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Abstract

The latest deep learning-based approaches have shown

promising results for the challenging task of inpainting

missing regions of an image. However, the existing methods

often generate contents with blurry textures and distorted

structures due to the discontinuity of the local pixels. From

a semantic-level perspective, the local pixel discontinuity

is mainly because these methods ignore the semantic rele-

vance and feature continuity of hole regions. To handle this

problem, we investigate the human behavior in repairing

pictures and propose a fined deep generative model-based

approach with a novel coherent semantic attention (CSA)

layer, which can not only preserve contextual structure but

also make more effective predictions of missing parts by

modeling the semantic relevance between the holes features.

The task is divided into rough, refinement as two steps and

we model each step with a neural network under the U-Net

architecture, where the CSA layer is embedded into the en-

coder of refinement step. Meanwhile, we further propose

consistency loss and feature patch discriminator to stabi-

lize the network training process and improve the details.

The experiments on CelebA, Places2, and Paris StreetView

datasets have validated the effectiveness of our proposed

methods in image inpainting tasks and can obtain images

with a higher quality as compared with the existing state-

of-the-art approaches 1.

1. Introduction

Image inpainting is the task to synthesize the missing or

damaged parts of a plausible hypothesis, and can be uti-

lized in many applications such as removing unwanted ob-

jects, completing occluded regions, restoring damaged or

corrupted parts. The core challenge of image inpainting is

to maintain global semantic structure and generate realistic

texture details for the missing regions.

∗Corresponding author
1The codes will be available at https://github.com/

KumapowerLIU/CSA-inpainting.

Traditional works [11, 1, 4, 5, 33] mostly develop tex-

ture synthesis techniques to address the problem of hole fill-

ing. In [4], Barnes et al. propose the Patch-Match algorithm

which iteratively searches for the best fitting patches from

hole boundaries to synthesize the contents of the missing

parts. Wilczkowiak et al. [33] take further steps and de-

tect desirable search regions to find better match patches.

However, these methods fall short of understanding high-

level semantics and struggle at reconstructing these locally

unique patterns. In contrast, early deep convolution neu-

ral networks based approaches [16, 22, 27, 26] learn data

distribution to capture the semantic information of the im-

age. Although these methods can achieve plausible inpaint-

ing results, they fail to effectively utilize contextual infor-

mation to generate the contents of holes, thus leading to the

results containing noise patterns.

Some recent studies effectively utilize the contextual in-

formation and obtain better inpainting results. These meth-

ods can be divided into two types. The first type [40, 35, 30]

utilizes spatial attention which takes surrounding image fea-

tures as references to restore missing regions. These meth-

ods can ensure the semantic consistency of generated con-

tent with contextual information. However, they focus only

on rectangular shaped holes, and the results show pixel dis-

continuous and have semantic chasm (See in Fig 1(b, c)).

The second type [23, 39] is to make the prediction of the

missing pixels condition on the valid pixels in the original

image. These methods can handle irregular holes properly,

but the generated contents still meet problems of semantic

fault and boundary artifacts (See in Fig 1(g, h)). The rea-

son that the above mentioned methods do not work well is

because they ignore the semantic relevance and feature con-

tinuity of generated contents, which is crucial for the local

pixel continuity in image level.

In order to achieve better image inpainting results on

both centering and irregular cases, we investigate the human

behavior in inpainting pictures and find that such process

involves two steps as conception and painting to guarantee

both global structure consistency and local pixel continuity

of a picture. To put it more concrete, a man first observes
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Figure 1. Our results compared with Contextual Attention [40], Shift-net [35], Partial Conv [23], and Gated Conv [39]. First row, from

left to right are: image with centering mask, Shift-net [35], Contextual Attention [40], our model, Ground Truth, respectively. Second row,

from left to right are: image with irregular mask, Partial Conv [23], Gated Conv [39], our model, Ground Truth, respectively. The size of

images are 256×256.

the overall structure of the image and conceives the con-

tents of missing parts during conception process, so that the

global structure consistency of the image can be maintained.

Then the idea of the contents will be stuffed into the actu-

al image during painting process. In the painting process,

one always continues to draw new lines and coloring from

the end nodes of the lines drawn previously, which actually

ensures the local pixel continuity of the final result.

Inspired by this process, we propose a coherent semantic

attention layer (CSA), which fills in the unknown regions

of the image feature maps with the similar process. Initial-

ly, each unknown feature patch in the unknown region is

initialized with the most similar feature patch in the known

regions. Thereafter, they are iteratively optimized by con-

sidering the spatial consistency with adjacent patches. Con-

sequently, the global semantic consistency is guaranteed by

the first step, and the local feature coherency is maintained

by the optimizing step.

Concretely, similar to [40], we divide the image inpaint-

ing into two steps. The first step is constructed by training

a rough network to rough out the missing contents. A re-

finement network with the CSA layer in encoder guides the

second step to refine the rough predictions. In order to make

network training process more stable and motivate the CSA

layer to work better, we propose a consistency loss to mea-

sure not only the distance between the VGG feature layer

and the CSA layer but also the distance between the VG-

G feature layer and the the corresponding layer of the CSA

in decoder. Meanwhile, in addition to a patch discrimina-

tor [17], we improve the details by introducing a feature

patch discriminator which is simpler in formulation, faster

and more stable for training than conventional one [25]. Ex-

cept for the consistency loss, reconstruction loss and rela-

tivistic average LS adversarial loss [20] are incorporated as

constraints to instruct our model to learn meaningful param-

eters.

We conduct experiments on standard datasets Cele-

bA [24], Places2 [43], and Paris StreetView [8]. Both

the qualitative and quantitative tests demonstrate that our

method can generate higher-quality inpainting results than

existing ones. (See in Fig 1(d, i)).

Our contributions are summarized as follows:

• We propose a novel coherent semantic attention lay-

er to construct the correlation between the deep fea-

tures of hole regions. No matter whether the un-

known region is irregular or centering, our algorithm

can achieve state-of-the-art inpainting results.

• To enhance the performance of the CSA layer and en-

sure the training stability, we introduce the consistency

loss to guide the CSA layer and the corresponding de-

coder layer to learn the VGG features of ground truth.

Meanwhile, a feature patch discriminator is designed

and jointed to achieve better predictions.

• Our approach achieves higher-quality results in com-

parison with [40, 35, 23, 39] and generates more coher-

ent textures. Besides, even the inpainting task is com-

pleted in two stages, our full network can be trained in

an end to end manner.

2. Related Works

2.1. Image inpainting

In the literature, previous image inpainting researches

can generally be divided into two categories: Non-learning

inpainting approaches and Learning inpainting approach-

es. The former is traditional diffusion-based or patch-based

methods with low-level features. The latter learns the se-

mantics of image to fulfill the inpainting task and generally
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Figure 2. The architecture of our model. We add the CSA layer at the resolution of 32×32 in refinement network.

trains deep convolutional neural networks to infer the con-

tent of the missing regions.

Non-learning approaches such as [11, 1, 3, 5, 6, 9, 15, 2,

32, 18, 34, 28, 12, 29] fill in missing regions by propagat-

ing neighboring information or copying information from

similar patch of the background. Huang et al. [14] blend

the known regions into the target regions to minimize dis-

continuities. However, searching the best matching known

regions is a very expensive operation. To address this chal-

lenge, Barnes et al. [4] propose a fast nearest neighbor field

algorithm which promotes the development of image in-

painting applications. Though the non-learning approaches

work well for surface textures synthesis, they can not gen-

erate semantically meaningful content, and are not suitable

to deal with large missing regions.

Learning approaches [38, 22, 31, 37, 41, 7, 42] often

use deep learning and GAN strategy to generate pixels of

the hole. Context encoders [26] firstly train deep neural

networks for image inpainting task, which takes the adver-

sarial training [13] into a novel encoder-decoder pipeline

and outputs prediction of missing regions. However, it per-

forms poorly in generating fine-detailed textures. Soon af-

ter that, Iizuka et al. [16] extend this work and propose

local and global discriminators to improve the inpainting

quality. However, it requires the previous processing step-

s to enforce the color coherency near the hole boundaries.

Yang et al. [36] take the result from context encoders [26]

as input and gradually increase the texture details to get

high-resolution prediction. But this approach significantly

increases computational costs due to its optimization pro-

cess. Liu et al. [23] update the mask in each layer and

re-normalize the convolution weights with the mask val-

ue, which ensures that the convolution filters concentrate

on the valid information from known regions to handle ir-

regular holes. Yu et al. [39] further propose to learn the

mask automatically with gated convolutions, and combine

with SN-PatchGAN discriminator to achieve better predic-

tions. However, these methods do not explicitly consider

the correlation between valid features, thus resulting in col-

or inconsistency on completed image.

2.2. Attention based image inpainting

Recently, the spatial attention based on the relationship

between contextual and hole regions is often used for im-

age inpainting tasks. Contextual Attention [40] proposes a

contextual attention layer which searches for a collection of

background patches with the highest similarity to the coarse

prediction. Yan et al. [35] introduce a shift-net powered by

a shift operation and a guidance loss. The shift operation

speculates the relationship between the contextual regions

in the encoder layer and the associated hole region in the

decoder layer. Song et al. [30] introduce a patch-swap lay-

er, which replaces each patch inside the missing regions of

a feature map with the most similar patch on the contextual

regions, and the feature map is extracted by VGG network.

Although [40] has the spatial propagation layer to encour-

age spatial coherency by the fusion of attention scores, it

fails to model the correlations between patches inside the

hole regions, which is also the drawbacks of the other two

methods. To this end, we propose our approach to solve

this problem and achieve better results, which is detailed in

Section 3.

3. Approach

Our model consists of two steps: rough inpainting and

refinement inpainting. This architecture helps to stabi-

lize training and enlarge the receptive fields as mentioned

in [40]. The overall framework of our inpainting system is

shown in Fig 2. Let Igt be the ground truth images, Iin be

the input to the rough network. We first get the rough pre-
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diction Ip during the rough inpainting process. Then, the

refinement network with CSA layer takes the Ip and Iin as

input pairs to output final result Ir. Finally, the patch and

feature patch discriminators work together to obtain higher

resolution of Ir.

3.1. Rough inpainting

The input of rough network Iin is a 3×256×256 image

with center or irregular holes, which is sent to the rough

net to output the rough prediction Ip. The structure of our

rough network is the same as the generative network in [17],

which is composed of 4×4 convolutions with skip connec-

tions to concatenate the features from each layer of encoder

and the corresponding layer of decoder. The rough network

is trained with the L1 reconstruction loss explicitly.

3.2. Refinement inpainting

3.2.1 refinement network

We use Ip conditioned on Iin as input of refinement network

that predicts the final result Ir. This type of input stacks in-

formation of the known areas to urge the network to capture

the valid features faster, which is critical for rebuilding the

content of hole regions. The refinement network consists

of an encoder and a decoder, where skip connection is al-

so adopted similar to rough network. In the encoder, each

of the layers is composed of a 3×3 convolution and a 4×4

dilated convolution. The 3×3 convolutions keep the same

spatial size while doubling the number of channels. Layers

of this size can improve the ability of obtaining deep seman-

tic information. The 4×4 dilated convolutions reduce the

spatial size by half and keep the same channel number. The

dilated convolutions can enlarge the receptive fields, which

can prevent excessive information loss. The CSA layer is

embedded in the fourth layer of the encoder. The structure

of decoder is symmetrical to the encoder without CSA layer

and all 4×4 convolutions are deconvolutions.

3.2.2 Coherent Semantic Attention

We believe that it is not enough to only consider the rela-

tionship between M and M in feature map to reconstruct

M similar to [40, 35, 30], because the correlation between

generated patches is ignored, which may result in lack of

ductility and continuity of pixels in the final result.

To overcome this limitation, we consider the correlation

between generated patches and propose the CSA layer. We

take the centering hole as an example: the CSA layer is im-

plemented in two phases: Searching and Generating. Fig 3

illustrates the operation of the CSA layer, where the M and

M denote the missing area and the known area in feature

maps respectively. For each (1×1) generated patch mi in

M (i ∈ (1 ∼ n), n is the number of patches), the CSA

layer searches the closest-matching contextual patch mi in

known region M to initialize mi during the search process.

Then we set the mi as a primary part and all the previous

generated patch (m1∼i−1) as a secondary part to restore mi

during the generative process. To measure the weight of the

two parts, the following cross-correlation metric is adopted:

Dmaxi =
< mi,mi >

||mi||.||mi||
(1)

Dadi =
< mi,mi−1 >

||mi||.||mi−1||
(2)

where Dmaxi stands for the similarity between mi and

the most similar patch mi in contextual region, Dadi rep-

resents similarity between two adjacent generated patches.

Dmaxi and Dadi are normalized as the weight for the part

of contextual patch and the part of all the previous gener-

ated patches respectively. Next, we will describe these two

steps in detail.

Figure 3. Illustration of the CSA layer. Firstly, we search the most

similar contextual patch mi of each generated patch mi in the hole

M , and initialize mi with mi. Then, the previous generated patch-

es and the most similar contextual patch are combined to generate

the current one.

Searching: We first extract patches in M and reshape

them as convolutional filters, then apply the convolution fil-

ters on M . With this operation, we can obtain a vector of

values denoting the cross-correlation between each patch in

M and all patches in M . On this basis, for each generated

patch mi, we initialize it with the most similar contextual

patch mi and assign the maximum cross-correlation value

Dmaxi to it for the next operation. Generating: The top

left patch of M is taken as the initial patch for the gener-

ative process (marked by m1 in Figure 3). Since the m1

has no previous patch, the Dad1 is 0 and we replace the

m1 with m1 directly, m1 = m1. While the next patch

m2 has a previous patch m1 as an additional reference, we

therefore view the m1 as a convolution filter to measure the

cross-correlation metric Dad2 between m1 and m2. Then,

the Dad2 and Dmax2 are combined and normalized as the

weight of m1 and m2 respectively to generate new value

of m2, m2 = Dad2

Dad2+Dmax2

× m1 + Dmax2

Dad2+Dmax2

× m2.

In summary, from m1 to mn, the generative process can be
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summarized as:

m1 = m1, Dad1 = 0

mi
i∈(2∼n)

=
Dadi

Dadi +Dmaxi
×m(i−1)+

Dmaxi

Dadi +Dmaxi
×mi

(3)

As shown in Eq 3, the generating operation is an iterative

process, each mi contains the information of both mi and

m1∼i−1, when we calculate Dadi between mi and mi−1,

the correlations between mi and m1∼i−1 are all considered.

And since the Dadi value ranges from 0 to 1, the correlation

between currently generated patch and the previously gen-

erated patches decreases as the distance increases. Based

on Eq 3, we get an attention map Ai which records the
Dmaxi

Dadi+Dmaxi
and Dadi

Dadi+Dmaxi
× Ai−1 for mi, then A1 to

An form an attention matrix, finally the extracted patches

in M are reused as deconvolutional filters to reconstruct M .

The process of CSA layer is shown in the Algorithm 1.

To interpret the CSA layer, we visualize the attention

map of a pixel in Fig 4, where the red square marks the

position of the pixel, the background is our inpainted result,

dark red denotes the large attention value, and light blue

denotes the small attention value.

Algorithm 1 Process of CSA layer

Input: The set of feature map for current batch Fin

Output: Reconstructed feature map Fout

1: Searching

2: Reshape M as a convolution filter and apply it on M

3: Use Eq (1) to compute the Dmaxi and get the mi

4: Initialize mi with mi

5: End Searching

6: Generating

7: for i = 1 → n do

8: Use Eq (2) to calculate the Dadi
9: Use Eq (3) to get the attention map Ai for mi

10: end for

11: Combine A1 to An to get an attention matrix

12: Reuse M as a deconvolutional to get Fout

13: End Generating

14: Return Fout

3.3. Consistency loss

Some methods [27, 23] use the perceptual loss [19] to

improve the recognition capacity of the network. However,

perceptual loss can not directly optimize a specified convo-

lutional layer, which may mislead the training process of

the CSA layer. Moreover, perceptual loss does not ensure

consistency between the feature maps after the CSA layer

and the corresponding layer in the decoder.

Figure 4. The visualization of attention map. Dark red means the

attention value is large, while light blue means the attention value

is small.

We then redesign the form of perceptual loss and propose

the consistency loss to solve this problem. As shown in

Fig 2, we use an ImageNet-pretrained VGG-16 to extract

a high level feature space in the original image. Next, for

any location in M , we set the feature space as the target

for the CSA layer and the corresponding layer of the CSA

in decoder respectively to compute the the L2 distance. In

order to match the shape of the feature maps, we adopt 4−3
layer of VGG-16 for our consistency loss. The consistency

loss is defined as:

Lc =
∑

y∈M

‖CSA(Iip)y − Φn(Igt)y‖
2
2+

‖CSAd(Iip)y − Φn(Igt)y‖
2
2

(4)

Where Φn is the activation map of the selected layer in

VGG-16. CSA(.) denotes the feature after the CSA lay-

er and CSAd(.) is the corresponding feature in the decoder.

Guidance loss is similar to our consistency loss, pro-

posed in [35]. They view the ground-truth encoder fea-

tures of the missing parts as a guide to stabilize training.

However, extracting the ground truth features by shift-net

is an expensive operation, and the semantic understanding

ability of shift-net is not as good as VGG network. More-

over, it cannot optimize the specific convolution layer of the

encoder and the decoder simultaneously. In summary, our

consistency loss fits our requirements better.

3.4. Feature Patch Discriminator

Previous image inpainting networks always use an addi-

tional local discriminator to improve results. However, the

local discriminator is not suitable for irregular holes which

may be with any shapes and at any locations. Motivated by

Gated Conv [39], Markovian Gans [21] and SRFeat [25],

we develop a feature patch discriminator to discriminate

completed images and original images by inspecting their

feature maps. As shown in Fig 5, we use VGG-16 to extract

feature map after the pool3 layer, then the feature map is

treated as an input for several down-sample layers to cap-

ture the feature statistics of Markovain patches [21]. Final-

ly we directly calculate the adversarial loss in this feature

map, since receptive fields of each point in this feature map
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Figure 5. Architecture of our feature patch discriminator network.

The number above a convolution layer represents the shape of fea-

ture maps.

can still cover the entire input image. Our feature patch

discriminator combines the advantages of the convention-

al feature discriminator [25] and patch discriminator [17],

which is not only fast and stable during training but also

makes the refinement network synthesize more meaningful

high-frequency details.

In addition to the feature patch discriminator, we use a

70×70 patch discriminator to discriminate Ir and Igt im-

ages by inspecting their pixel values similar to [25]. Mean-

while, we use Relativistic Average LS adversarial loss [20]

for our discriminators. This loss can help refinement net-

work benefit from the gradients from both generated data

and real data in adversarial training, which is beneficial for

the training stability. The GAN loss term DR for refinement

network and the loss function DF for the discriminators are

defined as:

DR = −EIgt [D(Igt, Ir)
2]− EIr [(1−D(Ir, Igt))

2] (5)

DF = −EIgt [(1−D(Igt, Ir))
2]− EIr [D(Ir, Igt)

2] (6)

where D stands for the discriminators, EIgt/If [.] represents

the operation of taking average for all real/fake data in the

mini-batch.

3.5. Objective

Following the [35], we use L1 distance as our recon-

struction loss to guarantee the constrains that the Ip and Ir
should approximate the ground-truth image:

Lre = ‖Ip − Igt‖1 + ‖Ir − Igt‖1 (7)

Taking consistency, adversarial, and reconstruct losses

into account, the overall objective of our refinement net-

work and rough network is defined as:

L = λrLre + λcLc + λdDR (8)

where λr, λc, λd are the tradeoff parameters for the recon-

struction, consistency, and adversarial losses, respectively.

4. Experiments

We evaluate our method on three datasets: Places2 [24],

CelebA [43], and Paris StreetView [8]. We use the original

train, test, and validation splits for these three datasets. Data

augmentation such as flipping is also adopted during train-

ing. Our model is optimized by the Adam algorithm [10]

with a learning rate of 2 × 10−4 and β1 = 0.5. The trade-

off parameters are set as λr =1, λc=0.01, λd=0.002. We

train on a single NVIDIA 1080TI GPU (11GB) with a batch

size of 1. The training of CelebA model, Paris StreetView

model, Place2 model have taken 9 days, 5 days and 2 days,

respectively.

We compare our method with four methods:

-CA: Contextual Attention, proposed by Yu et al. [40]

-SH: Shift-net, proposed by Yan et al. [35]

-PC: Partial Conv, proposed by Liu et al. [23]

-GC: Gated Conv, proposed by Yu et al. [39]

To fairly evaluate, we conduct experiments on both set-

tings of centering and irregular holes. We obtain irregu-

lar masks from the work of PC. These masks are classified

based on different hole-to-image area ratios (e.g., 0-10(%),

10-20(%), etc.). For centering hole, we compare with CA

and SH on image from CelebA [24] and Places2 [43] vali-

dation set. For irregular holes, we compare with PC and GC

using Paris StreetView [8] and CelebA [24] validation im-

ages. All the masks and images for training and testing are

with the size of 256×256, and our full model runs at 0.82

seconds per frame on GPU for images.

4.1. Qualitative Comparison

For centering mask, as shown in Fig 6, CA [40] is effec-

tive in semantic inpainting, but the results present distorted

structure and confusing color. SH [35] performances better

due to the shift operation and guidance loss, but its predic-

tions are to some extent blurry and detail-missing. For ir-

regular mask, as shown in Fig 7, PC [23] and GC [39] can

get smooth and plausible result, but the continuities in color

and rows do not hold well and some artifacts can still be ob-

served on generated images. This is mainly due to the fact

that these methods do not consider the correlations between

the deep features in hole regions. In comparison to these

competing methods, our model can handle these problems

better, and generate visually pleasing results. Moreover, as

shown in Fig 6 and Fig 7 (f, g), A1 and A2 are attention

maps of two adjacent pixels, the first row is the attention

maps of left and right adjacent pixels, the second and third

row is the attention maps of up and down adjacent pixels.

We see that the attention maps of two adjacent pixels are

basically the same, and the correlation areas are not limited

to the most relevant contextual areas, the weak correlation

areas in attention maps are areas of concern for generated

patches which are far from it, the strong correlation areas

are areas of concern for both adjacent generated patches and
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Figure 6. Qualitative comparisons in centering masks cases. The first row is the testing result on Celeba image and the others are the testing

result on Places2 images.

Figure 7. Qualitative comparisons in irregular masks cases. The first row is the testing result on Celeba image and the others are the testing

result on Paris StreetView images.

the most relevant contextual patch. These phenomena can

prove that our approach is better at modeling the coherence

of the generated content and enlarging the perception do-

main for each generated patch than other attention based

model [40, 35].

4.2. Quantitative comparisons

We randomly select 500 images from Celeba validation

dataset [24] and generate irregular and centering holes for

each image to make comparisons. Following the CA [40],

we use common evaluation metrics, i.e., L1, L2, PSNR, and

SSIM to quantify the performance of the models. Table 1

and Table 2 list the evaluation results with centering mask

and irregular masks respectively. It can be seen that our

method outperforms all the other methods on these mea-

surements with irregular mask or centering mask.

4.3. Ablation Study

Effect of CSA layer To investigate the effectiveness of

CSA, we replace the CSA layer with a conventional 3×3

L−

1 (%) L−

2 (%) SSIM+ PSNR+

CA 2.64 0.47 0.882 23.93

SH 1.97 0.28 0.926 26.38

CSA 1.83 0.27 0.931 26.54
Table 1. Comparison results over Celeba with centering hole be-

tween CA [40], SH [35], and Ours. −Lower is better. +Higher is

better

layer and the contextual attention layer [40] respectively to

make a comparison. As shown in Fig 8(b), the mask part

fails to restore reasonable content when we use convention-

al conv. Although contextual attention layer [40] can im-

prove the performance compared to conventional convolu-

tion, the inpainting results are still lack of fine texture detail-

s and the pixels are not consistent with the background(see

Fig 8(c)). Compared with them, our method performs bet-

ter (see Fig 8(d)). This illustrates the fact that the global

semantic structure and local coherency are constructed by

the CSA layer.

Effect of CSA layer at different positions Too deep or

4176



Mask PC GC CSA

10-20% 1.00 1.00 0.72

L−

1 (%) 20-30% 1.46 1.40 0.94

30-40% 2.97 2.62 2.18

40-50% 4.01 3.26 2.85

10-20% 0.12 0.08 0.04

L−

2 (%) 20-30% 0.19 0.12 0.07

30-40% 0.58 0.44 0.37

40-50% 0.76 0.50 0.44

10-20% 31.13 31.67 34.69

PSNR+ 20-30% 29.10 29.83 32.58

30-40% 23.46 24.48 25.32

40-50% 22.11 23.36 24.14

10-20% 0.970 0.977 0.989

SSIM+ 20-30% 0.956 0.964 0.982

30-40% 0.897 0.910 0.926

40-50% 0.839 0.860 0.883
Table 2. Comparison results over Celeba with irregular mask be-

tween PC [23], GC [39], and Ours. −Lower is better. +Higher is

better

Figure 8. The effect of CSA layer. (b), (c) are results of our model

which replace the CSA layer with the conventional layer and the

CA layer [40] respectively.

too shallow positions of CSA layer may cause loss of infor-

mation details or increase calculation time overhead. Fig 9

shows the results of the CSA layer at the 2nd, 3rd, and 4th

down-sample positions of refinement network. When the

CSA layer is placed on the 2nd position with 64×64 size

(See Fig 9(b)), our model performances well but it takes

more time to process an image. When the CSA layer is

placed on the 4th position with 16×16 size (See Fig 9(c)),

our model becomes very efficient but tends to generate the

result with coarse details. By performing the CSA layer in

the 3rd position with 32×32 size, better tradeoff between

efficiency (i.e., 0.82 seconds per image) and performance

can be obtained by our model (See Fig 9(d)).

Figure 9. The results of CSA layer on three down-sample positions

of refinement network: 2nd, 3rd, and 4th.

Effect of consistency loss We conduct further experi-

ment to evaluate the effect of consistency loss. We add and

drop out the consistency loss Lc to train the inpainting mod-

el. Fig 10 shows the comparison results. It can be seen

that, without the consistency loss, the center of the hole re-

gions present distorted structure, which may be caused by

training instability and misunderstanding of image seman-

tic [See Fig 10(b)]. The consistency loss helps to deal with

these issues [See Fig 10(c)].

Figure 10. The effect of consistency loss. (b), (c) are results of our

model without or with consistency loss

Effect of feature patch discriminator As shown in Fig

11(b), when we only use the patch discriminator, the re-

sult performances distorted structure. Then we add the con-

ventional feature discriminator [25], however the generat-

ed content still seems blurry (See Fig 11(c)). Finally, by

performing the feature patch discriminator, fine details and

reasonable structure can be obtained (See Fig 11(d)). More-

over, the feature patch discriminator processes each image

for 0.2 seconds faster than the conventional one [25].

Figure 11. The effect of feature patch discriminator. Given the

input (a), (b), (c) and (d) are the results when we use patch dis-

criminator, patch and SRFeat feature discriminators [25], patch

and feature patch discriminators, respectively.

5. Conclusion

In this paper, we proposed a fined deep generative model

based approach which designed a novel Coherent Semantic

Attention layer to learn the relationship between features of

missing region in image inpainting task. The consistency

loss is introduced to enhance the CSA layer learning ability

for ground truth feature distribution and training stability.

Moreover, a feature patch discriminator is joined into our

model to achieve better predictions. Experiments have ver-

ified the effectiveness of our proposed methods. In future,

we plan to extend the method to other tasks, such as style

transfer and single image super-resolution.
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