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Abstract

Despite Convolutional Neural Networks (CNNs) based

methods have been successful in detecting salient objects,

their underlying mechanism that decides the salient intensi-

ty of each image part separately cannot avoid inconsistency

of parts within the same salient object. This would ultimate-

ly result in an incomplete shape of the detected salient ob-

ject. To solve this problem, we dig into part-object relation-

ships and take the unprecedented attempt to employ these

relationships endowed by the Capsule Network (CapsNet)

for salient object detection. The entire salient object detec-

tion system is built directly on a Two-Stream Part-Object

Assignment Network (TSPOANet) consisting of three algo-

rithmic steps. In the first step, the learned deep feature map-

s of the input image are transformed to a group of primary

capsules. In the second step, we feed the primary capsules

into two identical streams, within each of which low-level

capsules (parts) will be assigned to their familiar high-level

capsules (object) via a locally connected routing. In the fi-

nal step, the two streams are integrated in the form of a fully

connected layer, where the relevant parts can be clustered

together to form a complete salient object. Experimental

results demonstrate the superiority of the proposed salient

object detection network over the state-of-the-art methods.

1. Introduction

Salient object detection aims to grab the most attractive

object and segment it out from the backgrounds in an image.

Serving as a preprocessing step, it has been widely applied

for a variety of computer vision applications, including im-

age segmentation [13, 34], image fusion [14], object recog-

nition [36, 41], image and video compression [11, 12, 18],

image retrieval [5, 10], etc.

Traditional salient object detection methods [3,26,27,39,

∗Equally corresponding authors.
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Figure 1. Some problems arose in existing CNNs based salient ob-

ject detection methods. Inconsistent saliency values or even some

“holes” (marked by the red boxes) appear within the salient object.

45] are mostly based on hand-crafted features, which are

trivial for further improvements. The development of Con-

volutional Neural Networks (CNNs) has successfully bro-

ken the limits of hand-crafted features by learning deep fea-

tures and thus substantial improvements have been made in

the last three years [25, 29, 33, 47].

Existing CNNs based salient object detection methods

attempt to learn rich deep features at multiple scales such

as the contrast information of the image parts, which in turn

infer the saliency of each part in the image. However, this

mechanism does not take into account the relationships be-

tween the object parts and the complete salient object, thus

giving rise to several problems. For example, as shown in

Fig. 1, inconsistent saliency values are assigned to differ-

ent parts within the salient object, thus resulting in a non-

uniform segmentation of the salient object. In the worse

scenario, as highlighted by the red boxes in Fig. 1, some

un-prominent parts within the salient object are mistakenly

labeled as non-salient such that a few “holes” appear on the

salient object.

As can be observed from Fig. 2, a salient object is usu-

ally composed of several associated parts. For instance, the

flower in the second row of Fig. 2 consists of two parts

including stamens and petals. In turn, the two parts (sta-

mens and petals) can make up an object (flower), which is

based on the fact that stamens and petals share the familiar

properties of the flower. This reveals that the relationships

do exist between parts and objects. In a full image, based

on the above discussions, those parts familiar to an object

will be clustered together to make a complete object. In-
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spired by these observations, we introduce the property of

part-object relationships for salient object detection in this

paper, which can solve the problem of incomplete segmen-

tation of the salient object.

Object: Person           

   Parts: Head
              Upper body (shirt)
              Legs (trousers)
              Briefcase

Object: Flower           

   Parts: Stamens
              Petals

Object: Traffic sign    

   Parts: Panel
              People
              Bicycle

Images GT Salient Object

Figure 2. Illustrations of the part-object relationships for salient

object detection.

Recently, a new architecture termed as Capsule Network

(CapsNet) [15,16,37] has shown promising results in recog-

nizing digits from images. A capsule is a group of neurons

whose outputs represent different properties of the entity,

such as an object or an object part. In the matrix Cap-

sNet [16], each capsule contains a pose matrix and an ac-

tivation, which characterize the pose attributes and the exis-

tence probability of the capsule, respectively. Each capsule

votes for the pose matrix of one capsule in the layer above

by multiplying its own pose matrix and a trainable view-

point transformation matrix, which takes the agreement be-

tween these capsule vectors into account to form meaning-

ful part-object relationships. In other words, a familiar ob-

ject can be detected by looking for agreement between those

votes for its pose matrix. Owing to this special property,

CapsNet can assign parts to the familiar object based on the

part-object relationships, which makes it become a natural

platform to implement part-object relationships for salient

object detection.

However, using CapsNet for salient object detection does

not seem to be that straightforward due to: 1) each low-level

capsule essentially belongs to a subset but not a full set of

high-level capsules. Allowing each low-level capsule (part)

to vote for all the high-level ones (object) will sometimes

generate noisy assignment, thus giving rise to performance

declines. For example, as shown in Fig. 3, those capsules in

the CapsNet are less distinguishable to identify the salient

object. 2) as we all know, the original CapsNet has a much

heavier computation complexity than CNNs when applied

to small digital images classification. It will become unaf-

fordable if we directly apply CapsNet for large-scale dense

prediction of salient object detection, which is a much more

complicated task, compared to image classification.

To address the above problems, we propose, in this pa-

per, a deep Two-Stream Part-Object Assignment Network

(TSPOANet) to detect the salient object. Specifically, the

proposed model divides those capsules constructed from

the image features into two streams. Within each stream,

taking the part-object relationships into account, low-level

capsules will be assigned to their familiar ones in the lay-

er above based on the part-object relationships. In such

way, the relevant parts will be clustered together to form a

salient object. Therefore, the salient object can be predict-

ed and segmented out from the background. Because the

proposed TSPOANet assigns each capsule to one stream of

high-level capsules but not all the high-level ones, it alle-

viates redundancy and thus the noisy assignment to some

extent.1 As shown in Fig. 3, those capsules of the proposed

TSPOANet, especially ones marked in red, are much more

discriminative when identifying the salient object from the

background. Furthermore, due to much less parameters,

training TSPOANet is easier than training the original Cap-

sNet. As TSPOANet takes the relationships of part-object

into account, the object parts can be naturally linked to its

belonged salient object. This enables to overcome the prob-

lem of incomplete or non-uniform segmentation of the de-

tected salient object, which is still an unsolved problem in

traditional CNNs based methods (see Fig. 2).

Our contributions are summarized as follows:

(1) We incorporate a new property, i.e., part-object rela-

tionships, in salient object detection, which is implemented

by CapsNet. To the best of our knowledge, this is the first

attempt to apply CapsNet for salient object detection.

(2) We propose a deep TSPOANet for salient object de-

tection, which systematically adopts a two-stream strate-

gy to implement the CapsNet. This effectively reduces the

searching space when a low-level capsule votes for the high-

level capsules. Doing so gets the complexity of CapsNet

significantly reduced while diminishing the possibility hav-

ing noisy assignments.

(3) We compare our approach with 9 state-of-the-art

methods on five datasets. The results consistently show the

superiority of our algorithm on various datasets.

2. Related Work

2.1. CNNs Based Salient Object Detection

Traditionally, most of salient object detection method-

s [4, 6, 8, 9, 19, 20, 22, 31, 32, 35, 45, 46, 48] are based on

hand-crafted features. Readers can gain a comprehensive

understanding about these methods from [3]. The develop-

ment of CNNs has achieved substantial improvements for

1In our experiments, we find that non-convergence occurs for the pro-

posed model with 4 and 8 streams, each of which has too few capsules.

However, the model works with 2 streams. This indicates that each stream

has enough familiar high-level capsules corresponding to low-level cap-

sules in the case of 2 streams but not enough in the case of 4 or 8 streams.
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Input GT Stream 1 Stream 2
TSPOANetCapsNet (SSPOANet)

Figure 3. Capsules of the second convolutional capsule layer in TSPOANet and CapsNet (i.e., Single-Stream POANet (SSPOANet)). Due

to high redundancy caused by fully connected voting, those capsules of CapsNet are trivial to identify the salient object. In contrast,

TSPOANet is able to reduce redundancy by locally connected voting to some extent, leading to more discriminative capsules to identify

the salient object from the background.

TSPOANet

Capsules

construction

Salient

Background

Stream 1 POANet

Stream 2 POANet

Image

FLNet

Feature

maps

Part-Object Assignment

GT Saliency map

Figure 4. The architecture of the proposed deep salient object detection network consists of two subnetworks, i.e., FLNet and TSPOANet.

The image is first input to FLNet to learn deep features (as described in the following Fig. 5), which are then fed to TSPOANet. In

TSPOANet, those deep feature maps are first transformed into several capsules. These capsules are divided into two groups, which are

fed to two streams to explore the part-object relationships. During the process of part-object assignment in each stream, each low-level

capsule is assigned to each high-level capsule with a probability that is learned. Based on the part-object relationships, relevant parts will

be assigned to the familiar object. In such way, the salient object will be segmented out from the background, resulting in the saliency map.

saliency detection. Zhao et al. [56] modeled a unified deep

learning framework by jointly taking into account global

context and local context. Li et al. [25] used CNNs to

learn multi-scale deep features for saliency detection. Liu et

al. [29] proposed an end-to-end deep hierarchical saliency

detection framework, which first made a coarse global pre-

diction by learning various global saliency cues, and then

refined the coarse prediction by making up the discarded de-

tailed information via a hierarchical recurrent CNN. Zhang

et al. [53] proposed a multi-level feature aggregation net-

work for salient object detection by integrating multi-level

features into multiple resolutions, which well incorporated

low-level fine details and high-level semantic knowledge.

Liu et al. [30] learned to generate a pixel-level contextu-

al attention, which was formulated by incorporating global

context and local context. Zhang et al. [51] designed a gated

bi-directional message passing module to integrate multi-

level features in the shallow-to-deep and deep-to-shallow

directions, which were complementary and robust for de-

tecting salient objects.

2.2. CapsNet

Hinton et al. [15] introduced the concept of capsule. A

capsule is a group of neurons and represents the instanti-

ation parameters of a specific type of entity, such as pose

(position, size, orientation), deformation, texture, etc. It

was a nice idea, but it did not get much attention until S-

abour et al. [37] implemented a vector CapsNet, in which

the output of a capsule is a vector. The length of the activi-

ty vector represented the existence probability of the entity

while its orientation represented the instantiation parame-

ters. An iterative dynamic routing algorithm was proposed

to assign low-level capsules to their familiar high-level cap-

sules via transformation matrices, which were learned to en-

code the intrinsic spatial relationship between a part and a

whole as well as viewpoint invariant knowledge. There-

fore, the iterative routing process solved the problem of as-

signing parts to familiar objects. One year later, Hinton et

al. [16] consolidated their work by proposing a matrix Cap-

sNet, in which each capsule contained a pose matrix and an

activation probability. The pose matrix and the activation

probability were used to represent the pose characteristic-

s and the existence probability, respectively. A capsule in
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one layer voted for the pose matrix of many different cap-

sules in the layer above by multiplying its own pose ma-

trix and trainable viewpoint-invariant transformation matri-

ces that learned part-whole relationships. A familiar object

could be detected by looking for agreement between votes

for its pose matrix. An iterative Expectation-Maximization

(EM) algorithm was proposed to assign low-level capsules

to high-level capsules or parts to wholes by finding tight

clusters of high-dimensional votes that agreed in a mist of

irrelevant votes.

3. Proposed Salient Object Detection Network

Fig. 4 shows the proposed deep salient object detec-

tion network. The input image is first input into the de-

signed Feature Learning Network (FLNet) to achieve more

primitive features, which are then fed to the proposed Two-

Stream Part-Object Assignment Network (TSPOANet). In

TSPOANet, those deep feature maps are first transformed

to several capsules, which are followed by two streams of

POANet. Within each stream, POANet is designed to as-

sign low-level capsules to familiar ones in the higher layer

based on the part-object relationships, in which way rele-

vant parts will be clustered together to compose a salient

object. Therefore, the salient object can be segmented out

from the background.

3.1. FLNet

FLNet is used to learn deep features for the input image.

The details of this network are displayed in Fig. 5. As ob-

served from Fig. 5, the input image (352× 352× 3) is first

fed into five stacked convolutional layers. To capture more

image context information, we add four dilation convolu-

tional layers [49] at each stage, which have the same convo-

lutional kernel size of 3×3 with different dilation rates (1, 3,

5, and 7). In such way, we can capture rich context informa-

tion under various receptive fields at each stage without in-

creasing the kernel scales. Besides, low-level feature maps

help to capture fine details such as object boundaries, while

high-level feature maps can grab semantic knowledge. To

combine their advantages, these five stages of feature map-

s are integrated together. Specifically, deeper-level feature

maps are integrated with shallower-level ones layer by layer

until the shallowest stage, resulting in the integrated feature

maps (352× 352× 128).

CC: Concate+Conv

DR

Dilation

44ª44ª128

Dilation

88ª88ª128

Dilation

176ª176ª128

Dilation

352ª352ª128

Dilation

22ª22ª128

Conv1

352ª352ª64

Conv2

176ª176ª128

Conv3

88ª88ª256

Conv4

44ª44ª512

Conv5

22ª22ª512

Input

352ª352ª3

CC

44ª44ª128

CC

88ª88ª128

CC

176ª176ª128

DR
CC

352ª352ª128

DR

DR: Deconv+ReLU

Figure 5. The details of FLNet.

3.2. TSPOANet

TSPOANet is designed to explore the part-object rela-

tionships within the input image, which are committed to

segmenting the salient object out from the background. It

consists of three stages, i.e., capsules construction, two-

stream POANet, and capsule classification. The details of

TSPOANet will be illustrated as follows.

Capsules construction The feature maps learned by

FLNet are first transformed into several capsules (16 cap-

sules in this paper), which is implemented by a Primary

Capsule (PrimaryCaps) layer. Each capsule consists of a

pose matrix (4 × 4) and an activation value, which repre-

sent the pose characteristics (such as an object part and an

object) and the existence probability of the entity, respec-

tively. Considering the computational memory, we first use

two Conv+ReLU layers to transform the integrated feature

maps into 88× 88× 16. Details of PrimaryCaps are shown

in Fig. 6.

88

88
16

88

88
16

88

88

25616
16

16 Conv

Reshape

Sigmoid

Reshape

Concatenation

Figure 6. Capsules construction.

Pose matrix construction The 16-channel feature maps

(88× 88× 16) are first transformed to 256-channel feature

maps (88×88×256) via two convolutional layers. The 256-

channel feature maps are then reshaped into 88×88×16×
16, which is the vectorized pose matrices2 of 16 capsules.

Activation construction The 16-channel feature maps

(88 × 88 × 16) are first transformed to 16-channel feature

maps (88 × 88 × 16). The 16-channel feature maps are

reshaped into 88 × 88 × 16 × 1, which is the activation

information of 16 capsules.

Capsules construction The vectorized pose matrices and

activations are concatenated together to construct 16 cap-

sules (88× 88× 16× 17).

Two-stream POANet Those capsules obtained by Pri-

maryCaps are divided into two groups, each of which con-

2Here, the pose matrix of each capsule is lengthened as a vector for

efficient storage. Dimension 3 is the number of capsules.

1235



tains 8 capsules (88× 88× 8× 17). The 8 capsules of each

group are reshaped to 88 × 88 × 136. These two groups

of capsules are fed to two streams to explore the part-object

relationships. This is implemented by two Convolutional

Capsule (ConvCaps1 and ConvCaps2) layers. ConvCaps1

and ConvCaps2 consist of 8 and 4 capsules in each stream,

respectively. Based on the part-object relationships, low-

level capsules (parts) will be assigned to familiar high-level

capsules (object). The architectures of two streams are the

same. We first illustrate one stream of ConvCaps1 as fol-

lows:

Step 1: Enrich the features of capsules. A depth-wise

convolution with the stride of 2 and the channel multiplier

of 9 is performed on the output capsules of PrimaryCaps,

resulting in more rich-feature capsules 44 × 44 × 9 × 136,

which is reshaped into 1936× 72× 17. Therefore, the cor-

responding vectorized pose matrices and activation values

are 1936× 72× [1 : 16] and 1936× 72× [17], respective-

ly, where [·] represents the number of channels along the

corresponding dimension.

Step 2: Compute the votes of low-level capsules for the

adjacent high-level capsules. The vectorized pose matrices

are first transformed to the pose matrices M with the di-

mension of 4 × 4. Let the pose matrix of the capsule i in

layer L be Mi. Between each capsule i in layer L and each

capsule j in layer (L+1) is a 4×4 trainable transformation

matrix Wij . These Wijs are learned discriminatively. The

vote Vij of capsule i in layer L for the capsule j in layer

(L+ 1) is calculated by multiplying the pose matrix Mi of

capsule i and the corresponding transformation matrix Wij ,

i.e.,

Vij = MiWij . (1)

By Eq. (1), the resulting votes are 1936× 72× 8× 16.

Step 3: Assign parts (low-level capsules) to wholes

(high-level capsules). Assigning parts to wholes can be

solved by finding tight clusters of the votes from parts. To

achieve this, an iterative Expectation-Maximization (EM)

algorithm [16] is used to update the probability, with which

a part is assigned to a whole based on the proximity of the

vote coming from that part to the votes coming from oth-

er parts. This routing algorithm derives segmentation based

on the knowledge of familiar shapes, rather than just using

low-level cues such as proximity or agreement in color or

velocity.

Specifically, the votes and the activation values of low-

level capsules are input into the iterative routing algorithm,

which will calculate the means (1936 × 1 × 8 × 16) and

activations (1936 × 8). They are reshaped into vectorized

pose matrices (44×44×8×16) and activation values (44×
44× 8× 1), respectively, which are then concatenated to be

the high-level capsules (44×44×8×17). Finally, the output

is achieved by reshaping the capsules into 44×44×44×136,

which is fed into ConvCaps2 within the same stream.

ConvCaps2 has the similar architecture with ConvCaps1

except two points. One difference is that the stride of the

depth-wise convolution is 1 in ConvCaps2 instead of 2 in

ConvCaps1. Another difference is that ConvCaps2 reshapes

the calculated means and activations by the iterative routing

algorithm into 1936 × 8 × 16 and 1936 × 8 × 1 in each

stream, respectively.

Capsule classification Those more whole capsules ob-

tained by the two-stream POANet are finally classified to

be salient or background, which is implemented by a Class

Capsule (ClassCaps) layer. The architecture of ClassCap-

s is similar to Step 2 and Step 3 in ConvCaps1. Through

the ClassCaps layer, the capsules of two streams will be as-

signed to two types of capsules corresponding to the salient

object and background, in which way some relevant part-

s will be clustered together to form a salient object. The

output of ClassCaps is 44×44×2. After that, three decon-

volutional layers are used to transform the detection result

into 352× 352× 2 that is the same as the resolution of the

input image, generating the final saliency map.

3.3. Loss Function

We adopt the cross-entropy loss function used in [51] to

train the proposed salient object detection network, i.e.,

CE (v) = −
1

N

N
∑

i=1

∑

c∈{0,1}

(y(vi) = c) (log (ŷ(vi) = c)),

(2)

where vi represents the location of pixel i. y(vi) and ŷ(vi)
represent saliency values of the pixel i in the ground truth

and the predicted saliency map, respectively.

3.4. Insight into TSPOANet

Salient property of part-object relationships The

property of part-object relationships for salient object de-

tection is derived from the idea that two low-level capsules

will be clustered together to compose a whole if they share

familiar properties. In other words, two capsules i and k

will be clustered to make the capsule j in the layer above, if

MiWij ≈ MkWkj . (3)

To give a basic and clear insight for the property of

part-object relationships employed in salient object detec-

tion, we visualize the intermediate layers of a real exam-

ple (as shown in Fig. 7) based on a Single-Stream POANet

(SSPOANet), which is a baseline network by directly adopt-

ing the traditional CapsNet after FLNet. Two observations

from Fig. 7 are: 1) Capsule 4 and capsule 7 in the Pri-

maryCaps layer indeed capture two parts, i.e., pedestrians

and panel, while capsule 6 in the higher ConvCaps1 layer

clearly depicts the whole object; 2) Capsule 4 and capsule 7

vote for capsule 6 by the EM routing algorithm via M4W46
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and M7W76, where W is a learnable transformation matrix

between two capsule layers. W explicitly encodes the rela-

tionships between parts and objects. Through voting, cap-

sule 4 and capsule 7 capturing parts make up a higher cap-

sule 6 representing a complete object, i.e., road sign. This

way ensures that a complete salient object can be detected

in the capsule classification stage, which brings universally

high foreground saliency values. In summary, the natural

capability of POANet in modeling part-object relationships

can address the object part missing problem existing in the

CNNs based saliency detectors.

PrimaryCaps

ConvCaps1

Capsule 4

(Panel)

Capsule 7

(Pedestrians)

Capsule 6

(Road sign)

M4 and M7 are the pose matri ces of 

c a ps u l e  4  a nd  c a ps u l e  7  i n  t he 

PrimaryCaps layer, respectively.

W46 and W76 are learnable viewpoint-

invar iant transformation mat ri ces, 

whic h can capture the relationships 

between lower capsules and higher 

ones.

M4W46  and  M7W76  are  the vote s of 

lower  capsule 4 and capsule 7 for the 

higher capsule 6, respectively.

4 46 7 76
M W M W»

46
W

76
W

Figure 7. Illustrations for the part-object relationships. Capsule 4

(panel) and capsule 7 (pedestrians) make up capsule 6 (a whole ob-

ject) in the higher ConvCaps1 layer based on their approximately

equal votes to the higher capsule 6.

Comparison to CapsNet The differences between our

proposed framework and the original CapsNet lie in two

folds. Firstly, CapsNet that votes each lower capsule to all

higher capsules has a heavy computational complexity. D-

ifferently, we apply the two-stream strategy to assign each

lower capsule to one stream of higher capsules but not al-

l capsules at the higher layer, which reduces the required

computation to some extent. The parameters of the pro-

posed two-stream strategy are 4 times fewer than those of

the corresponding two convolutional capsule (ConvCaps1

and ConvCaps2) layers in CapsNet. Secondly, differen-

t from using only a Conv+ReLU layer for feature extraction

in the original CapsNet, we utilize FLNet to learn better fea-

tures for TSPOANet. This will improve the performance by

a large margin, which is verified in the experiment part.

Comparison to group convolution The major differ-

ence between our proposed TSPOANet and group convo-

lution [23, 43, 55] lies in that group convolution performs

the convolution operation between low and high groups to

achieve more discriminative feature maps, while our pro-

posed TSPOANet performs the vote routing between low

and high groups of capsules to explore the part-object rela-

tionships.

4. Experiment and Analysis

In this section, numerous experiments and analyses are

conducted to verify the effectiveness and superiorities of our

proposed deep salient object detection network.

4.1. Benchmark Datasets

We evaluate the performance of our model on five bench-

mark datasets, details of which are described as follows.

ECSSD [44] contains 1000 images collected from the

Internet. These images are with complicated structures.

DUT-OMRON [45] has 5168 images with different sizes

and complex structures. The backgrounds are very compli-

cated to stand out the salient objects. HKU-IS [25] consists

of 4447 images with multiple disconnected objects. It is di-

vided into 3000 training images and 1447 test images. We

evaluate our methods and other state-of-the-arts on the test

datasets. DUTS [40] contains 10533 training images and

5019 test images. The images in this dataset are with dif-

ferent scenes and various sizes. We use the test dataset to

evaluate our model and the compared methods. PASCAL-

S [28] includes 850 images describing various scenes.

4.2. Evaluation Criteria

We evaluate the performance of our model as well as

other state-of-the-art methods from both visual and quanti-

tative perspectives. The quantitative metrics include Preci-

sion Recall (PR) curve, average F-measure and Mean Ab-

solute Error (MAE). Given a continuous saliency map S,

a binary mask B is achieved by thresholding. Precision is

defined as Pr ecision = |B ∩G|/|B|, and recall is defined

as Recall = |B ∩G|/|G|, where G is the corresponding

ground truth. The PR curve is plotted under different thresh-

olds. The F-measure is an overall performance indicator,

which is computed by

Fβ =

(

1 + β2
)

Pr ecision× Recall

β2 Pr ecision+Recall
. (4)

As suggested in [2], β2 = 0.3.

MAE is defined as

MAE =
1

W ×H

W
∑

i=1

H
∑

j=1

|S (i, j)−G (i, j)|, (5)

where W and H are the width and height of the image, re-

spectively.

4.3. Implementation Details

The proposed model is implemented in Tensorflow [1].

To avoid over-fitting caused by training from scratch, the

five stacked convolutional layers in FLNet are initialized

by the Conv1 2, Conv2 2, Conv3 3, Conv4 3, and Con-

v5 3 of the pretrained VGG16 [38], respectively. The other

weights are initialized randomly with a truncated normal

(σ = 0.01), and the biases are initialized to 0. The Adam

optimizer [21] is used to train our model with an initial

learning rate of 106, β1 = 0.9, and β2 = 0.999. The train-

ing dataset of DUTS [7] is chosen as the training dataset

with horizontal flipping as the data augmentation technique.
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ECSSD [44] HKU-IS [25] PASCAL-S [28] DUTS [40] DUT-OMRON [45]

Figure 8. PR curves of different methods.

SC SO MO TB SimO ComS

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

(i)

Figure 9. Visual comparisons of some good methods. (a) Image; (b) GT; (c) TSPOANet; (d) BMP [51]; (e) LFR [52]; (f) Amulet [53]; (g)

UCF [54]; (h) DLS [17]; (i) ELE [42].

4.4. Performance comparison

In this section, we compare our method with 9 state-of-

the-art methods, including BMP [51], LFR [52], AMC [50],

Amulet [53], UCF [54], DLS [17], ELE [42], ELD [24], and

MDF [25]. Visual and quantitative comparisons are both

taken into account to make fair comparisons.

Quantitative Comparisons Fig. 8 shows PR curves

of different methods. Table 1 lists the average F-measure

values and MAE values of different methods. It is obvi-

ous from Fig. 8 that the proposed method achieves bet-

ter PR curves than most of the compared state-of-the-art

methods. Besides, it can be easily seen from Table 1 that

our method performs best with respect to the F-measure

metric. In terms of MAE metric, the proposed model a-

gain performs the best on PASCAL-S [28], DUTS [40], and

DUT-OMRON [45], and is the second best on ECSSD [44]

and HKU-IS [25]. These quantitative comparisons evident-

ly verify the superiority of our proposed model.

Visual Comparisons Fig. 9 shows some visual com-

parisons of different methods in various cases, including

Simple Case (SC), Small Object (SO), Multiple Objects

(MO), Touching Boundary (TB), Similar between Object

and backgrounds (SimO), and Complicated Scene (ComS).

For the case of SC, most of the mentioned methods get good

detection results in general. For the case of SO, most of the

compared methods fail to detect the needle-like salient ob-

ject and wrongly mark backgrounds as salient, while our

method is able to accurately locate the needle-like object

and well suppress the background. For the case of MO, our

method can detect all the salient objects whereas the other

methods mostly miss one object or introduce some back-

ground noise. For the case of TB, the state-of-the-art meth-

ods introduce a lot of background noise, while the proposed

network can accurately stand out the whole salient object.

For the case of SimO, the compared methods mostly label

some backgrounds as salient, while our method is able to

accurately distinguish the salient object from the confusing

background. For the case of ComS, most state-of-the-art

methods are unable to identify the salient object, as opposed

to it, our method can still stand out the salient object from

complicated backgrounds.

To sum up, compared with the state-of-the-arts, the pro-

posed TSPOANet can accurately locate the salient object in
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Table 1. Average F-measure values and MAE values of different methods. Top three methods are marked by red, blue, and magenta,

respectively. “-” means that the corresponding authors do not provide the detection results of the dataset.

ECSSD [44] HKU-IS [25] PASCAL-S [28] DUTS [40] DUT-OMRON [45]

Fβ MAE Fβ MAE Fβ MAE Fβ MAE Fβ MAE

Ours 0.8873 0.0515 0.8795 0.0391 0.8253 0.0749 0.7993 0.0482 0.7030 0.0628

BMP [51] 0.8682 0.0447 0.8707 0.0389 0.7845 0.0753 0.7505 0.0490 0.6917 0.0635

LFR [52] 0.8799 0.0525 0.8752 0.0396 0.8059 0.1066 0.7064 0.0834 0.6656 0.1030

AMC [50] 0.6516 0.2090 0.7603 0.2160 0.7065 0.1946 0.6374 0.2489 0.5775 0.2693

Amulet [53] 0.8683 0.0589 0.8428 0.0501 0.7956 0.0997 0.6816 0.0846 0.6472 0.0976

UCF [54] 0.8439 0.0691 0.8235 0.0612 0.7675 0.1155 0.6351 0.1119 0.6206 0.1203

DLS [17] 0.8219 0.0860 0.8080 0.0696 0.7344 0.1301 - - 0.6453 0.0895

ELE [42] 0.7545 0.1201 0.7053 0.1118 0.6705 0.1614 0.5786 0.1272 0.5752 0.1215

ELD [24] 0.8169 0.0790 - - 0.7413 0.1211 - - 0.6141 0.0910

MDF [25] 0.8068 0.1050 0.7844 0.1292 0.7113 0.1420 - - 0.6443 0.0916

various cases, and segment out the salient object with good

wholeness and uniformity.

4.5. Ablation Analysis

TSPOANet To explore the effectiveness of TSPOANet,

we compare the entire framework with a baseline, which

is implemented by removing TSPOANet from the entire

framework. Table 2 and Fig. 10 show the quantitative and

visual comparisons, respectively. It can be easily seen from

Table 2 that TSPOANet improves the performance to a clear

margin. From the left two columns of Fig. 10, it is obvious

that TSPOANet helps to grab much better uniformity and

wholeness for the salient object. The improvements lie in

the part-object relationships provided by TSPOANet.

(a)

(b)

(c)

(d)

(c):  +TSPOANet

(d):  -TSPOANet

(c):  +FLNet

(d):  -FLNet

(c):  TSPOANet

(d):  SSPOANet

Figure 10. Visual comparisons for ablation analyses. (a) Image;

(b) GT.

Table 2. Performance evaluations for the ablation analyses on EC-

SSD [44].

Fβ MAE

+TSPOANet 0.8816 0.0521

-TSPOANet 0.8250 0.0694

TSPOANet 0.8816 0.0521

SSPOANet 0.8706 0.0644

+FLNet 0.8706 0.0644

-FLNet 0.6545 0.1504

Two-stream strategy We explore the superiority of the

two-stream strategy by comparing the proposed TSPOANet

and a baseline, i.e., Single-Stream POANet (SSPOANet),

which is implemented by directly adopting the original Cap-

sNet following FLNet. As shown in Table 2, the proposed

TSPOANet achieves better performance than SSPOANet.

Besides, as illustrated in the middle two columns of Fig. 10,

the proposed TSPOANet can detect the whole salient objec-

t, while SSPOANet misses some salient parts. The superior-

ity of TSPOANet may be attributed to the two-stream strat-

egy, which alleviates some noisy part-object assignments.

FLNet To explore the validity of FLNet, we compare

SSPOANet that learns features through FLNet with its mod-

ified version, which learns features of the input image

through a Conv+ReLU layer used by the original CapsNet.

It can be easily observed from Table. 2 that FLNet promotes

the performance significantly. From the right two columns

of Fig. 10, it is obvious that FLNet makes the framework

possess the ability of identifying the salient object wholly,

which is attributed to the rich features learned by FLNet.

5. Conclusions

In this paper, we have proposed a new salient proper-

ty of part-object relationships provided by the CapsNet for

salient object detection. To achieve this, we have present-

ed a deep Two-Stream Part-Object Assignment Network (T-

SPOANet). The proposed model requires less computation

budgets while obtaining better wholeness and uniformity of

the segmented salient object.
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