3D face modeling methods on COMA database.

Sequence Proposed Jiang et al. [32] FLAME [39]

bareteeth 1.609 1.695 2.002
cheeks in 1.561 1.706 2.011
eyebrow 1.400 1.475 1.862
high smile 1.556 1.714 1.960
lips back 1.532 1.752 2.047
lips up 1.529 1.747 1.983
mouth down 1.362 1.655 2.029
mouth extreme 1.442 1.551 2.028
mouth middle 1.383 1.757 2.043
mouth open 1.381 1.393 1.894
mouth side 1.502 1.748 2.090
mouth up 1.426 1.528 2.067
Avg. 1.474 1.643 1.615

Figure 10: Quantitative evaluation of single-image 3D face

reconstruction on samples of FaceWarehouse database.

nine subjects (180 images) of the FaceWarehouse database.

Visual and quantitative comparisons are shown in Fig. 10.

We achieve on-par results with nonlinear 3DMM [64],

Tewari [59] and Garrido et al. [23], while surpassing all

other CNN-based regression methods [52, 62].

5. Conclusions

This paper proposes an innovative encoder-decoder to

jointly learn a robust and expressive face model from a

diverse set of raw 3D scan databases and establish dense

correspondence among all scans. By using a mixture of

synthetic and real 3D scan data with an effective weakly-

supervised learning-based approach, our network can pre-

serve high-frequency details of 3D scans. The comprehen-

sive experimental results show that the proposed method

can effectively establish point-to-point dense correspon-

dence, achieve more representation power in identity and

expression, and is applicable to 3D face reconstruction.
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Popović. Face transfer with multilinear models. TOG,

24(3):426–433, 2005. 1, 2

[68] Yuhang Wu, Shishir K Shah, and Ioannis A Kakadiaris.

Rendering or normalization? An analysis of the 3D-aided

pose-invariant face recognition. In ISBA, 2016. 4

[69] Lijun Yin, Xiaochen Chen, Yi Sun, Tony Worm, and Michael

Reale. A high-resolution 3D dynamic facial expression

database. In FG, 2008. 4

[70] Lijun Yin, Xiaozhou Wei, Yi Sun, Jun Wang, and Matthew J

Rosato. A 3D facial expression database for facial behavior

research. In FG, 2006. 1, 4

9417



[71] Chao Zhang, William AP Smith, Arnaud Dessein, Nick

Pears, and Hang Dai. Functional faces: Groupwise dense

correspondence using functional maps. In CVPR, 2016. 3

[72] Xiangyu Zhu, Zhen Lei, Xiaoming Liu, Hailin Shi, and Stan

Z. Li. Face alignment across large poses: A 3D solution. In

CVPR, 2016. 2

[73] Xiangyu Zhu, Zhen Lei, Junjie Yan, Dong Yi, and Stan Z

Li. High-fidelity pose and expression normalization for face

recognition in the wild. In CVPR, 2015. 4, 8

[74] Syed Zulqarnain Gilani, Faisal Shafait, and Ajmal Mian.

Shape-based automatic detection of a large number of 3D

facial landmarks. In CVPR, 2015. 7

9418


