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Abstract

This paper proposes a differentiable kernel evolution

(DKE) algorithm to find a better layer-operator for the

convolutional neural network. Unlike most of the other

neural architecture searching (NAS) technologies, we con-

sider the searching space in a fundamental scope: ker-

nel space, which encodes the assembly of basic multiply-

accumulate (MAC) operations into a conv-kernel. We first

deduce a strict form of the generalized convolutional oper-

ator by some necessary constraints and construct a con-

tinuous searching space for its extra freedom-of-degree,

namely, the connection of each MAC. Then a novel unsuper-

vised greedy evolution algorithm called gradient agreement

guided searching (GAGS) is proposed to learn the optimal

location for each MAC in the spatially continuous searching

space. We leverage DKE on multiple kinds of tasks such as

object classification, face/object detection, large-scale fine-

grained and recognition, with various kinds of backbone ar-

chitecture. Not to mention the consistent performance gain,

we found the proposed DKE can further act as an auto-

dilated operator, which makes it easy to boost the perfor-

mance of miniaturized neural networks in multiple tasks.

1. Introduction

Recently several works [2, 7, 10, 32] notice that a well-

designed / learnable kernel shape can boost the performance

of a convolutional neural network (CNN) on some spe-

cific tasks without modifying the macroscopical architec-

ture. For a conventional kernel w with shape of k× k× cin
in the discrete spatial space, some of them [7] directly di-

late the pixels of a convolution kernel by 0, increasing the

kernel shape to nk × nk × cin, so that it can hold a larger

receptive field. Some of the others [2, 32] claim that learn-

ing a data-sensitive offset O,O ∈ R
W×H×k×k×2 to w is a

good choice, which enables the network to find an ad-hoc

receptive field based on what it is receipting at each loca-

∗They contributed equally to this work

tion. However [10] holds the point that a fixed and shared

offset O,O ∈ R
2×k×k is good for generalization. Since all

of these works based on different environments and tasks

and thus have different motivations, they may lose gener-

alization in some other tasks. For example, DCNs [2, 32]

mainly focus on object detection tasks, where the context

of the input image varies, so a spatial attention mechanism

is needed and it is natural to predict specific offsets for w

at different locations. However for tasks with fixed input

size and well-aligned input data like face classification and

fine-grain recognition, it is not preferred to introduce extra

uncertainty like data-dependent kernel shape.

To find a generalized direction for the kernel design, this

work does not focus on one specific task but the convolution

operation itself. We first formulate a generalized operator

consisting of MAC operation between the input data and

kernel. The generalized form covers all the related works

mentioned above. After that, without any prejudice, we

construct two necessary constraints over it to maintain the

two appealing properties, namely equivalence to translation

and independence to data. Given the constraints, the final

form will be degenerated to a generalized convolution oper-

ator, with the freedom of MAC location in each kernel and

each channel k. We will refer to the locations of MACs as

a set Vk, which consists of ”valid coordinate” y in a ker-

nel. Note that the kernel size at each location is denoted as

k′. Then the main contribution of this work is to propose

a differentiable kernel evolution (DKE) algorithm to search

optimal locations for the k′ × cin MACs in a spatial contin-

uous space.

Searching the continuous coordinate y with discrete in-

put data sources is difficult. In this work, a greedy search-

ing algorithm is constructed. Similar to the other works,

DKE visits the data value at a continuous point by inter-

polation. However, we found the commonly used near-

est and bilinear interpolations naturally harm the search-

ing process. Since the gradient direction of the interpola-

tive function controls the evolution direction during each

searching step (see Sec. 4 for details), it should be in the

same direction to the ad hoc optima in each iteration. Un-
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fortunately, neither nearest nor bilinear naturally holds this

property. This is to say, a new competent interpolative func-

tion is needed.

To achieve that, we construct three basic rules, namely

continuity, monotonicity and gradient agreement, for the

optimal interpolative function. We theoretically demon-

strate their necessary for the greedy search. Then a novel

interpolative kernel is proposed and satisfy the mentioned

constraints. In this way, the stability can be guaranteed.

This work takes significant effort to find a good inter-

polative function. The motivation of that is to theoretically

find a way to embed the greedy searching process into the

backpropagation of the network. This design enables the

whole system to be optimized together without any itera-

tive training, such as some reinforcement learning meth-

ods [33, 34, 30] do. Despite the intricate supporting the-

ories, thorough experiments show the generalization ability

and advancement of DKE. We embed DKE-conv to multi-

ple network structure like AlexNet [14], ResNet [6], Reti-

naNet [18] and FPN [17], and then verify them in mul-

tiple challenging tasks, such as Cifar [13], ImageNet [3],

1-million face recognition [12], face detection [9, 31] and

COCO [19] object detection.

Some insights and interesting points of this paper can be

concluded as follows:

+ We theoretically deduce and demonstrate a most gen-

eralized form of MAC-based operator for the convolu-

tional neural network;

+ A novel differentiable greedy searching algorithm is

proposed based on the designed searching space;

+ We theoretically demonstrate the gradient agreement is

significant for the differentiable searching, and by that

we further deduce a novel interpolation algorithm for

continuous space approximation;

+ The generalized form of the DKE ensures its ability

of generalization. Consistent performance gain can be

provided on most modern tasks with arbitrary back-

bones.

+ Experiments also show that DKE can act as an auto-

dilated operator for shallow neural networks, which

boosts the performance of light-weight model by a sig-

nificant margin.

2. Related Work

2.1. Irregular Kernel

Most targets in tasks like classification, detection and

recognition are structured with various shapes. However,

the conventional convolution only holds a rectangular re-

ceptive field. Several recent works noticed this problem,

and proposed different methods to figure it out. STN [8] is

a good start to learn spatial transformation from data, which

is optimized with SGD in an end-to-end manner. It learns

an affine transformation via backpropagation, which is fur-

ther applied to the feature map, trying to get an invariant

expression of the feature. Such a global transformation is

inefficient and difficult to learn, which cannot be applied to

large scale datasets like ImageNet [3]. Instead, the proposed

DKE embeds a more efficient differentiable transformation

into each convolutional kernel. On the other side, AUC [10]

and DCN [2, 32] tries to learn spatial offsets to model trans-

formation. We will study the essential relationship and dif-

ference over these and our algorithm in Sec. 4.

2.2. Neural Architecture Searching (NAS)

In general, there are mainly three schools for the NAS,

which tries to search for a good CNN architecture auto-

matically. The first is based on reinforcement learning

(RL). [33] is the first to use to search for NN architecture.

Further, [34] proposed a new searching space named NAS-

Net search space. Besides RL-based method, [26] tries

to leverage the evolution algorithm to search neural net-

work architecture more efficiently. In addition, [20] models

NAS in a differentiable way. They add a gate to each op-

eration and the network is optimized via backpropagation

end-to-end. However, even though our work also proposes

a differentiable way for network evolution, it considers the

searching space in a much fundamental kernel scope, and

the searching algorithm of them are quite different.

3. Differentiable Kernel Evolution

Our goal is to find a generalized convolution-like opera-

tion that only contains multiply-accumulate (MAC). This

new operation should still be competent for any CNN

based tasks such as classification and object detection, so

it should obey the equivalence constraint and independent

constraint. To explore how far we can break through the

conventional convolution layer, in Sec. 3.1 we first formu-

late an assembly of MAC operations as Eq. 1, namely gen-

eralized convolution. Then we degenerate it by the two con-

straints. We will show the final form Eq. 9 can be deemed

as a generalized convolution with the additional parameter

set Vk. Then Sec. 3.2 will introduce the details of searching

space and searching algorithm for finding an optimal Vk.

3.1. Generalized Convolution

Formulation Formally, denote the image/feature map coor-

dinate by x,y, t ∈ Z
2, and the pixel values at each coordi-

nate by a function f : Z2 �→ R
K , where K is the number of

input channels. The ideal operator is based on MAC, thus

it follows the form as
∑

f · w where w is the parameter

of the operator, and can also be formulated as a function

w : Z2 �→ R
K . Based on these denotations, a generalized
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MAC operation can be represented as:

[f ∗ w](x) =
∑

yf ,yw∈Z2

K
∑

k=1

fk(yf )w
x
k (yw(x)) + bk. (1)

Note that: 1) for each output location x, we have a set of

kernel {wx} and an offset of kernel coordination yw(x);
2) the value of f and w are equal to zero outside the in-

put feature map and operator valid region, respectively. We

call the non-zero region activated field, donated as a co-

ordinate set Vk for the k-th channel. For example, for

a conventional 3 × 3 convolution kernel with dilation 2,

the wx
k will be zero except at location belongs to Vk ≡

{(−2,−2), (−2, 0), (−2, 2), ..., (2, 2)} for all x and k, and

yw(x) ≡ yf − x. But for deformable convolution [2] the

non-zero area of {wx
k} varies for different x. Then the MAC

is operated between fk and {wx
k}.

Keep these in mind, we now formulate two constraints

on 1:

Constraint 1. (Equivalence constraint) The ideal operator

w should be equivalent to translation.

Conventional convolution layer holds the appealing

property named equivalence to translation, i.e., the result

of translating the input is equivalent to translating the out-

put feature map, which makes it naturally support sliding

window-based tasks such as object detection, segmentation

and key-point detection. Now consider the ideal operation,

let Lt denote the coordinate translation x → x + t on the

feature map, i.e.,

[Ltf ](x) = f(x− t). (2)

[[Ltf ] ∗ w](x) = [Lt[f ∗ w]](x) (3)

For the left item, we have

[[Ltf ] ∗ w](x) =
∑

yf ,yw∈Z2

K
∑

k=1

[Ltf ]k(yf )w
x
k (yw(x))

=
∑

yf ,yw∈Z2

K
∑

k=1

fk(yf − t)wx
k (yw(x))

=
∑

yf ,yw∈Z2

K
∑

k=1

fk(yf )w
x
k (yw(x) + t),

(4)

and for the right item,

[Lt[f ∗ w]](x) =
∑

yf ,yw∈Z2

∑

k

fk(yf )w
x
k (yw(x− t)).

(5)

By aggregation of Eq. 4 and Eq. 5, followed by central nor-

malization for the kernel, we can easily get the final form of

equivalence constraint:

yw(x) = yf − x. (6)

Constraint 2. (Independent constraint) The weight of op-

erator wx
k and its activated field should be independent to

the location of input data x.

While some works like deformable convolution [2] pre-

dicts different activated field Vk of wx
k for different x and

gain considerable improvement for some specific tasks like

object detection, they usually lose generalization in other

tasks especially when the input image is well aligned (see

experiments in Sec. 5.2). Without loss of generality, here

we consider a data-independent kernel:

∀xi,xj , w
xi

k = w
xj

k (7)

Substituting Eq. 6 and Eq. 7 into Eq. 1, we can get the

formulation of the generalized operator that obey the con-

straints above:

[f ∗ w](x) =
∑

y∈Z2

∑

k

fk(y)wk(y − x) + bk. (8)

It can be simplified as follow for comprehensible:

[f ∗ w](x) =
∑

k

∑

y∈Vk

fk(x+ y)wk(y) + bk, (9)

We denote the s = card(Vk) indicates the coordinate num-

ber of w, so w has the shape s×K, which is more flexible

compared with conventional kernel shape sw × sh × K.

Practically Vk act as a filter that selecting a certain set of

locations for input map and kernel to perform the MAC as

shown in Fig. 1, which is equivalent to selecting the con-

nection between the kernel and input. Namely, for each

output location x, we find a set of valid offset y ∈ Vk,

which build up a set of connections {x + y ↔ y} for in-

put fk and kernel weight wk to finish one MAC operation

fk(x+y) ·wk(y)+ .... Obviously an optimal Vk is needed

for a good performance. We will introduce how to search it

in the next section.

3.2. Searching Space Setup

Without loss of generality, we consider y ∈ Vk ⊂ R
2

rather than N
2 and w : R

2 �→ R
K for the sake of the

derivability. A well-designed interpolation (introduced in

Sec. 3.3) will be used to estimate the value of f and w at

non-integer coordinates. At the beginning, Vk is initialized

by Gaussian sampling. Namely, at the beginning, the al-

gorithm samples s locations y1...s ∈ Vk from the standard

Gaussian distribution G(μ, σ). Obviously the conventional
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Figure 1. Illustration of the differentiable kernel evolution. (A) Initialization of DKE. The blue square indicates the input (large) and output

(small) feature map. (B) The searching process in one iteration. Best view in color.

convolution, whose kernel has a fixed shape sw × sh, is a

special case of this design.

During one training iteration, every MAC at offset y

takes a circle searching-receptive-field (SRF) with radius

r, finds the best evolutionary direction ∆y,and update y

to y + lr∆y greedily. However, visiting and evaluating

all continuous locations in SRF are time-consuming. Next,

we will introduce a novel differentiable searching algorithm

named gradient agreement guided searching (GAGS) to re-

duces the searching latency while outperforming most of

the state-of-the-art differentiable searching method.

3.3. Gradient Agreement Guided Searching

We introduce a greedy searching algorithm named gra-

dient agreement guided searching to search the Vk and can

be embedded into the backpropagation by a meticulously

designed interpolation function.

As shown in Fig. 1, each valid offset y ∈ Vk maintains a

local searching area Sy centred on y with searching radius

r in each iteration, namely, ∀sy ∈ Sy, sy ∈ N
2 and ‖sy −

y‖2 <= r. Keeping the consistent meaning of x as above,

x + y ∈ R
2 may not be an integer coordinate, so we need

to interpolate an applicable value for fk(x+ y) in Eq. 9.

fk(x+ y) =
∑

sy∈Sy

G(sy,y)1 ∗ fk(x+ sy) (10)

The interpolation function G return the weights of the sy
that contributes to the continuous location y, which should

strictly obey the following three rules:

Constraint 3. Continuity: G(sy,y) should be differen-

tiable almost everywhere w.r.t. y ∈ R
2.

Constraint 4. Monotonicity: G(sy,y) should be monoton-

ically non-increasing w.r.t. |sy − y|.
Constraint 5. Gradient Agreement: the partial derivative
∂G
∂y

should be C · (sy−y) where C ∈ R
+, i.e.

∂G(sy,y)
∂y

and

(sy − y) should point in the same direction.

1Originally it should be G(x+ sy,x+ y), but this equation leaves x

based on the shift-invariance of the interpolation function: G(x+ sy,x+
y) = G(sy,y).

Note that most common interpolation functions like bi-

linear and nearest neighbor not satisfy these constraints due

to the lack of continuity and gradient agreement, respec-

tively. Details will be shown in Sec. 4.

The continuity and monotonicity rules are nature since

the interpolation space of y should be derivable during

backpropagation, and the closer the reference point is to the

interpolation point, the higher, at least not lower, the coeffi-

cient of the reference point.
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10 -3

Bilinear
Ours

0 0.5 1

0
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Figure 2. Simulated searching paths of y by gradient descent in

the discrete searching space interpolated by different kernels. The

initial coordinate of y is set to [1,0.7] and the optimal location is

[0,0]. Bilinear interpolation leads to an unsteadiness due to the

lack of gradient agreement.

Now we deduce why gradient agreement is necessary

for the greedy searching process:

Proof. Denoting the output of the layer (summation of the

MACs) and the loss function as o and L respectively, then

from Eq. 9 and 10, we have

∂L
∂y

=
∂L
∂o

·
∂
(

∑

k,y,sy
[G(sy,y) ∗ fk(x+ sy)]wk(y) + bk

)

∂y

=
∂L
∂o

·
∑

k

wk(y)
∑

y,sy

fk(x+ sy) ∗
∂G(sy,y)

∂y
.

(11)

In each addend ∂L
∂o

·wk(y)fk(x+sy)∗ ∂G(sy,y)
∂y

, the positive

or negative value of the former scalar ∂L
∂o

· wk(y)fk(x +

1837



sy) implies the MAC (wy⊤
k · fx+sy

k ) at the integer location

x+ sy has positive or negative contribution to the gradient
∂L
∂o

. Given the monotonicity of G and based on the greedy

strategy, the local L can be minimized when ygreed reaches

sy or out of the searching region for positive and negative

cases, respectively. So the greedy ∆y = ygreed − y equals

to:

∆y =

{

sy − y , ∂L
∂o

· wy⊤
k · fx+sy

k � 0

−γ(sy − y), γ ∈ R
+ , else,

(12)

where γ >= r
‖sy−y‖2

− 1. Let ∆y ∝ ∂L
∂y

and together with

Eq. 11 & 12, finally we have

∂G(sy,y)
∂y

= C · (sy − y), C ∈ R
+. (13)

�

Based on the rules above, we construct the family of

negative-exponential function to be the basic form of inter-

polation function:

G(sy,y) =
1

C ∗ exp(−α‖sy − y‖22), (14)

where C is the normalizing constant. It’s partial derivative,

∂G
∂y

= 2αG(sy,y) ∗ (sy − y), (15)

not only hold the three good properties mentioned above,

but has negligible computational workload — 4 multi-

ply–accumulate operations for each point pair compared

with 10+ in bilinear.

Fig. 2 shows the searching path in a simplified simula-

tion, considering one sy occurs in the SRF at location 0

and y is initialized at [1, 0.7], and the scalar part in Eq. 11

is positive. In this case, the optimal solution for y is 0.

Based on the searching space interpolated by the proposed

kernel, the y fast converges to the optimal point due to the

good property of gradient agreement, while for that interpo-

lated by bilinear does not hold the gradient agreement, the

y moves in a curve path and even hangs back when close to

the optima. Detail explanation will be introduced in Sec. 4.

In this way, the valid location y ∈ Vk can be searched

together with the backpropagation.

Since the operator searched by GAGS is data-

independent and location-independent, the Vk is shared over

all spatial coordinates. To adapt the learned kernel in differ-

ent cases, here we add a light weighted self-attention opera-

tor on the generalized convolution. First, an attention score

a will be produced by a simple 1 × 1 convolution for all y

at each coordinate: ax = [gf ](x + y)) ∈ R
k′

. After that,

the attention score will be multiplied in each corresponding

MAC. That is,

[f ∗ w](x) =
∑

k

∑

y∈Vk

axfk(x+ y)wk(y) + bk. (16)

Interpolation Kernel Gradient Field

Bilinear

Negative-exponential family

(a) (b)

Figure 3. Kernel space and gradient field of different interpolation

methods. Note that the green point indicate the reference point sy
and is also the optima of y in this case. The lack of gradient agree-

ment occurs almost everywhere in the bilinear’s gradient field.

3.4. Details and Review

Considering most of the related works experiment on the

kernel with the commonly used shape 3 × 3 × K, based

on the principle of a fair comparison, we set k′ = 9, i.e.

card(Vk) = 9 in all of our experiments. In the aspect of

searching space, the radius of SRF is set to 2 (r = 2),

and the hyper-parameter α is set to 2 for all experiments,

but empirically the convergence and performance are not so

sensitive to α when α ∈ [1e0, 1e1].

Given a network architecture, we first initialize the Vk in

each kernel by sampling y ∼ Gaussian(0, I) i.i.d., then

we train the network on an arbitrary task, and the optimal

value of y will be automatically searched along with the

backpropagation in each iteration.

4. Discussion

Why bilinear is not as efficient and stable as negative-

exponential kernel?

All the works [2, 10, 32] focusing on irregular kernel

consistently adopt the bilinear kernel to interpolate the dis-

crete space. However, we deem it is not good for the greedy

searching process.

To better understand the difference, we visualize the ker-

nel shapes and corresponding gradient fields of bilinear and

negative-exponential function in Fig. 3. It is clear that the

direction of the bilinear gradient field does not point to

the optima on the most coordinates with a significant bias.

This can be easily demonstrated by the derivative of bilinear

GB(sy,y). We only show the situation when yx � sxy and

yy � syy and the other situations are symmetric:

∂GB

∂y
= trans(y − sy)− 1,y � sy (17)
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where trans(·) indicates swapping the x and y coordinates.

Obviously Eq. 17 does not point to the same direction as

sy − y does. Even worse, bilinear space produces a large

biased gradient on the optima y = sy, which leads to un-

stable searching process.

Difference with DCN [2, 32] and ACU [10]

While the motivation of DCN, ACU and the proposed

DKE-conv are different, in a specific point of view, all of

these try to learn a flexible ‘kernel shape’ for a convolution

layer. The difference between these works can be summa-

rized as follows:

+ Scoping: DCN proposes the offset (vector) should

differ in each location (context), but the same offset

is shared over all input and output channels, so the

designed size of offset is (W,H, 1, 1, 3, 3) for (input

width, input height, input channel, output channel, ker-

nel width, kernel height). ACU proposes to learn an

offset shared over pixels and channels, so its shape is

(1, 1, 1, 1, 3, 3). In DKE, we do not design but deduce

the form of offset from some basic constraints, and

demonstrate the offset in the most generalized situation

should be shared over spatial location but may differ

over channels. Namely, the layer learned by DKE has

(1, 1,K, 1, k′) offsets. Sec. 5 shows the superiority of

this design;

+ Modality: DCN actually does not learn the offset di-

rectly, its offset is generated dynamically, i.e. a linear

transform of the local data, similar with STN [8], while

DKE and ACU learns a fixed kernel shape and the off-

set is a part of the network itself;

+ Learning method: Both DCN and ACU interpolate

the coordinate space by bilinear and learn the parame-

ters/offsets by SGD. DKE evolute the kernel shape by

greedy search, which is further embedded in the back-

propagation thanks to the novel design of the new in-

terpolative function.

5. DKE in Hard-core Vision Tasks

In this section, we evaluate the DKE on four challeng-

ing tasks and various network backbones. All compa-

rable experiments share the same hyper-parameter, such

as learning rate, weight decay, momentum, max iteration,

etc., and we show the comparison over various backbones,

DKE+backbones, and some mentioned related works.

5.1. Close-set Classification

Cifar-10 [13], Cifar-100 [13] and ImageNet [3] are the

three most popular object classification datasets, containing

10, 100 and 1000 classes of objects respectively. The Im-

ageNet is much more challenging than the former two and

is usually used to evaluate the performance of a new de-

signed neural network architecture. We follow the standard

protocol that training and evaluating on the official split and

report the top-1 and top-5 error rates.

To evaluate the performance of DKE on shallow and

deep neural network, AlexNet [14] and ResNet [6] are

adapted to be the backbones. All the convolutional layers

in AlexNet are replaced by ACU/DCN/DKE layers. How-

ever, since DCN [2] requires heavy workload when the spa-

tial size of input feature map is large, only the last 12 and 30

convolutional layers are replaced in ResNet-18 and ResNet-

101. The results are shown in Tab. 1. DKE based backbones

outperform baselines consistently and even better than the

ACU [10] and DCN [2], which show the superiority of the

proposed generalized convolution and searching strategy.

5.2. Open-set Fine-grained Recognition

We adopt Megaface [12] as the fine-grained recognition

benchmark in this paper. Megaface is much more challeng-

ing than the classification tasks since the distractive class

number (1 million) is much higher and the classes in the

test set are strictly separated from classes in the training set,

so it is a good way to investigate the robustness of neural

network architecture.

As the most popular setting in the area of face recog-

nition [4, 22, 25, 24], MS-Celeb-1M [5] is selected as our

training data. We follow the same data list, network back-

bones and loss function in ArcFace [4]. The faces are de-

tected and aligned by RSA [23], and the central 110 × 110
pixels are cropped and resized to 112 pixels to be the input.

The results are shown in Tab. 2. Besides the consis-

tent gain of DKE, it is interesting that the performances of

DCN [2] are even weaker than that of the base model. This

is because all the face images are well aligned, but DCN still

predicts different offsets for different faces even though on

the same location, which introduces uncertainty and noise

to the face representation. And a little bit noise on feature

would influence the matching result on this 1 v.s. 1 mil-

lion task. This result demonstrates the generalization and

robustness of DKE.

5.3. Binary-Class Face detection

Face detection is a binary-class detection task. It is chal-

lenging due to the large scale and pose variance in different

cases. We follow all hyper parameter settings in STN [1]

and the pipeline in RSA [23]. Despite the complex head

design in STN, we only adopt the shadow backbone and a

simple detection head with a single anchor to be our base-

line as in [23, 29], denoted as ‘RPN++’. The training data

is the same as RSA [23].

Fig. 4 shows the result on the two famous face detec-

tion benchmarks. Since different algorithms are trained

by different data and backbones, here we list some related
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Model Depth Flops Param. Cifar-X top-1 err. (%) ImageNet top-k err. (%)

Basic Special (GFlops) (M) C10 C100 Top-1 Top-5

AlexNet [14] 8 0 0.78 61.1 22.81 56.30 42.8 20.1

ACU-AlexNet[10] 3 5 0.78 61.1 - - 42.2 20.0

DCN-AlexNet[2] 3 5 0.90 61.4 - - 40.7 19.3

DKE-AlexNet 3 5 0.82 61.2 21.4 53.1 39.1 18.2

ResNet-18 18 0 1.83 11.7 6.8 24.6 30.8 10.9

DKE-ResNet-18 6 12 1.88 11.9 6.5 22.9 27.15 9.1

ResNet-101 101 0 7.9 44.5 5.3 21.7 22.7 6.4

ACU-ResNet-101[10] 71 30 7.9 44.5 - - 21.9 6.1

DCN-ResNet-101[2] 71 30 8.3 46.5 - - 21.6 5.9

DKE-ResNet-101 71 30 8.0 44.6 4.7 19.9 21.1 5.7

Table 1. Accuracy on Cifar and ImageNet under various neural network architectures. We compare DKE-based networks with their

original forms, together with some related works. The ’Basic’ and ’Special’ under the ’Depth’ indicate the number of original and proposed

(ACU/DCN/DKE) layers respectively. All the experiments are conducted under the same environment and hyper-parameter configuration.

The results are the average of three tries with independent sample of random initialization.

Model Depth Top-1 Acc.

Basic Special (%)

R-ResNet-18[4] 18 0 89.4

ACU-R-ResNet-18[10] 6 12 not converge

DCN-R-ResNet-18[2] 6 12 69.5

DKE-ResNet-18 6 12 91.5

R-ResNet-101[4] 101 0 97.8

ACU-R-ResNet-101[10] 71 30 not converge

DCN-R-ResNet-101[2] 71 30 97.5

DKE-R-ResNet-101 71 30 98.0

Table 2. Top-1 accuracy over the 1 vs. 1 million face retrieval

benchmark MegaFace. Note that all faces are strictly aligned.

ACU fails to converge in both settings, while DCN shows a great

level of performance degradation due to the uncertainty it intro-

duces. The result is under the metric of recall ratio at 0.001 false

positive per image.

state-of-the-art methods [15, 11] for reference. This results

demonstrates that DKE still has the great ability of general-

ization and reach state-of-the-art performance.

5.4. Multi-Class Object Detection

Model Backbone mAP[.5:.95] mAP[.5]

Faster-RCNN[27] Res18 28.0 47.3

Faster-RCNN DKE-Res18 29.6 49.3

Faster-RCNN Res50 34.6 55.4

Faster-RCNN DKE-Res50 35.3 55.9

FPN[17] Res50 36.3 58.3

FPN DKE-Res50 36.7 59.0

Table 3. Comparison between DKE and basic model on different

detection frameworks and backbones.

DKE is also evaluated on MS COCO 2017 [19], the
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Figure 4. Ablative study and comparison with related works on

two face detection benchmarks. (a) The precision-recall curve on

FDDB benchmarks. Note that we only compare with similar archi-

tecture and workload. (b) The comparison on MALF between X

and X+DKE, where X denotes different architectures or detection

frameworks.

most commonly used object detection dataset. It contains ∼
120K images of 80 classes. Latest state-of-the-art pipelines

FPN [17] and Faster-RCNN [27] are adopted as the Based

on the standard evaluation procedure, the original training

split and 5,000 miniVal split are used for training and eval-

uation respectively. Tab. 3 shows the comparison results.

Different from the former tasks, DKE slightly improves the

performances on different settings. This may because lim-

ited extra information and capacity of the network can be

achieved by a fixed offset. Nevertheless, the consistent gain

still proves the generalization of DKE. Further exploration

and research can focus on this task.

6. Investigating on Receptive Field

The kernel coordinate y learned by DKE has a high pos-

sibility to fall in a non-integer location, and theoretically,
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Figure 5. Visualization of sampling kernel shapes. Each image

shows 9
3
= 729 kernel shapes in 3 Res-blocks. In the last row,

the most outstanding kernel among the whole input channels (with

highest a) is selected to visualize. Note that for the sake of equal

comparison, {[-1,-1],[-1,0],...,[1,1]} is used to initialize the y.

the receptive field of this situation is larger than that of the

original kernel. Fig. 5 visualizes the receptive field of the

original network, DCN and DKE on one pixel of the last

feature map of a ResNet-18 network. The receptive field of

DKE is indeed larger than the original network.

One may concern the size of the receptive field will in-

fluence the performance. We investigate this by enlarging

the kernel size and dilation size of layers in baseline model.

The same set of layers is modified as DKE. Tab. 4 shows

the comparison results on ImageNet. Increasing the recep-

tive field actually leads to better performance. However, the

performance of DKE is still ahead by a considerable mar-

gin.

Model Modify Top-1 err. Top-5 err.

ResNet-6 original 51.7 26.4

ResNet-6 5× 5 46.6 23.1

ResNet-6 dilation 2 48.3 24.7

ResNet-6 dilation 4 47.9 24.1

ResNet-6 DKE 42.9 20.7

ResNet-18 original 30.8 10.9

ResNet-18 5× 5 29.6 10.4

ResNet-18 dilation 2 30.4 10.7

ResNet-18 dilation 4 30.1 10.5

ResNet-18 dilation 6 30.2 10.5

ResNet-18 DKE 27.15 9.1

Table 4. Receptive field investigation on ImageNet. ‘5× 5’, ‘dila-

toin X’ and ‘DKE’ indicate replacing the same layers from 3 × 3

conv with 5 × 5 conv, 3 × 3 conv with X dilation and DKE,

respectively.

Large anchor

Small anchor

averaged offset

averaged offset

Figure 6. Learned kernel shapes in different branches of a 9-layer

face detection network. Left: offsets averaged over channels.

Right: offsets randomly sampled over channels. Top/bottom:

offsets in the large-anchor/small-anchor branch.

7. Auto-dilated Shallow Network

Recently more and more works [16, 28, 21, 17] are

keen on designing multi-branch detector heads for multi-

scale object detection. Specifically, the convolution oper-

ator of different branches can hold different dilated sizes,

and objects with different scales are distributed to different

branches.

Inspired by Sec. 6, we think it is interesting to see what

if the dilated size of different branches is initialized to 1 and

leave the convolution kernel shape to be evolved by DKE.

We use a 9-layer with theoretical receptive field 78× 78
to be the backbone of a face detector. The detector split

into 2 branches at the 7th layer, and we assign the faces

larger than 128 pixels to be the positive samples of the first

branch by setting large anchor sizes (128
√
2, 256

√
2) for it.

And for the second branch, we assign three small anchors

(16
√
2, 32

√
2, 64

√
2) to it.

Fig. 6 shows that DKE tends to expand kernel shapes

to acquire more receptive field in the large anchor branch,

while slight and irregular offsets are learned in the small

anchor branch.

8. Conclusion and Future Work

This work deduces a generalized form for the convolu-

tion layer, and a novel greedy searching algorithm is pro-

posed to evolve it from random initialization. The searching

algorithm can be embedded into backpropagation thanks to

the theoretical research on the interpolative function. Ex-

periments on multiple backbones and tasks show the ad-

vancement of this work. Future work should be target on

understanding the philosophy behind the learned offset.
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