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Abstract

In this paper we tackle the problem of stereo image

compression, and leverage the fact that the two images

have overlapping fields of view to further compress the

representations. Our approach leverages state-of-the-art

single-image compression autoencoders and enhances the

compression with novel parametric skip functions to feed

fully differentiable, disparity-warped features at all levels

to the encoder/decoder of the second image. Moreover,

we model the probabilistic dependence between the image

codes using a conditional entropy model. Our experiments

show an impressive 30 - 50% reduction in the second image

bitrate at low bitrates compared to deep single-image

compression, and a 10 - 20% reduction at higher bitrates.

1. Introduction

Many applications such as autonomous vehicles and 3D

movies involve the use of stereo camera pairs. These

arrays of cameras oftentimes capture and store massive

quantities of data per day, which require good image

compression algorithms to ensure an efficient use of space.

A naive approach to image compression would be to

compress the image streams from each camera separately.

However, this ignores the shared information given by the

overlapping fields of view between the cameras. Hence,

there is a need for compression methods that can efficiently

compress a stereo image pair further by utilizing the shared

information.

Stereo image compression can be seen as in-between

the work of image and video compression. While we

get to utilize shared information between two images, we

are not able to exploit the spatial-temporal redundancies

within a tightly coupled image sequence. There has been

an abundance of work on traditional multi-view and stereo

compression [12, 14] as well as deep-learning based image

and video compression [5, 33, 36, 49]. However, the space

of deep multi-view compression is relatively unexplored.

‡Work done as part of the Uber AI Residency program.

In this work, we present a novel end-to-end deep

architecture for stereo image compression. Our

contributions revolve around trying to extract as much

information out of the first image in order to reduce the

bitrate of the second. Towards this goal we leverage

state-of-the-art single-image compression autoencoders,

and enhance them with novel parametric skip functions to

feed fully differentiable, disparity-warped features at all

levels to the encoder/decoder of the second image. This

allow us to store fewer bits for the second image code

since multi-level information is being passed from the

encoder/decoder of the first image. Moreover, we model

the probabilistic dependence between the image codes

using a conditional entropy model. Since the codes of a

stereo pair are highly correlated with each other, a model

that can capture this dependence will help reduce the joint

entropy, and hence the joint bitrate, of the two latent codes.

We demonstrate a 30 - 50% reduction in the second

image bitrate at low bitrates compared to deep single-

image compression, and a 10 - 20% reduction at higher

bitrates, when evaluated over an internal self-driving

dataset (NorthAmerica), as well as stereo images from

Cityscapes. Our experiments additionally demonstrate

that we outperform all image codecs and motion-

compensation+residual coding baselines on MS-SSIM, a

perceptual metric capturing the structural quality of an

image.

2. Background and Related Work

We start this section with a brief overview of deep image

compression algorithms, including the general formulation

and previous works. We then discuss related work on deep

video compression, multi-view compression and stereo

estimation, respectively.

2.1. A Review on Deep Image Compression

There has been a plethora of work on learned, single-

image, lossy image compression [44, 45, 4, 5, 43, 31, 35,

33, 24]. These works generally use nonlinear transforms

through convolutional neural network (CNN) layers to

encode an image into a latent space, which is then quantized
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Figure 1: Left: the end-to-end stereo compression architecture; right: the proposed deep parameteric skip function.

into discrete symbols. An entropy coding function using a

learned entropy model is then applied to losslessly produce

the final bitstream.

More formally, given the input x, deep image

compression learns an encoding+quantization function E(·)
mapping the input to a discrete-valued vector representation

ŷ = E(x) as well as a decoder function D(·) that

reconstructs the image from the latent code: x̂ = D(ŷ).
Both the encoder and decoder are trained to optimize

for a balance between minimizing the expected code

length of the latent code and maximizing the quality of

the reconstruction; this is otherwise known as the rate-

distortion tradeoff

ℓ(x, x̂) + βR(ŷ) (1)

where ℓ is the reconstruction error between the input and

the decoded output, typically measured by MSE (mean

squared error) or a differentiable image quality metric

such as MS-SSIM [46]; R is the cost for encoding the

latent representation to a bitstream measured by bitrate.

The bitrate is oftentimes approximated in a differentiable

manner by measuring the cross-entropy between the latent

code distribution and a learned prior:

R(ŷ) ≈ Eŷ∼pŷ
[log p(ŷ;θ)] (2)

Towards these goals, researchers have devised various ways

to make the discrete binary encoding operations suitable

for end-to-end learning, such as straight-through estimation

[44, 43], soft quantization [2, 31] and noise sampling [4, 5].

Moreover, sophisticated prior models have been designed

for the quantized representation in order to minimize

the cross-entropy with the code distribution. Different

approaches to model the prior include autoregressive

models [33, 31, 45], hyperprior models [5, 33], and

factorized models [43, 4, 5].

2.2. Deep Video Compression

Traditional video compression techniques exploit

temporal redundancies by encoding independent frames

(I-frames), then using motion compensation / residual

coding to encode neighboring frames (P-frames, B-frames)

[41, 47]. Recently, several deep-learning based video

compression frameworks [49, 36, 15, 25] have been

developed. Wu et al. [49] employs techniques based upon

traditional video compression methods, while Rippel et al.

[35] uses an end-to-end learning approach and achieves

state-of-the-art results compared to traditional video

codecs, including HEVC/H.265 and AVC/H.264.

Video compression techniques may not necessarily

translate directly to a stereo setting because they typically

rely on temporal redundancies between a larger block

of images for most bitrate savings. We show in

our experiments that indeed motion/residual coding can

struggle for stereo.

2.3. Multiview Compression

There has been much prior work on designing and

analyzing multi-view compression techniques, usually in

a video compression setting [12, 11, 32, 27, 30, 23]. In

this setting, a multi-view video stream is reorganized as a

matrix of pictures capturing temporal similarity between

successive frames in one view and inter-view similarity

between adjacent camera views. Numerous techniques

[32, 27] use disparity compensated prediction to code each

view given a reference view, similar to motion-compensated

prediction in single-view video. The Multi-View Video

Coding (MVC) extension developed for H.264/AVC uses

this approach [32]. Other techniques involve using dense

depth maps to synthesize a more precise view prediction

for compression [30, 23].

Stereo specific compression techniques exist, and

range from using a Markov random field (MRF) for
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disparity prediction to separate transforms for residual

images [40, 14, 48, 3, 34, 42]. Also closely related is

light field image compression, where learning-based view

synthesis techniques are used to take advantage of the vast

redundancy between the subaperture images [20, 21].

In contrast, we use an end-to-end deep architecture for

stereo image compression. Implicit depth estimation and

compression is performed jointly in our model.

2.4. Stereo Matching

Traditional stereo matching methods range from local

similarity estimation [8, 37, 16], particle propogation

methods such as PatchMatch [7], to variational inference

such as conditional random fields [38] and semi-global

matching (SGM) [17]. There have been advances in

deep learnable stereo matching, utilizing both supervised

losses (training against ground truth disparities) [52,

28, 9, 22] as well as unsupervised losses (using a

photometric/consistency loss) [53]. Stereo matching can be

seen as a specific case of disparity-compensated prediction

for the stereo image compression setting. Nonetheless,

supervised learning-based stereo matching methods require

ground-truth (GT) to train, and acquiring GT for stereo is

difficult and expensive.

3. Deep Stereo Image Compression

In this paper we tackle the problem of compressing a

pair of stereo images. Intuitively, if the overlapping field of

view between the stereo pair is very high, then the bitrate

of the combined latent code should be lower than the sum

of the bitrates if we compressed the images separately; at

the very least it cannot be higher. More formally, let us

denote x1,x2 as a pair of rectified stereo images and let

H(x1,x2) be the entropy of the stereo pair. Given the fact

that the content of the two images are highly correlated, the

mutual information

I(x1,x2) = H(x1) +H(x2)−H(x1,x2) ≥ 0

This observation motivates our general approach: we

propose a single compression model that jointly compresses

two stereo images. Towards this goal, we focus on

extracting as much information as possible from one image

in order to reduce the bitrate in the second, such that the

total bitrate is lower than the result of independent single-

image compression. Our approach is a two-stream deep

encoder-decoder network as shown in Fig. 1. Each image

in a stereo pair is passed to a separate encoder/quantizer to

get a discretized latent code; then, a decoder is utilized to

reconstruct the image from the latent code. Compared to

previous work, we have two major contributions: 1) we add

multi-level, parametric skip functions from the first image’s

feature maps to propagate information to the second image;

2) we utilize a conditional entropy model to model the

correlation between the latent codes of the two images.

Next we will describe each component in details.

3.1. Encoding/Decoding and Quantization

Our encoder, decoder, and quantizer functions borrow

their architectures from the single-image compression

model in Ballé et al. [5]. As shown in Fig. 1, each encoder is

implemented with a series of 4 downsampling convolutions

(by 2x) and Generalized Divisive Normalization (GDN)

layers [6]. Each decoder is implemented with a series

of 4 upsampling deconvolutions (by 2x) and Inverse-GDN

layers. Each quantizer Q applies a rounding function to the

floating-point output of the encoder Q(E(x)) = Q(y) = ŷ

to output the discrete code representation.

3.2. Parametric Skip Function

To reduce the joint bitrate across the stereo pair,

we design a network module called a parametric skip

function to propagate information from the first image’s

encoder/decoder to the second. We conjecture that for

a given stereo pair, there exists a correlation between

the feature maps of the two images at all levels in the

encoder and decoder. Moreover, if we estimate the disparity

between each pair of feature maps, we can warp one

feature to the other and improve the pixel-level alignment

between the two feature maps; this in turn allows us to

pass information from one feature map accurately to the

corresponding spatial positions of the other.

Specifically, in order to compute the feature map of the

second image at level t, each skip function takes its previous

layer’s feature ht−1
2 , the previous layer feature from image

one ht−1
1 and the first image’s code ŷ1 as input. Each

skip function module consists of four parts. First, a fully

convolutional global context encoding module f(ŷ1;w)
encodes the first image’s latent code to a feature descriptor

d1, to capture global context information of the first image,

contained in its latent code. The global context feature is

shared across all the different levels. Secondly, a stereo

cost volume module estimates a cost volume ct−1 from the

input of the first feature map, second feature map and the

global context. The cost volume’s size is C × Ht−1 ×
W t−1 where C is the maximum disparity and Ht−1 and

W t−1 are the height/width of ht−1
1 . A softmax layer is

applied to ensure the cost is normalized along the disparity

dimension per pixel. Each value in the cost volume can

be seen as a probability/confidence measure of the correct

disparity at that coordinate. We then use this cost volume

to densely warp the feature from the first image to the

second. Particularly, for each pixel i the new feature vector

is computed through a weighted sum of feature vectors
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across all the disparity values in the disparity range:

gt−1
2,i =

C∑

d=0

cd,i · h
t−1
1,(i,d) (3)

where cd,i represents the cost of disparity d at pixel i. (i, d)
represents the pixel index that is d pixels right of pixel

i. The volumetric warping gives us a warped feature map

gt−1
2 which better aligns with the feature map of the second

image; this can be also seen as an attention mechanism

for each pixel i into the first image’s feature map within

a disparity range. This design is conceptually similar to

previous image synthesis work [13, 51]. Compared to

regressing a single disparity map and warping with bilinear

sampling [19], our design allows more flexible connections

between the target pixel and a range of pixels from the

source image. Finally, we use an aggregation function to

predict the feature map as the final output of our parametric

skip function:

ht
2 = a(gt−1

2 ,ht−1
2 ) (4)

with gt−1
2,i the volumetric warped feature from the first

iamge and ht−1
2 the previous layer’s feature from the second

image. We refer to supplementary material (Sec. C) for

architecture details of context encoding, stereo cost volume

and aggregation.

3.3. Conditional Entropy Model

Accurately modeling the entropy of the quantized code

is critical in navigating the rate-distortion trade-off, as

entropy is a tight lower bound of bitrate [39]. There

exists a correlation between the latent codes of the two

images, given the highly correlated image content. In order

to exploit these relationships, we develop a joint entropy

model with neural networks to estimate the joint distribution

of the code. In order to maintain differentiability while

mimicking the effect of rounding error during quantization,

we consider a noisy version of y as input: ȳ = y+ǫ, where

ǫ ∼ U(−0.5, 0.5).
Our goal is to model the joint distribution p(ȳ1, ȳ2;θθθ),

which takes into account the dependence of ȳ2 on ȳ1.

Inspired by [5, 33], we additionally want to include side

information as hyperpriors, z̄1, z̄2, whose sole purpose is

to reduce the entropy of ȳ1, ȳ2. Note that z̄1, z̄2 are derived

from ȳ1, ȳ2 respectively during encoding and must also

be counted in the bitstream. Thus, we factorize the joint

probability of ȳ1, ȳ2, z̄1, z̄2 as follows:

p(ȳ1, ȳ2, z̄1, z̄2;θθθ) =

p(ȳ2|ȳ1, z̄2;θθθȳ2
)p(ȳ1|z̄1;θθθȳ1

)p(z̄2;θθθz̄2
)p(z̄1;θθθz̄1

)
(5)

where p(ȳ1|z̄1;θθθȳ1
) denotes the probability of the first

image code and p(ȳ2|ȳ1, z̄2;θθθȳ2
) denotes the probability

of the second image code, which is conditioned on the
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Figure 2: Visualization of the disparity volumes at each resolution

level in the encoder/decoder, by taking the mode over the disparity

dimension for each feature pixel. Tiling effects are inherently due

to unsupervised training on crops.

first image. θθθȳ2
, θθθȳ1

, θθθz̄2
, θθθz̄1

are the full set of parameters

for each univariate distribution. All models are factorized

into the product of each individual code’s distribution

under the full independence and conditional independence

assumptions:

p(z̄1;θθθz̄1
) =

∏

i

p1,i(z̄1,i;θθθz̄1
) (6)

p(z̄2;θθθz̄2
) =

∏

i

p2,i(z̄2,i;θθθz̄2
) (7)

p(ȳ1|z̄1;θθθȳ1
) =

∏

i

p1,i(ȳ1,i|z̄1;θθθȳ1
) (8)

p(ȳ2|ȳ1, z̄2;θθθȳ2
) =

∏

i

p2,i(ȳ2,i|ȳ1, z̄2;θθθȳ2
) (9)

Directly modeling a probability density function (PDF)

with a deep parametric function may not be suitable

for PDFs with discontinuous shapes, e.g., a uniform

distribution between [-0.5, 0.5]. This restricts the power of

the entropy model. Following [5], we overcome this issue

by modeling probabilities as an area under the cumulative

density function (CDF) as opposed to a point on the PDF.

We first design our hyperprior models pi(z̄i;θθθz̄) as follows:

pi(z̄i;θθθz̄) = (qi ∗ u) (z̄i) (10)
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Figure 3: Plot of our stereo model against various compression baselines, for NorthAmerica and Cityscapes.

where u(τ) = 1 if |τ | < 0.5 otherwise u(τ) = 0, and ∗ is

the convolution between two functions. Thus we have:

pi(z̄i;θθθz̄) =

∫
∞

−∞

qi(τ ;θθθz̄)u(z̄i − τ)dτ

=

∫ z̄i+0.5

z̄i−0.5

qi(τ ;θθθz̄)dτ

= ci(z̄i + 0.5;θθθz̄)− ci(z̄i − 0.5;θθθz̄)

(11)

where ci(z̄i;θθθz̄) is the cumulative density function (CDF)

of some underlying PDF q. This intuitively means that we

can define pi(z̄i;θθθz̄) as an area under the CDF rather than

directly as the PDF, and we can use a neural network to

directly model ci(z̄i;θθθz̄). This approach has better capacity

to model steep edge PDFs, since even for steep edged PDF,

the CDF is still continuous.

We follow a similar approach to model the conditional

factorized probabilities for ȳ1, ȳ2 - we first highlight the

model for ȳ2:

p2,i(ȳ2,i|ȳ1, z̄2;θθθȳ2
) = (q2,i ∗ u) (ȳ2,i) (12)

Unlike the hyperprior models, we model each individual

pixel PDF q2,i as a Gaussian mixture model (GMM):

q2,i(ȳ1, z̄2) =
∑

k

wikN (µik, σ
2
ik)) (13)

where wik, µik, σ
2
ik are the distribution parameters

depending on ȳ1, z̄2 and θθθȳ2
. We also rewrite the

convolution as the difference between CDFs as in Eq. (11).

The CDF of a GMM is generally computed numerically

in most computational frameworks, while the derivative

is analytical. Thus we just need to learn a function that

predicts parameters wik, µik, σ
2
ik given ȳ1, z̄2 with θθθȳ2

as

learnable parameters, instead of modeling the CDF value

directly as in the hyperprior entropy model. We found that a

mixture model increased performance slightly thanks to its

stronger capacity compared to a single Gaussian. Finally,

the model for ȳ1 follows the same GMM formulation;

however given that ȳ1 is decoded first, we can only provide

z̄1 as input, not ȳ2:

p1,i(ȳ1,i|z̄1;θθθȳ1
) = (q1,i ∗ u) (ȳ1,i) (14)

Architecture details for our hyper-encoder - deriving z̄1, z̄2
from ȳ1, ȳ2 - as well as for each entropy model can be found

in supplementary material (Sec C.3).

3.4. Learning

Our model is trained end-to-end to minimize the

following objective function:

ℓ+ βR = Ex1,x2∼px
[ ||x1 − x̂1||

2
2

︸ ︷︷ ︸

Distortion (Img. 1)

+ ||x2 − x̂2||
2
2

︸ ︷︷ ︸

Distortion (Img. 2)

]+

βEx1,x2∼px
[− log2 p(ȳ1, z̄1;θθθ)
︸ ︷︷ ︸

Rate (Code 1)

− log2 p(ȳ2, z̄2|ȳ1;θθθ)
︸ ︷︷ ︸

Rate (Code 2)

]

(15)

where the first term encodes reconstruction quality of both

images and the second term is the bitrate term with the rate

predicted by the entropy model. Moreover, we can enforce
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a target bitrate for a given model by modifying the rate

function to be:

R = max(Ex1,x2∼px
[− log2 p(ȳ1, ȳ2, z̄1, z̄2;θθθ)], Ht)

(16)

where Ht is our desired target entropy calculated from the

target bitrate.

4. Experiments

We present a quantitative and qualitative evaluation

of our approach and various baselines on two different

datasets. We now provide more details about the datasets

and metrics we employ.

4.1. Datasets, Metrics and Baselines

NorthAmerica: We created a dataset captured by driving

self driving vehicles in two different cities in North

America. This dataset consists of 100k pairs of lossless

rectified stereo images. We use 2.5k pairs for validation,

18k for final testing, and the remaining for training. The

images in this dataset are 480× 300.

Cityscapes: We also train on Cityscapes raw sequences

[10], consisting of 89k training pairs and 45k test pairs.

For each 2048 × 1024 image, as a preprocessing step we

crop 64 pixels from the top and 128 pixels from the left to

remove rectification artifacts. We also crop out the bottom

240 pixels to remove the ego-vehicle in order to focus on

the scene imagery.

Metrics: We report results on both peak signal-to-noise

ratio (PSNR) and multi-scale structural similarity (MS-

SSIM) [46] as a function of bitrate. Both MS-SSIM and

PSNR are commonly used perceptual quality metrics, and

we measure both to test the robustness of our model.

PSNR is defined as −10 log10(MSE), where MSE is mean-

squared error, and better measures the absolute error in

a compressed image. On the other hand, MS-SSIM

better measures how well overall structural information is

preserved. For the MS-SSIM curve, we report both at

original scale as well as log-scale, namely ”MS-SSIM (dB)”

from [5], defined as −10 log10(1− MS-SSIM).

Baselines: Our completing algorithms include the single-

image hyperprior Ballé model [5] as well as popular image

codecs - BPG and JPEG2000. We also try adapting

traditional video-compression techniques as additional

baselines. Specifically, we run a codec based on the

HEVC/H.265 standard [41] over the stereo pair; we also

try a Multi-View Coding (MVC) extension of HEVC [1].

Another approach is to try a deep learning method to encode

the first image, disparity map and disparity-warped residual

image jointly (referred to as “stereo residual coding”): we

compress the first image using the Ballé hyperprior model.

Then we use SGM on the stereo pair to generate disparity

estimates, and compress them using a second Ballé model.

Finally, we compress the disparity-compensated residual

image using a third Ballé model.

4.2. Implementation Details

We create multiple stereo compression models, each set

to a different desired target bitrate. We set β, the weight on

the entropy loss, to a value within 0.5 to 0.001 for the lower

to higher bitrate models respectively. For each model at a

given target bitrate, we initialize the layers of both encoders

and decoders with those from a pre-trained single-image

based Ballé model [5] at the corresponding bitrate. This

speeds up our training and convergence time significantly.

We use a learning rate of 2·10−4 for all models and optimize

our parameters with Adam. We train with a total batch size

of 4, across 4 GPUs. For NorthAmerica, we train on the full

480× 300 image and set C (the maximum disparity) to 32,

while for Cityscapes, we train on 384 × 240 crops and set

C = 64.

4.3. Experimental Results

Comparison to Baselines: On NorthAmerica, our stereo

model consisting of our skip functions and conditional

entropy outperforms all of these compression baselines, as

shown in Fig. 3. Note that the reported ”bitrate” for our

stereo models represents the joint bitrate, or the average

of the bitrate for both images. Assuming our stereo pair

is compressed as well under our model as under a single-

image setting, this implies our residual bitrate savings, the

bitrate savings for the second image, to be double our joint

bitrate savings. For NorthAmerica, at bitrate 0.0946 for

the Ballé model, our model achieves an average 29.0%
reduction in the joint bitrate with higher MS-SSIM/PSNR,

implying a 58.0% reduction in the residual. At a higher

Ballé bitrate 0.734, our model achieves a 17.8% reduction

in the residual with higher MS-SSIM/PSNR.

For Cityscapes, our model outperforms all competing

baselines in MS-SSIM; it outperforms all baselines except

BPG/MV-HEVC in PSNR. At equal PSNR/MS-SSIM,

residual savings against Ballé range from 30% in the lower

bitrates to 10% at higher bitrates.

Our deep residual coding baseline performs worse than

single-image compression at all bitrates for NorthAmerica,

and at higher bitrates for Cityscapes. Even though it

numerically approaches the performance of our model at

lower bitrates, there exist significant boundary/warping

artifacts, which we demonstrate in supplementary material.

The underperformance of our baseline is consistent with

the findings of [49] and [14], the latter of whom noted that

residual images exhibit different correlation properties than

the full images and may need to be modeled differently.
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Input JPEG2000 BPG Ballé Ours

Cityscapes (Cam 1) Bitrate: 0.0648, PSNR: 33.11 Bitrate: 0.0651, PSNR: 34.59 Bitrate: 0.0770, PSNR: 34.62 Bitrate: 0.0982, PSNR: 36.23

Cityscapes (Cam 2) Bitrate: 0.0643, PSNR: 32.71 Bitrate: 0.0649, PSNR: 34.38 Bitrate: 0.0792, PSNR: 34.16 Bitrate: 0.0295, PSNR: 35.05

NorthAmerica (Cam 1) Bitrate: 0.2825, PSNR: 30.64 Bitrate: 0.278, PSNR: 32.24 Bitrate: 0.319, PSNR: 33.17 Bitrate: 0.321, PSNR: 33.71

NorthAmerica (Cam 2) Bitrate: 0.2838, PSNR: 30.43 Bitrate: 0.281, PSNR: 32.14 Bitrate: 0.322, PSNR: 33.00 Bitrate: 0.200, PSNR: 33.24

Figure 4: Qualitative results of our method vs. various single-image baselines. Metrics are specified for each entry.
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Figure 5: Ablation study. For both datasets, we analyze the independent and combined effects of our skip functions (DispSkip), conditional

entropy without hyperprior (CE0), and hyperprior.

Ablation Study: We perform an ablation study in

NorthAmerica and Cityscapes in Fig. 12 to isolate the

impact of each component in our stereo model: the skip

function (DispSkip), conditional entropy (separated from

the hyperprior), and hyperprior. We start out with two fully

factorized, independent single-image compression models

(Ballé [5], denoted as IE), with no skip functions. We

then analyze the impact of adding DispSkip on the IE
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Resolution 960 x 300 480 x 300 240 x 150

Bitrate (Ours) 0.361 0.406 0.437

MS-SSIM (Ours) 0.9936 0.9935 0.9915

PSNR (Ours) 40.12 38.22 35.61

Bitrate (Ballé) 0.414 0.479 0.518

MS-SSIM (Ballé) 0.9927 0.9919 0.9905

PSNR (Ballé) 39.93 37.57 35.42

Table 1: Analysis of our stereo compression performance on

different camera baseline widths/resolutions from NorthAmerica.

model to isolate the effect of DispSkip from our full

conditional entropy model. Then, we define a stripped down

conditional entropy model (denoted as CE0) that removes

all hyperpriors: ȳ1 is now modeled by a fully factorized

entropy, and ȳ2 is modeled by a GMM that only depends

on ȳ1. We train CE0, both with and without DispSkip,

to analyze metrics when no hyperprior side information is

used during encoding. Our final stereo model consists of

DispSkip, CE0, and the hyperprior, and we showcase that

curve as well.

As shown in Fig. 12, DispSkip on its own provides

greater gains against the pure IE model at lower bitrates and

converges to single-image compression at higher bitrates.

In the meantime, CE0 consistently provides performance

gains across all bitrates against IE; the improvement is

roughly equivalent to that of fitting the Ballé hyperprior

entropy model for both image codes. When combined

with DispSkip (DispSkip + CE0), this model marginally

outperforms the Ballé hyperprior model. Finally, DispSkip

+ CE0 + hyperprior (forming our full stereo model)

provides the greatest metrics gains across all bitrates.

We observe some cannibalization of additional gains

when combining DispSkip, CE0, and the hyperprior.

The reduction in gains when we combine DispSkip +

CE0 makes intuitive sense: our disparity-warped skip

connections focus on reusing redundant information and

hence reducing the correlation between the image codes,

whereas the entropy of our CE0 model is lower when the

correlation in both image codes is higher. Moreover, fitting

hyperprior side information that can already help reduce

the entropy of a single image may somewhat reduce the

additional entropy reduction CE0 can provide.

Qualitative Results: A qualitative demonstration of our

model on a stereo pair is given in Fig. 4. We show

that our approach contains better overall visual quality at a

lower bitrate compared to the Ballé model and other codecs.

More specifically, our stereo model better preserves overall

edges and colors without introducing artifacts. While BPG

is competitive with our model on Cityscapes, we observe

that BPG magnifies certain high frequency details while

distorting lower frequency regions. We leave additional

qualitative analysis to supplementary material.

480 x 300 Res. 1920 x 720 Res.

Ballé 36 GFlops 345 GFlops

Ours 141 GFlops 2700 GFlops

Table 2: Analysis of FLOPs of our approach compared to Ballé.

Effect of Different Baseline Widths To more concretely

analyze the impact of the baseline width on our stereo

compression model, we recreate copies of NorthAmerica at

different resolutions: 960 × 480, 480 × 300, and 240 ×
150, with baseline widths of 0.175 m, 0.088 m, 0.044

m respectively. We train with C = 64 for the highest

resolution and C = 32 for the others. As shown in Table

1, we achieve bitrate reductions while increasing perceptual

metrics for all resolution levels in NorthAmerica.

Runtime: On a GTX 1080-Ti, our stereo model takes

130ms for a 480x300 NorthAmerica pair, and 2246 ms

for a1920x720 Cityscapes pair. Additionally FLOPS are

shown in Tab. 2. Range coding is O(N) in encoding

and O(N log n) in decoding, where N is # symbols and

n is # unique symbols. Our complexity is dominated by

the computation of the cost volumes. We note that we

can attempt sparse approximations of the cost volume, or

different distributional parametrizations instead of a dense

softmax to save compute/memory for future work.

Disparity Volume: To interpret the information learned

in our DispSkip connections, Fig. 2 shows a visualization

of our disparity volumes in the encoder/decoder at one

particular bitrate level (bitrate 0.442), for a Cityscapes

stereo pair. These visualizations are generated by taking

the mode over the probability vector for each disparity

dimension in each volume. The learned disparity maps

capture different information at each level, helping to

support our justification for predicting a separate disparity

volume at each level of the encoder and decoder.

5. Conclusion

We propose a novel deep stereo image compression

algorithm, which exploits the content redundancy between

the stereo pair to reduce the joint bitrate. Towards

this goal, we propose parameteric skip functions and

a conditional entropy model to model the dependence

between the images. We validate the effectiveness of

our method over two large-scale datasets and demostrate

that our stereo model reduces the bitrate in the second

image by 10-50% from high to low bitrates, compared to

a single-image deep compression model. Additionally, we

demonstrate that both our skip functions and conditional

entropy contribute meaningfully to improving the bitrate

and perceptual quality. In the future, we plan to extend our

approach to the multi-view image and video compression

settings.
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