
DensePoint: Learning Densely Contextual Representation for Efficient Point

Cloud Processing

Yongcheng Liu†‡ Bin Fan∗† Gaofeng Meng† Jiwen Lu§ Shiming Xiang†‡ Chunhong Pan†

†National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences
‡School of Artificial Intelligence, University of Chinese Academy of Sciences

§Department of Automation, Tsinghua University
{yongcheng.liu, bfan, gfmeng, smxiang, chpan}@nlpr.ia.ac.cn lujiwen@tsinghua.edu.cn

Abstract

Point cloud processing is very challenging, as the di-

verse shapes formed by irregular points are often indis-

tinguishable. A thorough grasp of the elusive shape re-

quires sufficiently contextual semantic information, yet few

works devote to this. Here we propose DensePoint, a gen-

eral architecture to learn densely contextual representation

for point cloud processing. Technically, it extends regular

grid CNN to irregular point configuration by generalizing

a convolution operator, which holds the permutation in-

variance of points, and achieves efficient inductive learning

of local patterns. Architecturally, it finds inspiration from

dense connection mode, to repeatedly aggregate multi-level

and multi-scale semantics in a deep hierarchy. As a result,

densely contextual information along with rich semantics,

can be acquired by DensePoint in an organic manner, mak-

ing it highly effective. Extensive experiments on challenging

benchmarks across four tasks, as well as thorough model

analysis, verify DensePoint achieves the state of the arts.

1. Introduction

Recently, the processing of point cloud, which comprises

an irregular set of 3D points, has drawn a lot of attention,

due to its wide range of applications such as robot manipu-

lation [19] and autonomous driving [30]. However, modern

applications usually demand for a high-level understanding

of point cloud, i.e., identifying the implicit 3D shape pat-

tern. This is quite challenging, since the diverse shapes, ab-

stractly formed by these irregular points, are often hardly

distinguishable. For this issue, it is essential to capture

sufficiently contextual semantic information for a thorough

grasp of the elusive shape (see Fig. 1 for details).

Over the past few years, convolutional neural network

(CNN) has demonstrated its powerful abstraction ability of

semantic information in image recognition field [60]. Ac-

∗Corresponding author: Bin Fan

bottlevase

PointNet

aggregate
bottle

sufficient context
Figure 1. Motivation: sufficiently contextual semantic informa-

tion is essential for a thorough grasp of the elusive shape formed by

point cloud. The “bottle” is misidentified as the “vase” by Point-

Net [31], while with sufficient context aggregated, it can be accu-

rately recognized. Here, we only illustrate the multi-level context

around the blue point for visual clearness.

cordingly, much effort is focused on replicating its remark-

able success on the analysis of image [21, 40], i.e., regu-

lar grid data, to irregular point cloud processing [33, 18,

34, 48, 58, 26]. A straightforward strategy is to transform

point cloud into regular voxels [52, 27, 4] or multi-view im-

ages [43, 3, 6], for easy application of CNN. These trans-

formations, however, usually lead to much loss of rich 3D

geometric information, as well as high complexity.

Another difficult yet attractive solution is to learn di-

rectly from irregular point cloud. PointNet [31], a pioneer in

this direction, achieves the permutation invariance of points

by learning over each point independently, then applying a

symmetric function to accumulate features. Though impres-

sive, it ignores local patterns that have been proven to be im-

portant for abstracting high-level visual semantics in image

CNN [60]. To remedy this defect, KCNet [38] mines local

patterns by creating a k-NN graph over each point in Point-

Net. Nevertheless, it inherits another defect of PointNet,

i.e., no pooling layer to explicitly raise the level of seman-

tics. PointNet++ [33] hierarchically groups point cloud into

local subsets and learns on them by PointNet. This design

indeed works like CNN, but the basic operator, PointNet,

demands high complexity for enough effectiveness.

Besides high-level semantics, contextual information,

which reflects the potential semantic dependencies between

a target pattern and its surroundings [29], is also critical for

5239



shape pattern recognition. A typical approach in this view

is multi-scale learning. Accordingly, PointNet++ [33] di-

rectly applies multi-scale grouping in each layer, i.e., cap-

turing context at the same semantic level. This way, how-

ever, is suboptimal as it ignores the inherent difference in

semantic levels at different scales, and often causes huge

computational cost, especially for lots of scales. Multi-

resolution grouping [33] can partly alleviate the latter issue,

yet actually, it also abandons crucial context acquisition.

ShapeContextNet [54] finds another strategy inspired by

shape context [2]. It applies self-attention [47] in each layer

of PointNet [31] to dynamically learn the relation weight

among all points, and regards this weight as global shape

context. Though fully automatic, it lacks an explicit seman-

tic abstraction like CNN from local to global, and the weight

matrix N × N in self-attention can cause huge complexity

when the number of points N increases.

In short, there are mainly two key requirements to exploit

CNN for effective learning on point cloud: 1) A convolution

operator on point cloud, which can be permutation invari-

ant to unordered points, and can achieve efficient inductive

learning of local patterns, is required; 2) A deep hierarchy,

which can acquire sufficiently contextual semantics for ac-

curate shape recognition, is also required.

Accordingly, we propose DensePoint, a general archi-

tecture to learn densely contextual representation for point

cloud processing, as illustrated in Fig. 2. Technically,

DensePoint extends regular grid CNN to irregular point

configuration by generalizing a convolution operator, which

holds the permutation invariance of points, and respects the

convolutional properties, i.e., local connectivity and weight

sharing. Owing to its efficient inductive learning of local

patterns, a deep hierarchy can be easily built in DensePoint

for semantic abstraction. Architecturally, DensePoint finds

inspiration from dense connection mode [12], to repeatedly

aggregate multi-level and multi-scale semantics in the deep

hierarchy. As a result, densely contextual information along

with rich semantics, can be acquired by DensePoint in an

organic manner, making it highly effective.

The key contributions are highlighted as follows:

• A generalized convolution operator is formulated. It is

permutation invariant to points, and respects the con-

volutional properties of local connectivity and weight

sharing, thus extending regular grid CNN to irregular

configuration for efficient point cloud processing.

• A general architecture equipped with the generalized

convolution operator to learn densely contextual repre-

sentation of point cloud, i.e., DensePoint, is proposed.

It can acquire sufficiently contextual semantic infor-

mation for accurate recognition of the implicit shape.

• Comprehensive experiments on challenging bench-

marks across four tasks, i.e., shape classification, shape

retrieval, part segmentation and normal estimation,

as well as thorough model analysis, demonstrate that

DensePoint achieves the state of the arts.

2. Related Work

In this section, we briefly review existing deep learning

methods for 3D shape learning.

View-based and volumetric methods. View-based meth-

ods [43, 3, 6, 53, 7, 32, 13] represent a 3D shape as a col-

lection of 2D views, over which classic CNN used in image

analysis field can be easily applied. However, 2D projec-

tions could cause much loss of 3D shape information due

to many self-occlusions. Volumetric methods convert a 3D

shape into a regular 3D grid [52, 27, 4], over which 3D

CNN [46] can be employed. The main limitation is the

quantization loss of 3D shape information due to the low

resolution enforced by 3D grid. Although this issue can be

partly rescued by recent space partition methods like K-d

trees [20] or octrees [49, 44, 35, 50], they still rely on a

subdivision of a bounding volume. By contrast, our work

devotes to learn directly from irregular 3D point cloud.

Deep learning on point cloud. Much effort has been fo-

cused on learning directly on point cloud. PointNet [31]

pioneers this route by learning on each point independently

and accumulating the final features. Yet it ignores local pat-

terns, which limits its semantic learning ability. Accord-

ingly, some works [33, 5, 38] partition point cloud into lo-

cal subsets and learn on them based on PointNet. Some

other works introduce graph convolutional network to learn

over a local graph [48, 45, 24] or geometric elements [22].

However, these methods either lack an explicit semantic ab-

straction like CNN from local to global, or cause consid-

erable complexity. By contrast, our work extends regular

grid CNN to irregular point configuration, achieving effi-

cient learning for point cloud processing.

In addition, there are some works mapping point cloud

into a regular space to facilitate the application of classic

CNN, e.g., a sparse lattice structure [42] with bilateral con-

volution [17] or a continuous volumetric function [1] with

3D CNN. Nevertheless, in our case, we learn directly from

irregular point cloud, which is much more challenging.

Contextual learning on point cloud. Contextual informa-

tion is important for identifying the implicit shape pattern.

PointNet++ [33] follows the traditional multi-scale learn-

ing by directly capturing context on the same layer, which

often causes huge complexity. Hence an alternate called

multi-resolution grouping [33] is devised for efficiency. It

forces each layer to learn from its previous layer and the

raw input (on the same local region) simultaneously. How-

ever, this can be less effective as it actually abandons crucial

context acquisition. ShapeContextNet [54] finds another

strategy inspired by shape context [2]. Instead of the tra-

ditional handcrafted design, it applies self-attention [47] to

dynamically learn a weight for all point pairs. Though fully

automatic, it lacks a local-to-global semantic learning like

CNN. By contrast, we develop a deep hierarchy by an effi-

cient generalized convolution operator, and organically ag-

gregate multi-level contextual semantics in this hierarchy.

5240



PConv PConv PConv PConvPConv

receptive field

Input Layer #1 Layer #2 Layer #3 Layer #4 Layer #5 receptive field

Layer #1
Layer #2
Layer #3
Layer #4
Layer #5

Classic CNN architecture

DensePoint architecture

Figure 2. The illustration of DensePoint. It extends regular grid CNN to irregular point configuration by an efficient generalized convolution

operator (PConv in Eq. (1)). Instead of classic CNN architecture with layer-by-layer connections, it finds inspiration from dense connection

mode [12], to repeatedly aggregate multi-level along with multi-scale semantics in an organic manner. To avoid high complexity in deep

layers, it forces the output of each layer to be equally narrow with a small constant k (e.g., 24). As a result, densely contextual representation

can be learned efficiently for point cloud processing. Here, N is the number of points while C, C∗ and k denote feature dimension.

3. Method

In this section, we first describe the generalized convolu-

tion operator and the pooling operator on point cloud. Then,

we present DensePoint, and elaborate how it learns densely

contextual representation for point cloud processing.

3.1. Convolution and Pooling on Point Cloud

PConv: convolution on point cloud. Classic convolu-

tion on the image operates on a local grid region (i.e., local

connectivity), and the convolution filter weights of this grid

region are shared along the spatial dimension (i.e., weight

sharing). However, this operation is difficult to implement

on point cloud due to the irregularity of points. To deal with

this problem, we decompose the classic convolution into

two core steps, i.e., feature transformation and feature ag-

gregation. Accordingly, a generalized convolution on point

cloud can be formulated as

fN (x) = ρ
(
{φ(fxn

), ∀xn ∈ N (x)}
)
, (1)

where both x and xn denote a 3D point in R
3, and f is

feature vector. N (x), the neighborhood formed by a local

point cloud to convolve, is sampled from the whole point

cloud by taking a sampled point x as the centroid, and the

nearby points as its neighbors xn. fN (x), the convolutional

result as the inductive representation of N (x), is obtained

by: (i) performing a feature transformation with function φ
on each point in N (x); (ii) applying a aggregation function

ρ to aggregate these transformed features. Finally, as shown

in the upper part of Fig. 2 (PConv), similar to classic grid

convolution, fN (x) is assigned to be the feature vector of

the centroid point x in the next layer. Noticeably, some pre-

vious works such as [33] also use this general formulation.

In Eq. (1), fN (x) can be permutation invariant only when

the inner function φ is shared over each point in N (x), and

the outer function ρ is symmetric (e.g., sum). Accordingly,

for high efficiency, we employ a shared single-layer percep-

tron (SLP, for short) following a nonlinear activator, as φ to

implement feature transformation. Meanwhile, as done in

classic convolution, φ is also shared over each local neigh-

borhood, for achieving the weight sharing mechanism. As

a result, with a symmetric ρ, the generalized PConv can

achieve efficient inductive learning of local patterns, whilst

be independent of the irregularity of points. Further, using

PConv as the basic operator, a classic CNN architecture (no

downsampling), as shown in the upper part of Fig. 2, can be

easily built with layer-by-layer connections.

PPool: pooling on point cloud. In classic CNN, pool-

ing is usually performed to explicitly raise the semantic

level of the representation and improve computational ef-

ficiency. Here, using PConv, this operation can be achieved

on point cloud in a learnable way. Specifically, No points

are first uniformly sampled from the input Ni points, where

No < Ni (e.g., No = Ni/2). Then, PConv can be applied

to convolve all the local neighborhoods centered on those

No points, to generate a new downsampling layer.

3.2. Learning Densely Contextual Representation

Classic CNN architecture. In a classic CNN architecture

with layer-by-layer connections (the upper part of Fig. 2),

hierarchical representations can be learned with the low-

level ones in early layers and the high-level ones in deep

layers [60]. However, a significant drawback is that each

layer can only learn from single-level representation. As a

consequence, all layers can capture only single-scale shape

information from the input point cloud. Formally, assume a

point cloud P
0 that is passed through this type of network.

The network comprises L layers, in which the ℓth layer per-

forms a non-linear transformation Hℓ(·). Then, the output

5241



of the ℓth layer can be learned from its previous layer as

P
ℓ = Hℓ(Pℓ−1), (2)

where each point in P
ℓ−1 is of single-scale receptive filed

on the input point cloud P
0, resulting that the learned P

ℓ

captures only single-scale shape information. Finally, this

will lead to a weakly contextual representation, which is not

effective enough for identifying the diverse implicit shapes.

DensePoint architecture. To overcome the above issue,

we present a general architecture, i.e., DensePoint shown

in the lower part of Fig. 2, inspired by dense connection

mode [12]. Specifically, for each layer in DensePoint (no

downsampling), the outputs of all preceding layers are used

as its input, and its own output is used as the input to all

subsequent layers. That is, Pℓ in Eq. (2) becomes

P
ℓ = Hℓ

(
[P0,P1, . . . ,Pℓ−1]

)
, (3)

where [·] denotes the concatenation of the outputs of all pre-

ceding layers. Here, Pℓ is forced to learn from multi-level

representations, which facilitates to aggregate multi-level

shape semantics along with multi-scale shape information.

In this way, each layer in DensePoint can capture a certain

level (scale) of context, and the level can be gradually in-

creased as the network deepens. Moreover, the acquired

dense context in deep layers can also improve the abstrac-

tion of high-level semantics in turn, making the whole learn-

ing process organic. Eventually, very rich local-to-global

shape information in the input P0 can be progressively ag-

gregated together, resulting in a densely contextual repre-

sentation for point cloud processing.

Note that DensePoint is quite different from the tradi-

tional multi-scale strategy [33]. The former progressively

aggregates multi-level (multi-scale) semantics that is organ-

ically learned by each layer, while the latter artlessly gathers

multi-scale information at the same level. It is also dissimi-

lar to a simple concatenation of all layers as the final output,

which results in each layer being less contextual.

Narrow architecture. When the network deepens, Dense-

Point will suffer from high complexity, since the convolu-

tional overhead of deep layers will be huge with all preced-

ing layers as the input. Thus, we narrow the output channels

of each layer in DensePoint with a small constant k (e.g.,

24), instead of the large ones (e.g., 512) in classic CNN.

ePConv: enhanced PConv. Though lightweight, such nar-

row DensePoint will lack the expressive power, since with

much narrow output k, the shared SLP in PConv, i.e., φ in

Eq. (1), could be insufficient in terms of learning ability. To

overcome this issue, we introduce the filter grouping [21]

to enhance PConv, which divides all the filters in a layer

into several groups, and each group performs individual op-

eration. Formally, the enhanced PConv (ePConv, for short)

converts Eq. (1) to

fN (x) = ψ
(
ρ
(
{φ̃(fxn

), ∀xn ∈ N (x)}
))
, (4)

Algorithm 1: DensePoint forward pass algorithm

Input: point cloud P; input features {fx, ∀x ∈ P}; depth

L; weight Wℓ

φ̃
, Wℓ

ψ and bias bℓ
φ̃

, bℓψ for SLP φ̃ and

SLP ψ in Eq. (4), ∀ℓ ∈ {1, ..., L}; non-linearity σ;

aggregation function ρ; neighborhood methodN
Output: densely contextual representations {rx, ∀x ∈ P}

1 f
0
x ← fx, ∀x ∈ P;

2 for ℓ = 1...L do

3 for x ∈ P do

4 f
ℓ
N (x) ← ρ

(
{σ(W̃

ℓ

φ̃ · f̃
ℓ−1

xn + b̃
ℓ

φ̃), ∀xn ∈ N (x)}
)
;

5 f
ℓ
x ← σ(Wℓ

ψ · f
ℓ
N (x) + b

ℓ
ψ);

6 end

7 f
ℓ
x ← [f0x, ..., f

ℓ
x], ∀x ∈ P;

8 end

9 return {rx ← f
L
x , ∀x ∈ P}

where φ̃, the grouped version of SLP φ, can widen its out-

put to enhance its learning ability and maintain the original

efficiency, and ψ, a normal SLP (shared over each centroid

point x), is added to integrate the detached information in

all groups. Both φ̃ and ψ include a nonlinear activator.

To elaborate ePConv with filter grouping, let SLPφ̃ (resp.

SLPψ) denote the SLP of φ̃ (resp. ψ), and Ci (resp. Co)

denote the input (resp. output) channels of SLPφ̃. Ng
is the number of groups. Then, the parameter number

of SLPφ̃ before and after filter grouping is, Ci × Co vs.

(Ci/Ng)× (Co/Ng)×Ng = (Ci × Co)/Ng . Here Ci and

Co are divisible by Ng and the few parameters in the bias

term are ignored for clearness. In other words, using filter

grouping, Co can be increased by Ng times but with almost

the same complexity. Besides, inspired by the bottleneck

layer [8], we fix the output channels of SLPφ̃ and SLPψ as

Co : k = 4 : 1 (i.e., Co = 4k), to hold the original nar-

rowness for DensePoint. Hence, with a small k, SLPψ ac-

tually leads to only a little complexity of 4k× k, which can

be easily remedied by a suitable Ng . The detailed forward

pass procedure of DensePoint equipped with ePConv can

be referred in Algorithm 1, where ∗̃ indicates performing

grouping operation.

DensePoint for point cloud processing. DensePoint ap-

plied in point cloud classification and per-point analysis

(e.g., segmentation) are illustrated in Fig. 3. In both tasks,

DensePoint with ePConv is applied in each stage of the

network to learn densely contextual representation, while

PPool with original PConv is used to explicitly raise the se-

mantic level and improve efficiency. For classification, the

final global representation is learned by three PPools and

two DensePoints (11 layers in total, L = 11), followed by

three fully connected (fc) layers as the classifier. For per-

point analysis, four levels of representations learned by four

PPools and three DensePoints (17 layers in total, L = 17),

are sequentially upsampled by feature propagation [33] to

5242



N
fully connected layers labels

long-range connections

feature propagation layers
per-point predictions

...

PP
oo

l

PP
oo

l

DensePoint
DensePoint

N ...

PP
oo

l

PP
oo

l
DensePoint

DensePoint

(a)

(b)

1st stage 2nd stage

Figure 3. DensePoint applied in point cloud classification (a) and

per-point analysis (b). PPool: pooling on point cloud (Sec 3.1). N

is the number of points. The stage means several successive layers

with the same number of points.

generate per-point predictions. All the networks can be

trained in an end-to-end manner. The configuration details

are included in the supplementary material.

Implementation details. PPool: the farthest points are

picked from point cloud for uniform downsampling. Neigh-

borhood: the spherical neighborhood is adopted; a fixed

number of neighbors are randomly sampled in each neigh-

borhood for batch processing (the centroid is reused if not

enough), and they are normalized by subtracting the cen-

troid. Group number Ng in φ̃ (Eq. (4)): Ng = 2. Nonlinear

activator: ReLU [28]. Dropout [41]: for model regulariza-

tion, we apply dropout with 20% ratio on fN (x) in Eq. (4)

and dropout with 50% ratio on the first two fc layers in the

classification network (Fig. 3(a)). Narrowness k: k = 24.

Aggregation function ρ: symmetric function max pooling is

employed. Batch normalization (BN) [16]: as done in im-

age CNN, BN is used before each nonlinear activator for all

layers. Note that only 3D coordinates (X,Y, Z) in R
3 are

used as the initial input features. Code is available1.

4. Experiment

We conduct comprehensive experiments to validate the

effectiveness of DensePoint. We first evaluate Dense-

Point for point cloud processing on challenging benchmarks

across four tasks (Sec 4.1). We then provide detailed exper-

iments to study DensePoint thoroughly (Sec 4.2).

4.1. DensePoint for Point Cloud Processing

Shape classification. We evaluate DensePoint on Model-

Net40 and ModelNet10 classification benchmarks [52]. The

former comprises 9843 training models and 2468 test mod-

els in 40 classes, while the latter consists of 3991 training

models and 908 test models in 10 classes. The point cloud

data is sampled from these models by [31]. For training, we

uniformly sample 1024 points as the input. As in [20], we

augment the input with random anisotropic scaling in range

[-0.66, 1.5] and translation in range [-0.2, 0.2]. For test-

ing, similar to [31, 33], we apply voting with 10 tests using

random scaling and then average the predictions.

1https://github.com/Yochengliu/DensePoint

Table 1. Shape classification results (overall accuracy, %) on

ModelNet40 (M40) and ModelNet10 (M10) benchmarks (pnt:

point coordinates, nor: normal, “-”: unknown).

method input #points M40 M10

Pointwise-CNN [11] pnt 1k 86.1 -

Deep Sets [59] pnt 1k 87.1 -

ECC [39] pnt 1k 87.4 90.8

PointNet [31] pnt 1k 89.2 -

SCN [54] pnt 1k 90.0 -

Kd-Net(depth=10) [20] pnt 1k 90.6 93.3

PointNet++ [33] pnt 1k 90.7 -

MC-Conv [10] pnt 1k 90.9 -

KCNet [38] pnt 1k 91.0 94.4

MRTNet [4] pnt 1k 91.2 -

Spec-GCN [48] pnt 1k 91.5 -

DGCNN [51] pnt 1k 92.2 -

PointCNN [25] pnt 1k 92.2 -

PCNN [1] pnt 1k 92.3 94.9

Ours pnt 1k 93.2 96.6

SO-Net [23] pnt 2k 90.9 94.1

Kd-Net(depth=15) [20] pnt 32k 91.8 94.0

O-CNN [49] pnt, nor - 90.6 -

Spec-GCN [48] pnt, nor 1k 91.8 -

PointNet++ [33] pnt, nor 5k 91.9 -

SpiderCNN [55] pnt, nor 5k 92.4 -

SO-Net [23] pnt, nor 5k 93.4 95.7

Table 2. Shape retrieval results (mAP, %) on ModelNet40 (M40)

and ModelNet10 (M10) benchmarks (“-”: unknown).
input method #points/views M40 M10

Points
PointNet [9] 1k 70.5 -

DGCNN [51] 1k 85.3 -

PointCNN [25] 1k 83.8 -

Ours 1k 88.5 93.2

Images

GVCNN [3] 12 85.7 -

Triplet-center [9] 12 88.0 -

PANORAMA-ENN [37] - 86.3 93.3

SeqViews [7] 12 89.1 89.5

The quantitative comparisons with the state-of-the-

art point-based methods are summarized in Table 1.

Our DensePoint outperforms all the point-input methods.

Specifically, it reduces the error rate of PointNet++ by

26.9% on ModelNet40, and also surpasses its advanced ver-

sion that applies additional normal data with very dense

points (5k). Furthermore, even using only point as the in-

put, DensePoint can also surpass the best additional-input

method SO-Net [23] by 0.9% on ModelNet10. These re-

sults convincingly verify the effectiveness of DensePoint.

Shape retrieval. To further explore the recognition ability

of DensePoint for the implicit shapes, we apply the global

features, i.e., the outputs of the penultimate fc layer in the

classification network (Fig. 3(a)), for shape retrieval. We

sort the most relevant shapes for each query from the test

set by cosine distance, and report mean Average Precision

(mAP). Except for point-based methods, we also compare

with some advanced 2D image-based ones. The results are

summarized in Table 2. As can be seen, DensePoint sig-

nificantly outperforms PointNet by 18%. It is also com-

5243



Table 3. Shape part segmentation results (%) on ShapeNet part benchmark (nor: normal, “-”: unknown).

method input class

mIoU

instance

mIoU

air

plane

bag cap car chair ear

phone

guitar knife lamp laptop motor

bike

mug pistol rocket skate

board

table

Kd-Net [20] 4k 77.4 82.3 80.1 74.6 74.3 70.3 88.6 73.5 90.2 87.2 81.0 94.9 57.4 86.7 78.1 51.8 69.9 80.3

PointNet [31] 2k 80.4 83.7 83.4 78.7 82.5 74.9 89.6 73.0 91.5 85.9 80.8 95.3 65.2 93.0 81.2 57.9 72.8 80.6

SCN [54] 1k 81.8 84.6 83.8 80.8 83.5 79.3 90.5 69.8 91.7 86.5 82.9 96.0 69.2 93.8 82.5 62.9 74.4 80.8

SPLATNet [42] - 82.0 84.6 81.9 83.9 88.6 79.5 90.1 73.5 91.3 84.7 84.5 96.3 69.7 95.0 81.7 59.2 70.4 81.3

KCNet [38] 2k 82.2 84.7 82.8 81.5 86.4 77.6 90.3 76.8 91.0 87.2 84.5 95.5 69.2 94.4 81.6 60.1 75.2 81.3

RS-Net [14] - 81.4 84.9 82.7 86.4 84.1 78.2 90.4 69.3 91.4 87.0 83.5 95.4 66.0 92.6 81.8 56.1 75.8 82.2

DGCNN [51] 2k 82.3 85.1 84.2 83.7 84.4 77.1 90.9 78.5 91.5 87.3 82.9 96.0 67.8 93.3 82.6 59.7 75.5 82.0

PCNN [1] 2k 81.8 85.1 82.4 80.1 85.5 79.5 90.8 73.2 91.3 86.0 85.0 95.7 73.2 94.8 83.3 51.0 75.0 81.8

Ours 2k 84.2 86.4 84.0 85.4 90.0 79.2 91.1 81.6 91.5 87.5 84.7 95.9 74.3 94.6 82.9 64.6 76.8 83.7

SO-Net [23] -,nor 80.8 84.6 81.9 83.5 84.8 78.1 90.8 72.2 90.1 83.6 82.3 95.2 69.3 94.2 80.0 51.6 72.1 82.6

SyncCNN [57] mesh 82.0 84.7 81.6 81.7 81.9 75.2 90.2 74.9 93.0 86.1 84.7 95.6 66.7 92.7 81.6 60.6 82.9 82.1

PointNet++ [33] 2k,nor 81.9 85.1 82.4 79.0 87.7 77.3 90.8 71.8 91.0 85.9 83.7 95.3 71.6 94.1 81.3 58.7 76.4 82.6

SpiderCNN [55] 2k,nor 82.4 85.3 83.5 81.0 87.2 77.5 90.7 76.8 91.1 87.3 83.3 95.8 70.2 93.5 82.7 59.7 75.8 82.8

Query Top-10 retrieved CAD models

vase

piano

stool

Figure 4. Retrieval examples on ModelNet40. Top-10 matches are

shown for each query, with the 1st line for PointNet [31] and the

2nd line for our DensePoint. The mistakes are highlighted in red.

parable with those image-based methods (even the ensem-

ble one [37]), which greatly benefit from image CNN and

pre-training with large-scale datasets (e.g., ImageNet [36]).

Fig. 4 shows some retrieval examples.

Shape part segmentation. Part segmentation is a chal-

lenging task for fine-grained shape recognition. Here we

evaluate DensePoint on ShapeNet part benchmark [56]. It

contains 16881 shapes with 16 categories, and is labeled in

50 parts in total, where each shape has 2∼5 parts. We follow

the data split in [31], and similarly, we also randomly pick

2048 points as the input and concatenate the one-hot encod-

ing of the object label to the last feature layer of the segmen-

tation network in Fig. 3(b). In testing, we also apply voting

with ten tests using random scaling. Except for standard

IoU (Inter-over-Union) score for each category, two types

of mean IoU (mIoU) that are averaged across all classes and

all instances respectively, are also reported.

Table 3 summarizes the quantitative comparisons with

the state-of-the-art methods, where DensePoint achieves the

best performance. Furthermore, it significantly surpasses

the second best point-input methods, i.e., DGCNN [51],

with 1.9↑ in class mIoU and 1.3↑ in instance mIoU respec-

tively. Noticeably, it also sets new state of the arts over the

point-based methods in eight categories. These improve-

ments demonstrate the robustness of DensePoint to diverse

Figure 5. Segmentation examples on ShapeNet part benchmark.

Table 4. Normal estimation error on ModelNet40 benchmark.
dataset method #points error

ModelNet40 PointNet [1] 1k 0.47

PointNet++ [1] 1k 0.29

PCNN [1] 1k 0.19

MC-Conv [10] 1k 0.16

Ours 1k 0.149

shapes. Some segmentation examples are shown in Fig. 5.

Normal estimation. Normal estimation in point cloud is a

crucial step for numerous applications, from surface recon-

struction and scene understanding to rendering. Here, we

regard normal estimation as a supervised regression task,

and implement it by deploying DensePoint with the seg-

mentation network in Fig. 3(b). The cosine-loss between

the normalized output and the normal ground truth is em-

ployed for training. We evaluate DensePoint on Model-

Net40 benchmark for this task, where 1024 points are uni-

formly sampled as the input.

The quantitative comparisons of the estimation error

are summarized in Table 4, where DensePoint outperforms

other advanced methods. Moreover, it significantly reduces

the error of PointNet++ by 48.6%. Fig. 6 shows some nor-

mal prediction examples. As can be seen, DensePoint with

densely contextual semantics can obtain more decent nor-

mal predictions, while PointNet and PointNet++ present a

lot of deviations above 90◦ from the ground truth. How-

ever, in this task, DensePoint can not process some intricate

shapes well, e.g., curtains and plants.

5244



la
m

p
ch

ai
r

cu
rta

in

ground truth ours PointNet PointNet++

ground truth < 30° predictions > 90° predictions

Figure 6. Normal estimation examples on ModelNet40 bench-

mark. For visual clearness, we only show the predictions with

the angle less than 30◦ in blue, and the angle greater than 90◦ in

red between the ground truth.

4.2. DensePoint Analysis

In this section, we first perform a detailed ablation study

for DensePoint. Then, we discuss the group number Ng in

ePConv (Eq. (4)), the network narrowness k, the aggrega-

tion function ρ and the network stage to apply DensePoint,

respectively. Finally, we analyze the robustness of Dense-

Point on sampling density and random noise, and investi-

gate the model complexity. All the experiments are con-

ducted on ModelNet40 [52] dataset.

Ablation study. The results of ablation study are summa-

rized in Table 5. We set two baselines: model A and model

A. Model A is set as a classic hierarchical version (the up-

per part of Fig. 2, i.e., layer-by-layer connections without

contextual learning by DensePoint) of the classification net-

work with the same number of layers, and each layer is con-

figured with the same width. Model A directly concatenates

all layers in each stage of model A as the final output of that

stage. Both of them are equipped with PConv in Eq. (1).

The baseline model A gets a low classification accuracy

of 88.6%, and it increases by only 0.5 percent with direct

concatenation (model A). However, with the densely con-

textual semantics of DensePoint, the accuracy raises signif-

icantly by 2.5 percent (91.1%, model B). This convincingly

verifies its effectiveness. Then, when using ePConv to en-

hance the expressive power of each layer in DensePoint, the

accuracy can be further improved to 92.5% (model C). No-

ticeably, the dropout on fN (x) in Eq. (4) can bring a boost

of 0.3 percent (model D). The data augmentation technique

can result in an accuracy variation of 0.7 percent (model E).

Finally, by voting strategy, our final model F can achieve an

impressive accuracy of 93.2%. In addition, we also inves-

Table 5. Ablation study of DensePoint (%) (DA: data augmenta-

tion, DP: DensePoint, DO: dropout on fN (x) in Eq. (4)).

model #points DA DP ePConv DO vote acc.

A 1k X 88.6

A 1k X 89.1

B 1k X X 91.1

C 1k X X X 92.5

D 1k X X X X 92.8

E 1k X X X 92.1

F 1k X X X X X 93.2

G 2k X X X X X 93.2

Table 6. The impact of the group number Ng on network parame-

ters, FLOPs and performance (k = 24).

group number Ng #params #FLOPs/sample acc. (%)

1 0.73M 1030M 92.7

2 0.67M 651M 93.2

4 0.62M 457M 92.2

6 0.61M 394M 92.3

12 0.60M 331M 92.1

Table 7. The comparisons of different narrowness k (Ng = 2).

narrowness k #params #FLOPs/sample acc. (%)

12 0.56M 294M 92.1

24 0.67M 651M 93.2

36 0.76M 957M 92.9

48 0.88M 1310M 92.7

tigate the number of input points by increasing it to 2k, yet

obtaining no gain (model G). Maybe the model needs to be

modified to adapt for more input points.

Group number Ng in ePConv (Eq. (4)). The filter group-

ing can greatly reduce the model complexity, whilst lead-

ing to a model regularization by rarefying the filter re-

lationships [15]. Table 6 summarizes the impact of Ng
on model parameters, model FLOPs (floating point oper-

ations/sample) and classification accuracy. As can be seen,

the model parameters are very few (0.73M), even though the

filter grouping is not performed. This is due to the narrow

design (k = 24) of each layer in DensePoint and few pa-

rameters in the generalized convolution operator, ePConv.

Eventually, with Ng = 2, DensePoint can achieve the best

result of 93.2% with acceptable model complexity.

Network narrowness k. Table 7 summarizes the compar-

isons of different k. One can see that a very small Dense-

Point, i.e., k = 12, can even obtain an impressive accu-

racy of 92.1%. This further verifies the powerfulness of

the densely contextual semantics acquired by DensePoint

on shape identification. Note that a large k is usually un-

necessary for DensePoint, as it will greatly raise the model

complexity but not bring any gains.

Aggregation function ρ. We experiment with three sym-

metric functions, i.e., sum, average pooling and max pool-

ing, whose results are 91.0%, 91.3% and 93.2%, respec-

tively. The max pooling performs best, probably because it

can select the biggest feature response to keep the most ex-

pressive representation and remove redundant information.

5245



1024 512 256 128 64

(a)

1 10 50 100

(c) (d)

(b)

Figure 7. (a) Point cloud with different sampling densities. (b)

Results of testing with sparser points. (c) Point cloud with some

points being replaced with random noise (highlighted in red). (d)

Results of testing with noisy points.

Table 8. The comparisons of DensePoint applied in different stages

of the classification network (Fig. 3(a)).

model 1st stage 2nd stage acc. (%)

Ã 90.5

B X 91.8

C X 92.3

D X X 93.2

Network stage to apply DensePoint. To investigate the

impact of contextual semantics at different levels on shape

recognition, we also apply DensePoint with ePConv in dif-

ferent stages of the classification network (Fig. 3(a)). The

results are summarized in Table 8. The baseline (model Ã)

is set as the same as the model A in Table 5 but equipped

with ePConv for a fair comparison. One can see that Dense-

Point applied in the 1st stage (model B) and the 2nd stage

(model C) can both bring a considerable boost, while the

latter performs better. This indicates the higher-level con-

textual semantics in the 2nd stage can result in a more pow-

erful representation for shape recognition. Finally, with

DensePoint in each stage for sufficiently contextual seman-

tic information, the best result of 93.2% can be reached.

Robustness analysis. The robustness of DensePoint on

sampling density and random noise are shown in Fig. 7. For

the former, we use sparser points of 1024, 512, 256, 128 and

64, as the input to a model trained with 1024 points. Ran-

dom input dropout is applied during training, for fair com-

parisons with PointNet [31], PointNet++ [33], SO-Net [23],

PCNN [1] and DGCNN [51]. Fig. 7(b) shows that our

model and PointNet++ perform better in this testing. Nev-

ertheless, our model can obtain higher accuracy than Point-

Net++ at all densities. This indicates the densely contextual

semantics of DensePoint, is much more effective than the

traditional multi-scale information of PointNet++.

For the latter, as in KCNet [38], we replace a certain

number of randomly picked points with uniform noise rang-

ing [-1.0, 1.0] during testing. The comparisons with Point-

Net, PointNet++ and KCNet are shown in Fig. 7(d). Note

Table 9. The comparisons of model complexity (“-”: unknown).

method #params #FLOPs/sample

PointNet [31] 3.50M 440M

PointNet++ [25] 1.48M 1684M

DGCNN [25] 1.84M 2767M

SpecGCN [25] 2.05M 1112M

KCNet [38] 0.90M -

PCNN [25] 8.20M 294M

PointCNN [25] 0.60M 1581M

Ours (k = 24, L = 11) 0.67M 651M

Ours (k = 24, L = 6) 0.53M 148M

that for this testing, our model is trained without any data

augmentations to avoid confusion. As can be seen, our

model is quite robust on random noise, while the others are

vulnerable. This demonstrates the powerfulness of densely

contextual semantics in DensePoint.

Model complexity. The comparisons of model complex-

ity with the state of the arts are summarized in Table 9. As

can be seen, our model is quite competitive and it can be

the most efficient one with the network depth L = 6 (ac-

curacy 92.1%). This shows its great potential for real-time

applications, e.g., scene parsing in autonomous driving.

Discussion of limitations. (1) The density of local point

clouds is not considered, which could lead to less effec-

tiveness in greatly non-uniform distribution; (2) The impor-

tance of each level of context is not evaluated, which could

lead to the difficulty in identifying very alike shapes.

5. Conclusion

In this work, DensePoint, a general architecture to learn

densely contextual representation for efficient point cloud

processing, has been proposed. DensePoint extends regu-

lar grid CNN to irregular point configuration by an efficient

generalized convolution operator. Based on this operator,

DensePoint develops a deep hierarchy and progressively ag-

gregate multi-level and multi-scale semantics from it. As a

consequence, DensePoint can acquire sufficiently contex-

tual information along with rich semantics in an organic

manner, making it highly effective for implicit shape iden-

tification. Extensive experiments on challenging bench-

marks across four tasks, as well as thorough model analysis,

have demonstrated that DensePoint achieves the state of the

arts. In addition, DensePoint shows quite good robustness

against noisy points, which could provide a promising di-

rection for robust point cloud representation learning.

Acknowledgement

The authors wish to thank anonymous reviewers very

much for their valuable comments that greatly improve

this paper. This work is supported by the National Natu-

ral Science Foundation of China under Grants 61573352,

61876180, 91646207 and 61773377, the Young Elite

Scientists Sponsorship Program by CAST under Grant

2018QNRC001 and the Beijing Natural Science Foundation

under Grant L172053.

5246



References

[1] Matan Atzmon, Haggai Maron, and Yaron Lipman. Point

convolutional neural networks by extension operators. In

SIGGRAPH, pages 1–14, 2018. 2, 5, 6, 8

[2] Serge J. Belongie, Jitendra Malik, and Jan Puzicha. Shape

matching and object recognition using shape contexts. IEEE

Trans. Pattern Anal. Mach. Intell., 24(4):509–522, 2002. 2

[3] Yifan Feng, Zizhao Zhang, Xibin Zhao, Rongrong Ji, and

Yue Gao. GVCNN: Group-view convolutional neural net-

works for 3D shape recognition. In CVPR, pages 264–272,

2018. 1, 2, 5

[4] Matheus Gadelha, Rui Wang, and Subhransu Maji. Mul-

tiresolution tree networks for 3D point cloud processing. In

ECCV, pages 105–122, 2018. 1, 2, 5

[5] Paul Guerrero, Yanir Kleiman, Maks Ovsjanikov, and

Niloy J. Mitra. PCPNet: Learning local shape properties

from raw point clouds. Comput. Graph. Forum, 37(2):75–

85, 2018. 2

[6] Haiyun Guo, Jinqiao Wang, Yue Gao, Jianqiang Li, and Han-

qing Lu. Multi-view 3D object retrieval with deep embed-

ding network. IEEE Trans. Image Processing, 25(12):5526–

5537, 2016. 1, 2

[7] Zhizhong Han, Mingyang Shang, Zhenbao Liu, Chi-Man

Vong, Yu-Shen Liu, Matthias Zwicker, Junwei Han, and

C. L. Philip Chen. SeqViews2SeqLabels: Learning 3D

global features via aggregating sequential views by RNN

with attention. IEEE Trans. Image Processing, 28(2):658–

672, 2019. 2, 5

[8] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.

Deep residual learning for image recognition. In CVPR,

pages 770–778, 2016. 4

[9] Xinwei He, Yang Zhou, Zhichao Zhou, Song Bai, and Xiang

Bai. Triplet-Center loss for multi-view 3D object retrieval.

In CVPR, pages 1945–1954, 2018. 5

[10] Pedro Hermosilla, Tobias Ritschel, Pere-Pau Vázquez, Al-

var Vinacua, and Timo Ropinski. Monte carlo convolution

for learning on non-uniformly sampled point clouds. ACM

Trans. Graph., 37(6):235:1–235:12, 2018. 5, 6

[11] Binh-Son Hua, Minh-Khoi Tran, and Sai-Kit Yeung. Point-

wise convolutional neural networks. In CVPR, pages 974–

993, 2018. 5

[12] Gao Huang, Zhuang Liu, Laurens van der Maaten, and Kil-

ian Q. Weinberger. Densely connected convolutional net-

works. In CVPR, pages 2261–2269, 2017. 2, 3, 4

[13] Haibin Huang, Evangelos Kalogerakis, Siddhartha Chaud-

huri, Duygu Ceylan, Vladimir G. Kim, and Ersin Yumer.

Learning local shape descriptors from part correspondences

with multiview convolutional networks. ACM Trans. Graph.,

37(1):6:1–6:14, 2018. 2

[14] Qiangui Huang, Weiyue Wang, and Ulrich Neumann. Recur-

rent slice networks for 3D segmentation of point clouds. In

CVPR, pages 2626–2635, 2018. 6

[15] Yani Ioannou, Duncan P. Robertson, Roberto Cipolla, and

Antonio Criminisi. Deep roots: Improving CNN efficiency

with hierarchical filter groups. In CVPR, pages 5977–5986,

2017. 7

[16] Sergey Ioffe and Christian Szegedy. Batch normalization:

Accelerating deep network training by reducing internal co-

variate shift. In ICML, pages 448–456, 2015. 5

[17] Varun Jampani, Martin Kiefel, and Peter V. Gehler. Learning

sparse high dimensional filters: Image filtering, dense crfs

and bilateral neural networks. In CVPR, pages 4452–4461,

2016. 2

[18] Mingyang Jiang, Yiran Wu, and Cewu Lu. PointSIFT: A

SIFT-like network module for 3D point cloud semantic seg-

mentation. arXiv preprint arXiv:1807.00652, 2018. 1

[19] David Inkyu Kim and Gaurav S. Sukhatme. Semantic la-

beling of 3D point clouds with object affordance for robot

manipulation. In ICRA, pages 5578–5584, 2014. 1

[20] Roman Klokov and Victor S. Lempitsky. Escape from cells:

Deep Kd-Networks for the recognition of 3D point cloud

models. In ICCV, pages 863–872, 2017. 2, 5, 6

[21] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton.

ImageNet classification with deep convolutional neural net-

works. In NeurIPS, pages 1106–1114, 2012. 1, 4

[22] Loic Landrieu and Martin Simonovsky. Large-scale point

cloud semantic segmentation with superpoint graphs. In

CVPR, pages 4558–4567, 2018. 2

[23] Jiaxin Li, Ben M. Chen, and Gim Hee Lee. SO-Net: Self-

organizing network for point cloud analysis. In CVPR, pages

9397–9406, 2018. 5, 6, 8

[24] Ruoyu Li, Sheng Wang, Feiyun Zhu, and Junzhou Huang.

Adaptive graph convolutional neural networks. In AAAI,

pages 3546–3553, 2018. 2

[25] Yangyan Li, Rui Bu, Mingchao Sun, and Baoquan Chen.

PointCNN: Convolution on X-transformed points. In

NeurIPS, pages 828–838, 2018. 5, 8

[26] Yongcheng Liu, Bin Fan, Shiming Xiang, and Chunhong

Pan. Relation-shape convolutional neural network for point

cloud analysis. In CVPR, pages 8895–8904, 2019. 1

[27] Daniel Maturana and Sebastian Scherer. VoxNet: A 3D con-

volutional neural network for real-time object recognition. In

IROS, pages 922–928, 2015. 1, 2

[28] Vinod Nair and Geoffrey E Hinton. Rectified linear units im-

prove restricted boltzmann machines. In ICML, pages 807–

814, 2010. 5

[29] Aude Oliva and Antonio Torralba. The role of context in ob-

ject recognition. Trends in Cognitive Sciences, 11(12):520–

527, 2007. 1

[30] Charles R. Qi, Wei Liu, Chenxia Wu, Hao Su, and

Leonidas J. Guibas. Frustum PointNets for 3D object de-

tection from RGB-D data. In CVPR, pages 918–927, 2018.

1

[31] Charles R. Qi, Hao Su, Kaichun Mo, and Leonidas J. Guibas.

PointNet: Deep learning on point sets for 3D classification

and segmentation. In CVPR, pages 77–85, 2016. 1, 2, 5, 6, 8

[32] Charles Ruizhongtai Qi, Hao Su, Matthias Nießner, Angela

Dai, Mengyuan Yan, and Leonidas J. Guibas. Volumetric

and multi-view CNNs for object classification on 3D data.

In CVPR, pages 5648–5656, 2016. 2

[33] Charles R. Qi, Li Yi, Hao su, and Leonidas J. Guibas. Point-

Net++: Deep hierarchical feature learning on point sets in a

metric space. In NeurIPS, pages 5099–5108, 2017. 1, 2, 3,

4, 5, 6, 8

[34] Siamak Ravanbakhsh, Jeff Schneider, and Barnabas Poczos.

Deep learning with sets and point clouds. In ICLR, pages

1–12, 2017. 1

5247



[35] Gernot Riegler, Ali Osman Ulusoy, and Andreas Geiger.

OctNet: Learning deep 3D representations at high resolu-

tions. In CVPR, pages 6620–6629, 2017. 2

[36] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, San-

jeev Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpa-

thy, Aditya Khosla, Michael S. Bernstein, Alexander C.

Berg, and Fei-Fei Li. ImageNet large scale visual recog-

nition challenge. International Journal of Computer Vision,

115(3):211–252, 2015. 6

[37] Konstantinos Sfikas, Ioannis Pratikakis, and Theoharis Theo-

haris. Ensemble of PANORAMA-based convolutional neu-

ral networks for 3D model classification and retrieval. Com-

puters & Graphics, 71:208–218, 2018. 5, 6

[38] Yiru Shen, Chen Feng, Yaoqing Yang, and Dong Tian. Min-

ing point cloud local structures by kernel correlation and

graph pooling. In CVPR, pages 4548–4557, 2018. 1, 2, 5, 6,

8

[39] Martin Simonovsky and Nikos Komodakis. Dynamic edge-

conditioned filters in convolutional neural networks on

graphs. In CVPR, pages 29–38, 2017. 5

[40] Karen Simonyan and Andrew Zisserman. Very deep convo-

lutional networks for large-scale image recognition. In ICLR,

pages 1–14, 2015. 1

[41] Nitish Srivastava, Geoffrey E Hinton, Alex Krizhevsky, Ilya

Sutskever, and Ruslan Salakhutdinov. Dropout: A simple

way to prevent neural networks from overfitting. Journal of

Machine Learning Research., 15(1):1929–1958, 2014. 5

[42] Hang Su, Varun Jampani, Deqing Sun, Subhransu Maji,

Evangelos Kalogerakis, Ming-Hsuan Yang, and Jan Kautz.

SPLATNet: Sparse lattice networks for point cloud process-

ing. In CVPR, pages 2530–2539, 2018. 2, 6

[43] Hang Su, Subhransu Maji, Evangelos Kalogerakis, and

Erik G. Learned-Miller. Multi-view convolutional neural

networks for 3D shape recognition. In ICCV, pages 945–

953, 2015. 1, 2

[44] Maxim Tatarchenko, Alexey Dosovitskiy, and Thomas Brox.

Octree generating networks: Efficient convolutional archi-

tectures for high-resolution 3D outputs. In ICCV, pages

2107–2115, 2017. 2

[45] Gusi Te, Wei Hu, Amin Zheng, and Zongming Guo.

RGCNN: Regularized graph CNN for point cloud segmen-

tation. In MM, pages 746–754, 2018. 2

[46] Du Tran, Lubomir D. Bourdev, Rob Fergus, Lorenzo Torre-

sani, and Manohar Paluri. Learning spatiotemporal features

with 3D convolutional networks. In ICCV, pages 4489–4497,

2015. 2

[47] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-

reit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser, and Illia

Polosukhin. Attention is all you need. In NeurIPS, pages

6000–6010, 2017. 2

[48] Chu Wang, Babak Samari, and Kaleem Siddiqi. Local spec-

tral graph convolution for point set feature learning. In

ECCV, pages 1–16, 2018. 1, 2, 5

[49] Peng-Shuai Wang, Yang Liu, Yu-Xiao Guo, Chun-Yu Sun,

and Xin Tong. O-CNN: octree-based convolutional neu-

ral networks for 3D shape analysis. ACM Trans. Graph.,

36(4):72:1–72:11, 2017. 2, 5

[50] Peng-Shuai Wang, Chun-Yu Sun, Yang Liu, and Xin Tong.

Adaptive O-CNN: a patch-based deep representation of 3D

shapes. ACM Trans. Graph., 37(6):217:1–217:11, 2018. 2

[51] Yue Wang, Yongbin Sun, Ziwei Liu, Sanjay E. Sarma,

Michael M. Bronstein, and Justin M. Solomon. Dynamic

graph CNN for learning on point clouds. ACM Trans.

Graph., pages 1–13, 2019. 5, 6, 8

[52] Zhirong Wu, Shuran Song, Aditya Khosla, Fisher Yu, Lin-

guang Zhang, Xiaoou Tang, and Jianxiong Xiao. 3D

ShapeNets: A deep representation for volumetric shapes. In

CVPR, pages 1912–1920, 2015. 1, 2, 5, 7

[53] Jin Xie, Guoxian Dai, Fan Zhu, Edward K. Wong, and Yi

Fang. DeepShape: Deep-learned shape descriptor for 3D

shape retrieval. IEEE Trans. Pattern Anal. Mach. Intell.,

39(7):1335–1345, 2017. 2

[54] Saining Xie, Sainan Liu, Zeyu Chen, and Zhuowen Tu. At-

tentional ShapeContextNet for point cloud recognition. In

CVPR, pages 4606–4615, 2018. 2, 5, 6

[55] Yifan Xu, Tianqi Fan, Mingye Xu, Long Zeng, and Yu Qiao.

SpiderCNN: Deep learning on point sets with parameterized

convolutional filters. In ECCV, pages 90–105, 2018. 5, 6

[56] Li Yi, Vladimir G. Kim, Duygu Ceylan, I-Chao Shen,

Mengyan Yan, Hao Su, Cewu Lu, Qixing Huang, Alla Shef-

fer, and Leonidas J. Guibas. A scalable active framework

for region annotation in 3D shape collections. ACM Trans.

Graph., 35(6):210:1–210:12, 2016. 6

[57] Li Yi, Hao Su, Xingwen Guo, and Leonidas J. Guibas. Sync-

SpecCNN: Synchronized spectral CNN for 3D shape seg-

mentation. In CVPR, pages 6584–6592, 2017. 6

[58] Kangxue Yin, Hui Huang, Daniel Cohen-Or, and

Hao (Richard) Zhang. P2P-NET: bidirectional point

displacement net for shape transform. ACM Trans. Graph.,

37(4):152:1–152:13, 2018. 1

[59] Manzil Zaheer, Satwik Kottur, Siamak Ravanbakhsh,

Barnabás Póczos, Ruslan R. Salakhutdinov, and Alexander J.

Smola. Deep sets. In NeurIPS, pages 3394–3404, 2017. 5

[60] Matthew D. Zeiler and Rob Fergus. Visualizing and under-

standing convolutional networks. In ECCV, pages 818–833,

2014. 1, 3

5248


