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Abstract

Recently there has been significant progress in image
captioning with the help of deep learning. However, cap-
tions generated by current state-of-the-art models are still
far from satisfactory, despite high scores in terms of conven-
tional metrics such as BLEU and CIDEr. Human-written
captions are diverse, informative and precise, but machine-
generated captions seem to be simple, vague and dull. In
this paper, aimed at improving diversity and descriptiveness
characteristics of generated image captions, we propose a
model utilizing visual paraphrases (different sentences de-
scribing the same image) in captioning datasets. We ex-
plore different strategies to select useful visual paraphrase
pairs for training by designing a variety of scoring func-
tions. Our model consists of two decoding stages, where a
preliminary caption is generated in the first stage and then
paraphrased into a more diverse and descriptive caption in
the second stage. Extensive experiments are conducted on
the benchmark MS COCO dataset, with automatic evalu-
ation and human evaluation results verifying the effective-
ness of our model.

1. Introduction

Image captioning is a task aiming to describe images
with natural languages. There have been remarkable devel-
opments in rent years with the emergence of deep learning
methods [ 18, 38, 47]. However, captions generated by cur-
rent methods still require improvement.

Figure 1 shows a case where the imperfection of
machine-generated captions can be easily identified. We in-
sist that a good caption which resembles a human-written
caption should have several properties. (1) Fluency: The
caption should be a fluent sentence. (2) Relevance: The
caption should correctly describe the visual content and be
closely relevant to the image. (3) Diversity: Language is a
rich, colorful and varied system. Good captions contain di-
verse wordings and rich expressions. (4) Descriptiveness:

Machine-generated Caption:

a man standing next to a white car

Human-written Captions:

Caption 1: a white compact car parked on a sandy dirt road

Caption 2: a car being driven onto two white flat things

Caption 3: a man getting in a sport utility vehicle with surf boards

on the roof

Caption 4: man standing in open door of car on a desert road

Caption 5: a man gets back into his car in the desert
Figure 1. A machine-generated caption by a state-of-the-art
attention-based image captioning model [34] and five human-
written captions from MS COCO dataset [24].

A good caption describes an image by referring to the im-
portant, specific, and detailed aspects of the image, which
is precise, informative and descriptive [28]. As is shown
in Figure I, the machine-generated caption is a fluent and
correct description of the image. However, it is very sim-
ple and vague. Computers prefer “safe” output sentences
with very high-frequency expressions [22], and they tend to
describe only the obvious facts, ignoring key details. On
the contrary, humans prefer writing captions with more di-
versity by using more varied wordings (like sandy dirt road
and standing in open door, etc.) and with more descriptive-
ness by describing more important details (like in the desert
and with surfboards, etc.).

Paraphrases are sentences or phrases that convey approx-
imately the same meaning in different expressions [4]. In
the task of image captioning, different people may describe
the same image from different perspectives. Even they fo-
cus on the same scene in an image, their expressions can
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hardly be identical. For example, five human-written cap-
tions in Figure 1 differ from each other significantly. Differ-
ent sentences describing the same image can be considered
as a set of paraphrases, which is called visual paraphrases.

In this paper, we would like to generate diverse and
descriptive image captions by taking advantages of visual
paraphrases from captioning datasets. An image is usually
annotated with a set of visual paraphrases consists of d dif-
ferent captions. Typical methods simply ignore the rela-
tionship between these paraphrases and regard them as d
independent samples. We explore the relationship between
them and select several visual paraphrase pairs (C;, C})
with a specific scoring function (see Section 3.1 and 3.3) for
training. Concerning that writing a diverse, descriptive cap-
tion directly is challenging, we propose a captioning model
with two-stage decoding which first generates a preliminary
caption (less diverse and descriptive) given the visual input,
and then paraphrases it into a more diverse and descriptive
caption using these visual paraphrase pairs. Our model not
only learns from visual-semantic information but also uti-
lizes textual relationships from different wordings of visual
paraphrases.

Our major contributions are summarized as follows:

e We explore the role of visual paraphrases for image
caption generation. And we investigate different scor-
ing functions for selecting useful visual paraphrase
pairs from captioning training data.

e We propose a captioning model which fuses visual and
textual information with two-step decoding by firstly
generating a preliminary caption and then paraphras-
ing it into a more diverse and descriptive caption.

e Results in terms of a variety of automatic metrics
and human evaluation demonstrate that our model can
generate more diverse and descriptive captions while
maintaining fluency and relevance.

2. Related Work

Image Captioning Text generation from images [38,

, 26, 20] is a problem at the intersection of computer vi-
sion and natural language processing. Image captioning,
aimed at generating natural language descriptions for im-
ages, usually consists of a CNN as an image encoder and
an RNN as a decoder to generate sentences [38, 10, 18, 48].
Attention mechanism [47, 27, 30, 2], explicit attributes de-
tection [12, 52, 44, 50], reinforcement learning (RL) meth-
ods [32, 34], and visual relations detection [49] are pro-
posed for improvement.

Diverse and Discriminative Captioning Some work
pays attention to the diversity or distinctness of image cap-
tions, with goals similar to ours. Dai et al. [7] adopt con-
ditional generative adversarial networks (GAN) to produce
diverse and natural captions. Some other work addresses

distinctiveness or discriminability, which is closely related
to the descriptiveness we refer to, by emphasizing the dis-
tinctive aspects of an image that distinguishes it from other
images. Introspective speaker (IS) model [35], as a mod-
ification of beam search, generates discriminative image
captions using a distractor image. Dai et al. [8] adopts a
contrastive loss to push the probabilities of captions to be
higher for matched images and lower for mismatched im-
ages than the reference model. Luo et al. [28] add an extra
discriminability reward to a CIDEr reward for policy gradi-
ent for generating discriminative captions. Some prior work
[7, 9, 39, 42, 37, 40] focus on improving the diversity of
captions. However, when it comes to diversity, they refer to
generating multiple mutually diverse captions for each im-
age with methods like beam search, while we refer to pro-
ducing a single caption with diverse and rich expressions
rather than simple and common wordings. The interpre-
tation of diversity in some other works for text generation
[22, 46, 53] are similar to ours.

Paraphrases Paraphrases are alternative ways of ex-
pressing the same meaning using different wordings [4].
Our work is inspired by some work addressing paraphrases
associated with other modalities and paraphrase generation
task. Chu et al. [0] propose a clustering method to ex-
tract phrasal expressions describing the same visual concept
(called visually grounded paraphrases) from image cap-
tions. Chen et al. [5] build an image captioning dataset
with visually-situated paraphrase pairs by crowd-sourcing
and retrieval-based methods. Lin et al. [25] address the task
called visual paraphrasing as verifying if the two textual de-
scriptions describe the same image by visual imagination.
As for paraphrase generation, the mainstream approach is
attention-based sequence-to-sequence model [3, 31]. Some
improvements such as the use of reinforcement learning
[23] and variational autoencoders [14] are proposed. Cap-
tion pairs in COCO dataset are utilized to constitute a para-
phrase corpora in their experiments. However, they ran-
domly choose caption pairs without addressing different
characteristics of captions and utilizing visual information.

Two-stage Text Generation A problem of the cur-
rent encoder-decoder framework for text generation is when
generating words, only the previously generated words can
be utilized, ignoring future words [45]. So methods with
two-stage decoding are proposed. In deliberation network
[45] for machine translation, two decoders are utilized, with
the first decoder generating a sequence and the second de-
coder for refining. Stack-Cap [13] consists of one coarse de-
coder and a sequence of fine decoders for image captioning.
Their intermediate outputs from the first decoder are ran-
domly sampled but not well-defined during training. With-
out clear targets for training the first RNN decoder, they are
prone to accumulate errors thus very hard to train. On the
contrary, our model uses two different sentences from the
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training set to train the two-step decoders, which is easy
to optimize. Preview network [54] uses a pipeline with
two stages of decoding using two visual encoders and two
language decoders. Sentences in their two-stage decoding
are identical during training, which is different from ours.
Skeleton Key [41] first generates skeleton sentences and at-
tributes, and then rewrites them to full sentences. POS [9]
is a VAE-based network using part-of-speech as a language
prior. These methods define an intermediate sequence for
caption generation. In this paper, sentences generated in
two steps are both complete and correct captions with dif-
ferent properties.

3. Our Method

In this section, we discuss our method in details. Our
model relies on selecting visual paraphrase pairs (Section
3.1) from image captioning datasets using a variety of scor-
ing functions (Section 3.3). Then these visual paraphrase
pairs are utilized to train our captioning model with two
stages of decoding (Section 3.2), as is shown in Figure 2.

@ textual attention
@ visual attention
@ merge

~
encoder
<
&

visual features

LSTM,

Figure 2. Framework of our model.

3.1. Visual Paraphrase Pairs Selection

An image captioning dataset D is composed of N im-
ages and M captions. Each image I has d annotated cap-
tions C = {C4, ..., Cq}. These d captions constitute a set of
visual paraphrases corresponding to image /. Each pair
of captions is a visual paraphrase pair corresponding to I.
We select a portion of visual paraphrase pairs P:

P = {(CZ,CJ)‘S(CZ,CJ) > €,

1
Vci,CjGC,CZ‘#Cj} M

where S(C;, C;) is a scoring function measuring the differ-
ence within visual paraphrase pairs on a specific character-
istic (e.g. diversity), and € is a threshold.

In this way, d captions for an image are reorganized into
a series of selected visual paraphrase pairs (C;, C;) € P.
In our experiments, C} is more “complex” than C; from the
point of a scoring function, so the number of different se-
lected paraphrase pairs is at most (g) These selected visual
paraphrase pairs are utilized for training. The scoring func-

tions used for selection are elaborated in Section 3.3.

3.2. Caption Generation

During training, our image captioning model learns to
first produce a “simpler” (less diverse and descriptive) cap-
tion C; and then rewrites the caption considering the image
content I to get a more “complex” (more diverse and de-
scriptive) caption C; that may better describe the image.
As is shown in Figure 2, our model adopts a two-stage de-
coding process and it is composed of two parts: a standard
attention-based captioning module for generating a prelim-
inary caption and a visual paraphrase generation module
with multimodal fusion for paraphrasing the preliminary
caption into a final caption.

The image [ is first encoded by an image encoder to get
a set of spatial visual features V = {vy, Vs, ..., v|y|} where
each feature represents a sub-region of the image. Then we
use a first LSTM decoder LSTM; to generate the prelim-
inary caption C; = {x{"}/%"| by paying attention to the
visual input. We adopt Att2in [34] model in our experi-
ments. It is an effective modification of the vanilla LSTM

[16] with attention mechanism [3, 47].
h, = LSTM, (xf), hy ., c§1>) )
VI
cgl) = Z apvy 3)
n=1
n exp(a(hi—1,vn))

¢ “)

Sy expa(hy—1,vin)
a(hy_q,v,) =ul tanh(Wph, 1 + W,v,,)  (5)

where cgl) is the context vector of the input of LSTM;

representing the weighted sum of spatial image features
v, € V, with hidden state h; as query. u,, W} and
W, are model parameters. For brevity, we use cgl) =
Attn(h,_,,V) to denote the the context vector obtained
from the attention on ) using h;_; as the query via Equa-
tions 3, 4 and 5.

After the preliminary caption C; has been generated,
the hidden states of LSTM; and original image features
V are fed to another decoder LSTM5. The hidden states
of LSTM; H = {hy,hy,...,h|¢, } consist of the infor-
mation of the preliminary sentence C;. We aggregate the
textual information of sentence C; from these hidden states
and visual information of image regions from Vy, for rewrit-
ing to C};. Different from textual paraphrase generation, vi-
sual paraphrase generation requires information from two
modalities to rephrase the sentence. The textual informa-
tion from the first sentence C; and the attentive visual infor-
mation are merged when generating each word.

We adopt attention mechanism to get contextual infor-
mation from visual content for the rephrased caption C):

ét = U’UAttﬂ (Stfl, V) (6)
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where s; is the hidden state of the second decoder LSTMS.
And the contextual information from textual content is
calculated by the attention on H with s; as a query:

& = U Attn (s,_1,H) (7)

Note that the two original context vectors Attn (s;,))
and Attn (s;, H) obtained from attention mechanisms are
mapped by linear layers U, and U, respectively to get the
transformed context vectors ¢; and ¢; in a shared multi-
modal embedding space, because features in H and V repre-
sent different modalities thus are in different feature spaces.

To fuse the information of two modalities, we use a
merging gate g for the fusion of multimodal features.

g =0 (WaC + Wee; + Wis;_1) ®)
=g os+(1-g)og )

where o denotes sigmoid function, and © indicates
element-wise vector multiplication. W, W; and W are
model parameters. When generating the paraphrased sen-
tence C; = {xgj )}'tifl‘, LSTM, pays attention to differ-
ent sub-regions of images by visual attention and different
words of sentence C; by textual attention for generating the
next word. The information fusion of two modalities is con-
trolled by the merging state for adaptively determining dif-
ferent weights for the two-sides. The probability distribu-
tion of the next generated word :i"gi) 1 1s calculated through
a softmax activation function on the output of LSTM,.

5= LSTM; (2,51, cf?)) (10)
igﬂr)l ~ Softmax (W,s;) (11)

3.3. Scoring Functions

We employ a variety of scoring strategies to select a se-
ries of paraphrase pairs in P (Equation 1). Scoring func-
tions define the extent of specific characteristics (e.g. di-
versity) of paraphrase pairs. Sentences in visual paraphrase
pairs differ from each other.

3.3.1 Sentence Length

If a sentence is longer, it is more likely to provide informa-
tive descriptions or use diverse expressions. We define the
scoring function Sien(C;, C;) = length(C;) — length(C;).
We set € > 0 in Equation 1, so caption C} is longer than C;
in the selected visual paraphrase pair.

3.3.2 Syntactic Complexity

If a sentence contains more complex syntactic structure,
it may contain more modifiers to give a detailed descrip-
tion. Diverse and rich wording may also increase the syn-
tactic complexity of sentences. Yngve score [51] which

measures the number of branches in a sentence’s syntac-
tic tree is adopted as the measure of syntactic complexity.
The Yngve scoring function is defined as Syngve (Cs, Cj) =
Yngve(C;) — Yngve(C;). We set € > 0 in Equation 1, so C;
is generally more syntactically complex than C;.

3.3.3 TF-IDF Diversity

We design to score a sentence C' using the sum of TF-IDF
scores of n-grams. TF-IDF reflects the importance of an
n-gram. N-grams with lower frequency in the training cor-
pus have higher IDFs. TF-IDF Diversity (Tdiv) metric and
scoring function are defined as:

N Zn—grameC TF-IDF(n-gram)

Tdiv(C) = Z v (12)
n=1 "
STdiv<Ci> Cj) = leV(Cj) - leV(CZ) (13)

where V,, = &> cp > n-gramec TF-IDF(n-gram) is the
normalization term for the n-th gram and M is the number
of captions in D. When calculating the document frequency
of TF-IDF scores, each caption is considered as a document.
We refer equation 12 to 7div metric in our experiments. We
choose N' = 3 so unigrams, bigrams, and trigrams of cap-
tions are used for calculation. Tdiv metric denotes the ex-
tent of diverse expressions of a sentence. A sentence has
a low Tdiv score when it contains mostly commonly-used
words and phrases, and vice versa. In a visual paraphrase
pair (C;, C;) chosen by Tdiv scoring function (¢ > 0), C;
generally has richer expressions than C;.

3.3.4 Image Retrieval Rank

Previous works [8, 28] focus on the distinctness or discrim-
inability aspect of caption by image retrieval, aiming to re-
trieve the original image given its corresponding caption. It
is based on a visual-semantic retrieval system. We adopt a
similar network architecture as Luo et al. [28]. An image [
and its corresponding caption C' € C are encoded by a CNN
and an LSTM respectively to get corresponding feature vec-
tors. The feature vectors are mapped into the same embed-
ding space to get the image embedding f (/) and caption
embedding g(C). The similarity of I and C'is computed by
the cosine similarity of the embeddings:

. fI)Tg(C)
I,C)= = 14
O = e (1
A bi-directional ranking loss is defined as follows:
L. :Z Z max(0, 8 —sim(/,C) + sim(I,C 7))
I c-
—1—2 Z max(0, 8 — sim(I,C) +sim(I~,C)) (15)
c I-
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where 3 € R serves as a margin parameter. Every (I, C')
is a ground truth image-caption pair in training data, C'~
denotes an unpaired caption for image /, and vice-versa for
I7. So the retrieval system can retrieve relevant images
given captions as queries, and vice versa.

Given the caption C as the query, we use the pretrained
retrieval system on COCO training set to rank a large num-
ber of images in the training set including the original image
1. Ideally, a correct, detailed caption with high distinctness
can be used to retrieve the corresponding image as the best
matching. So retrieval performances can be used to reflect
how correct and descriptive a caption is. rank(I|C') is the
rank of the corresponding image I using C' as query. A
larger value of rank(I|C) denotes that the description is ei-
ther incorrect or not detailed enough so the retrieval system
cannot find the correct image I given the query C. We de-
fine the image retrieval (IR) scoring function as

rank(I|C;)

Siw(Ci, Cy) = rank(I|C}) (16)
Captions in a caption pair (C};, C;) selected by S and
Equation 1 (¢ > 1) are both human-annotated captions so
they are correct captions. But caption C; may provide more
detailed and informative descriptions of the image than C;.
The image retrieval ranks reflect relevance and descrip-
tiveness aspects of captions. Human-written captions are
usually relevant and informative. Moreover, the retrieval
system is trained on the same training set, so captions will
have small retrieval ranks. But some human-written cap-
tions which do not describe the highly distinct parts may
also be correct captions for describing another image in the
training set. Therefore, they will have a larger rank com-
pared to other captions when we use the huge numbers of

images in the training set as retrieval candidates.

3.4. Training and Inference

Our model can be trained jointly by minimizing the neg-
ative log-likelihood of generating C; and C;:

-y %

I1eD (C;,Ci)eP

—log p(Cy|I) —log p(C;|C;, T) (17)

As captions for the first and the second decoding stages are
available during training, we use standard teacher forcing
[43] strategy for training RNNs by feeding the words of
ground-truth captions as the inputs.

During testing, we adopt the beam search strategy. When
the candidate captions in the first stage are completely de-
coded by beam search, the candidate caption with the high-
est probability is selected as the preliminary caption. The
hidden states corresponding to it are collected for the tex-
tual attention of the second-stage decoding. Then another
beam search is applied to decode the polished final caption.

4. Experiments
4.1. Dataset

We conduct experiments on the Microsoft COCO dataset
[24]. Tt has 123,287 images with five different human-
annotated captions per image'. We adopt the standard
“Karpathy split” [18], with 5,000 images for validation,
5,000 images for testing and the rest for training.

4.2. Experimental Details

For our image captioning model, we utilize bottom-up
spatial features [2] extracted by Faster R-CNN [33] in con-
junction with Resnet-101 [15] trained by object and at-
tribute annotations from Visual Genome Dataset [21]. We
set the word embedding size and LSTM hidden size to 512.
The vocabulary size is 9,488. During training, Adam [19]
with a learning rate of 5 x 10~ is utilized for optimization.
The batch size is set to be 16 and the beam size is 3. The
maximum sentence length is 16. Retrieval ranks for Equa-
tion 16 are calculated using 20,000 candidate images in the
COCO training set.

4.3. Evaluation Metrics

We consider a variety of evaluation metrics aiming for
better evaluation of caption quality from different per-
spectives. We employ widely-adopted conventional met-
rics, including BLEU-4 [29], CIDEr [36], and SPICE [1].
These metrics compare generated sentences with refer-
ences so they mainly focus on the relevance aspect of cap-
tions. BLEU and CIDEr are n-gram based metrics while
SPICE measures how effectively captions recover objects,
attributes and the relations between them, which is proved
to have more correlation with human judgments [1].

However, these conventional metrics are not perfect es-
pecially insufficient to evaluate diversity and descriptive-
ness, which are also crucial aspects for high-quality image
descriptions. Particularly, metrics like BLEU and CIDEr
are primary to n-gram overlap so a sentence with very
common n-grams but lacking diversity and descriptiveness,
which is shown to have negative correlation with human
judgments on the detailedness of captions [1].

Therefore, we also report some other statistics and met-
rics reflecting some important aspects of captions. These
metrics are mostly ignored in prior works. In addition to
average length (length), Yngve scores (Yngve) and Tdiv
(Equation 12) defined in Section 3.3, we report Dist-2, Dist-
3, and Dist-S [46] results. They are respectively the number
of distinct bigrams, trigrams, and sentences in the gener-
ated captions. Higher Dist scores indicate more diverse ex-
pressions of captions so Dist metrics are measurements of
sentence diversity. The descriptiveness of captions is vague

I'There are very few (327) images with 6 or 7 annotated captions.
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and difficult to evaluate. We follow prior work [28, 8] with
a self-retrieval strategy. We try to retrieve the original im-
age given the generated captions as queries. Retrieval per-
formances are measured by R@K (K=1, 5, 10), i.e., recall
at K 2. To prevent overfitting to the retrieval model dur-
ing training with image retrieval scoring function, we use
pretrained VSE++ [1 1] for self-retrieval evaluation, which
is a strong visual-semantic retrieval model utilizing dif-
ferent network architectures and image features (finetuned
ResNet-152 [15]). Better self-retrieval performance indi-
cates that the model generates relevant, informative, and de-
scriptive captions.

We also conduct human evaluations on Amazon Me-
chanical Turk with 20 volunteers. We compared methods
on 100 images randomly sampled from test set. Each cap-
tion is rated by 4 different people. Volunteers rate captions
from the 1-5 scale (higher is better) with respect to four
criteria: fluency, relevance, diversity, and descriptiveness.
Definitions are shown in the Supplementary Material.

4.4. Baseline Approaches

We adopt a variety of baseline methods, including:

Attention [34]: Attention based captioning model
(Att2in) using bottom-up image features from Faster R-
CNN (ResNet-101). Our model is based on it.

GAN [7]: Conditional generative adversarial network
for diverse and natural image captioning.

IS [35]: Introspective Speaker method for discriminative
image captioning.

CL [8]: Contrastive learning method focusing on the dis-
tinctness aspect of captions.

We use baseline methods of Attention, GAN and IS with
the same image features and attention-based architecture
as ours for fair comparisons. While CL [8] also utilizes a
strong adaptive attention [27] as base model with a fine-
tuned ResNet-152 [15] encoder.

We also report results using reinforcement learning with
CIDEr as an optimization objective, including:

CIDEr-RL [34]: Self-critical sequence training with
CIDEr rewards.

DiscCap [28]: Self-critical training with a mixed objec-
tive of CIDEr and discriminative objective rewards (model
ATTN+CIDER+DISC-1 in their paper).

Stack-Cap [13]: A coarse-to-fine strategy using two-
step decoders with CIDEr optimization.

4.5. Automatic Evaluation Results

Table 1 shows the automatic evaluation results. To fur-
ther see the properties of human-written captions, we also
report metrics’ scores of captions in MS COCO test set in
the table. BLEU/CIDEr/SPICE scores of human-written

2The fraction of generated captions where the correct image is retrieved
in the closest K points to the query caption in the shared embedding space.

captions are calculated following previous work * [7]. Com-
pared to Attention baseline, humans have higher metrics’
scores except for BLEU and CIDEtr. It further demonstrates
that humans write more diverse and informative captions
than machines. But there are not many overlapping n-grams
among these human-written visual paraphrases.

We first compare our models with Attention baseline to
evaluate different influences of the choice of scoring func-
tions. Ours (len) notably improves diversity and descrip-
tiveness of captions, with increases in Tdiv, Dist and re-
trieval performances (R@K). But it generates excessively
long sentences which heavily damages overall quality, with
huge drops in BLEU and CIDEr. Ours (Yngve) only
slightly improves diversity and descriptiveness of captions.
Compared to these two models with simple scoring func-
tions, Ours (IR) and Ours (Tdiv) show much better per-
formances. Ours (IR) significantly improves retrieval per-
formances, with slight gains in conventional metrics SPICE,
BLEU, and CIDEr. Ours (Tdiv) shows better results in di-
versity and retrieval performances than other scoring func-
tions. With no surprise, scores of n-gram based metrics like
BLEU and CIDEr drop while diversity increases. Further-
more, we observe an obvious improvement in SPICE met-
ric. Higher SPICE scores demonstrate that Ours (Tdiv)
correctly describes objects, attributes, and their relations.
Comparisons suggest that sentence length and syntactic
complexity (Yngve scores) may not be accurate indicators
of diversity and descriptiveness of captions. We observe
that retrieval performances of Ours (Tdiv) are even better
than that of Ours (IR) which utilizes a retrieval model ex-
plicitly. It may be due to the difference of retrieval models
utilized for training and evaluation *.

Then we compare Ours (Tdiv) and Ours (IR) with other
MLE baselines which focus on similar goals to ours. GAN
is prominent in generating highly diverse captions, but it has
negative effects on the correctness of captions, with much
lower scores in SPICE, BLEU and CIDEr, and not much
boost in retrieval performances. Human evaluation results
in Section 4.6 further demonstrate that. By comparison,
Ours (Tdiv) achieves comparable results in diversity (7div
and Dist scores) and outperforms GAN in retrieval perfor-
mances and conventional metrics such as SPICE. IS and
CL focus on generating discriminative captions which are
mainly evaluated by retrieval performances. They achieve
high results in R@K, but have lower conventional metrics’

3For each image, one sentence are randomly sampled from the an-
notations as the candidate and the others as the references. We notice
that in this method we only have 4 references, so we further calculate
BLEU/CIDE:/SPICE of models by randomly selecting 4 annotated cap-
tions out of 5 as references. BLEU and CIDEr results show a similar trend.
Some results: Attention 30.7/108.5/21.1; Ours (Tdiv, 0.1) 27.8/104.8/22.2;
Ours (Tdiv, 0.3) 24.1/86.7/22.3; Ours (IR, 2) 30.6/108.7/21.5.

4We find Ours (IR, 2) has higher R@K than Ours (Tdiv, 0.1) and Ours
(Tdiv, 0.3) evaluated with the retrieval model of the same architecture as
that used for training.
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length Yngve Tdiv Dist-2 Dist-3 Dist-S R@1 R@5 R@10 BLEU4 CIDEr SPICE
Attention (Base) 9.1 12.5 1.78 2511 4972 3228 192 478 61.5 35.0 109.8 19.9
GAN 10.6 15.1 238 4418 9321 4365 214 488 62.4 23.1 86.0 18.7
IS 9.4 13.4 2.04 4772 9016 4248 248 549 68.8 31.9 101.8 19.7
CL 9.3 12.7 1.86 3103 6130 3499 241 525 67.5 33.6 106.5 19.7
CIDEr-RL 9.4 12.8 1.79 1843 3694 2909 194 470 61.3 36.0 115.5 20.9
DiscCap 9.3 12.3 1.74 1743 3512 3093 21.6 503 65.4 36.1 114.2 21.0
Stack-Cap 9.4 12.7 1.74 1930 3999 3268 219 497 63.7 36.1 1204 20.9
Ours (len, 0) 154 28.7 3.10 3916 8683 4565 262 56.5 70.8 24.6 69.7 21.0
Ours (Yngve, 0) 10.6 17.7 212 2904 5895 3634  22.6 5038 65.6 323 106.4 20.8
Ours (IR, 2) 9.3 13.0 1.88 3439 6726 3884 253 555 69.1 35.0 109.8 20.3
Ours (Tdiv, 0.1) 10.8 16.3 226 3873 7810 4196 250 555 69.7 31.5 105.4 21.0
Ours (Tdiv, 0.3) 12.9 21.7 2778 4790 10053 4576 263 57.2 70.8 27.1 86.9 21.1
Human 10.5 15.9 290 15381 25309 4992 303 594 72.4 19.4 85.8 21.3

Table 1. Automatic evaluation results on COCO test set. The words and numbers in parenthesis denote the choices of scoring function and
€, respectively. (e.g. (IR, 2) denotes using image retrieval (IR) scoring function and e=2). R@K, BLEU-4, CIDEr and SPICE values are

reported as the percentage.

scores. Ours (IR, 2) not only outperforms IS and CL in
R@K, but also shows advantages in conventional metrics.

With no surprise, captions generated by reinforcement
learning (RL) based methods (CIDEr-RL, DiscCap and
Stack-Cap) achieve high BLEU and CIDEr scores, as they
directly use CIDEr as an optimization objective. However,
they have even lower Dist scores than Attention baseline,
indicating CIDEr optimization hurts the diversity of cap-
tions. Furthermore, retrieval performances of these methods
only improve a bit, which are still much lower than ours.
The results are consistent with prior work finding n-gram-
based metrics like BLEU and CIDEr correlate negatively
with detailedness [ 1] and diversity [40] of image captions.

In summary, automatic evaluation results demonstrate
that our models with IR and Tdiv scoring functions effec-
tively generate diverse and descriptive captions. Ours (IR)
has advantages in retrieval performances, and comparable
BLEU and CIDEr scores with MLE baselines. Ours (Tdiv)
is prominent in producing diverse and descriptive captions
according to 7div, Dist, and R@K scores, while maintain-
ing correctness reflected by higher SPICE and R@XK scores,
despite fewer overlapping n-grams with references.

4.6. Human Evaluation Results

Table 2 shows the results of human evaluation of our
models and several baseline methods. Attention and Stack-
Cap are baseline methods with MLE and RL training re-
spectively. Other baselines focus on similar objectives with
ours in diversity or descriptiveness of captions. Compared
to Attention and Stack-Cap, our three models perform sig-
nificantly better in Diversity and Descriptiveness, while ba-
sically maintaining Fluency. IS and GAN damage Fluency
and Relevance while obtaining gains in Diversity and De-
scriptiveness. CL slightly increases scores of Diversity and

Relevance Fluency Diversity Descriptiveness

Attention 3.48 3.88 2.90 2.88
Stack-Cap 3.47 3.97 2.91 2.89
IS 3.41 3.65 3.16° 3.11

GAN 3.32 3.58 3.51° 3.19"
CL 3.43 3.92 3.06" 2.98
DiscCap 3.67 3.95 2.87 2.97
Ours (IR, 2) 3.647 3.93 3.15 3.147
Ours (Tdiv, 0.1)  3.79" 3.87 3.54" 3.44™
Ours (Tdiv, 0.3)  3.69" 381 4.06™ 3.94™

Table 2. Human evaluation results. * and ** indicate that a model
has a statistically significantly higher score than Attention baseline
and all baselines, respectively (t-test with p < 0.05).

Tdiv Dist-3 R@1 BLEU CIDEr SPICE

w/o first 2.15 6957 24.1 31.0 1026 20.0
pretrain w/o first 2.17 6985 23.6 30.9 1029 20.3
Ours (Tdiv, 0.1) 2.26 7810 25.0 31.5 1054 21.0

Table 3. Results validating the effectiveness of the two-step pro-
cess.

Descriptiveness. DiscCap improves the Relevance score
which is comparable to ours, but only has little gain in
Descriptiveness. Compared to these related baselines, our
models achieve satisfactory performances in all four met-
rics. In particular, Ours (Tdiv) achieves better results than
all baselines in Relevance, Diversity and Descriptiveness.
The results are also in consistency with their higher scores
in automatic metrics like SPICE, Tdiv, Dist, and R@K. Flu-
ency scores are slightly lower as sentences are longer and
much more diverse.
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Tdiv Dist-3 R@1 BLEU CIDEr SPICE
Attention 1.78 4972 192 350 1098 199
First Decoding 1.72 4468 19.6 354 110.7 199
Second Decoding 2.26 7810 25.0 31.5 1054 21.0

Table 4. Comparison of first-step output (First Decoding) and final
output (Second Decoding (Tdiv, € = 0.1).

4.7. Model Analysis

Effects of parameter ¢: Hyperparameter e controls how
much difference C; and C; in a selected paraphrase pair
(C;, C;) have in terms of the scoring function. It also in-
fluences the number of paraphrase pairs in P. Automatic
results in Table 1 show that increasing e with Tdiv scoring
function will lead to higher diversity and descriptiveness but
lower BLEU and CIDEr scores, as the gap between C; and
C; in diversity is increasing. There is a trade-off between
diversity and n-gram accuracy. Changing hyper-parameter
€ is a way to controls the trade-off. Higher € encourages
diversity (with higher Dist/R@K), resulting in less n-gram
overlaps (lower BLEU/CIDEr). Apart from high scores in
R@K and Dist, Ours(Tdiv) is consistent in SPICE with
the change of e. Table 2 indicates that Ours (Tdiv, 0.3)
achieves much higher scores than Ours (Tdiv, 0.1) in Di-
versity and Descriptiveness, with a bit lower scores in Rel-
evance and Fluency.

Effectiveness of Two-Step Decoding Process: Con-
cerning that directly generating a more diverse and descrip-
tive caption while maintaining the correctness is difficult,
our model adopts a two-step decoding strategy. We eval-
uate the effectiveness of the two-step process by experi-
ments shown in Table 3. We take Ours (Tdiv, 0.1) as
an example and compare it to two baselines which only
utilize one-step decoding. The baseline (w/o first) only
uses the selected second-stage caption C; in selected pair
(Cy, C;) with higher Tdiv scores for training, so it utilizes
the same data distribution as the training of LSTM; in our
model. Another baseline (pretrain, w/o first) first pretrains
the attention-based captioning models on the full training
set and then only uses the second-stage captions with higher
Tdiv scores for fine-tuning. Experimental results in Table
3 show that baseline models generate less diverse and de-
scriptive sentences with lower Tdiv, Dist-3 and R@ ] scores
than our model. Furthermore, without the two-step process,
the correctness of captions is also affected, resulting in all
lower scores in conventional metrics and R@ /.

Comparison of Outputs of Two Decoding Steps: Ta-
ble 4 compares the results of the first-step output (First De-
coding) and the final output (Second Decoding) from our
two-stage decoding model (Tdiv, ¢ = 0.1). Preliminary
captions generated by the first stage is “simpler” than the
outputs of attention baseline and final outputs, with lower
Tdiv and Dist-3 scores. But BLEU and CIDEr scores of

the first output are higher. Meanwhile, our final output sen-
tences are much more diversified and achieve a much higher
SPICE score.

Attention: a person riding a motorcycle on
aroad

Ours (IR): a person on a motorcycle in a
race

B Ours (Tdiv): aman riding a motorcycle
down a road next to a pile of hay

Human: a person on a motorcycle riding

¥ beside hay bales

Attention: a black and white photo of
an airplane

Ours (IR): an airplane sitting on a
runway with people on the ground

Ours (Tdiv): a black and white photo of
an airplane parked at an airport with
people standing around

Human: an airplane with people under
the wings at a field

Figure 3. Examples of captions generated by different models and
a human-written caption from COCO test set.

4.8. Examples

Figure 3 shows example images with captions generated
by Attention baseline model, Ours (IR, 2) and Ours (Tdiv,
0.3). Caption elements in different colors indicate differ-
ent detailed descriptions of images. Our model describes
images with more diverse expressions using phrases like
parked at an airport and more detailed descriptions refer-
ring to important parts like a pile of hay. Captions gener-
ated by attention baseline are correct but lacking diversity
and descriptiveness. More examples can be found in the
supplementary material.

5. Conclusions

In this study, we focus on improving the diversity and
descriptiveness of image captions by proposing a caption-
ing model exploring the role of visual paraphrases, together
with a variety of scoring functions for selecting useful para-
phrase pairs. Our model firstly generates a preliminary
caption and then paraphrases it into a polished caption.
Our model can generate better captions with diversity and
descriptiveness compared to some state-of-the-art models
while maintaining correctness. We will explore better scor-
ing functions and network architectures in the future.

Acknowledgment

This work was supported by National Natural Science
Foundation of China (61772036) and Key Laboratory of
Science, Technology and Standard in Press Industry (Key
Laboratory of Intelligent Press Media Technology). We ap-
preciate Pengcheng Yang and the anonymous reviewers for
their helpful comments. Xiaojun Wan is the corresponding
author.

4247



References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

(10]

(1]

[12]

[13]

Peter Anderson, Basura Fernando, Mark Johnson, and
Stephen Gould. SPICE: Semantic propositional image cap-
tion evaluation. In European Conference on Computer Vi-
sion. Springer, 2016. 5,7

Peter Anderson, Xiaodong He, Chris Buehler, Damien
Teney, Mark Johnson, Stephen Gould, and Lei Zhang.
Bottom-up and top-down attention for image captioning and
visual question answering. In IEEE International Confer-
ence on Computer Vision, 2018. 2, 5

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio.
Neural machine translation by jointly learning to align and
translate. In International Conference on Learning Repre-
sentations, 2014. 2, 3

Rahul Bhagat and Eduard Hovy. What is a paraphrase? Com-
putational Linguistics, 39(3):463-472,2013. 1,2

Jianfu Chen, Polina Kuznetsova, David Warren, and Yejin
Choi. Déja image-captions: A corpus of expressive descrip-
tions in repetition. In Proceedings of the 2015 Conference of
the North American Chapter of the Association for Compu-
tational Linguistics: Human Language Technologies, pages
504-514, 2015. 2

Chenhui Chu, Mayu Otani, and Yuta Nakashima. iParaphras-
ing: Extracting visually grounded paraphrases via an image.
In International Conference on Computational Linguistics,
2018. 2

Bo Dai, Sanja Fidler, Raquel Urtasun, and Dahua Lin. To-
wards diverse and natural image descriptions via a condi-
tional GAN. In IEEE International Conference on Computer
Vision, 2017. 2, 6

Bo Dai and Dahua Lin. Contrastive learning for image cap-
tioning. In Advances in Neural Information Processing Sys-
tems, pages 898-907, 2017. 2,4, 6

Aditya Deshpande, Jyoti Aneja, Liwei Wang, Alexander G.
Schwing, and David A. Forsyth. Diverse and control-
lable image captioning with part-of-speech guidance. arXiv
preprint arXiv:1805.12589, abs/1805.12589, 2018. 2, 3

Jeff Donahue, Lisa Anne Hendricks, Marcus Rohrbach, Sub-
hashini Venugopalan, Sergio Guadarrama, Kate Saenko, and
Trevor Darrell. Long-term recurrent convolutional networks
for visual recognition and description. In IEEE Conference
on Computer Vision and Pattern Recognition, 2015. 2
Fartash Faghri, David J Fleet, Jamie Ryan Kiros, and Sanja
Fidler. Vse++: Improving visual-semantic embeddings with
hard negatives. In Proceedings of the British Machine Vision
Conference (BMVC), 2018. 6

Hao Fang, Saurabh Gupta, Forrest Iandola, Rupesh K. Sri-
vastava, Li Deng, Piotr Dolldr, Jianfeng Gao, Xiaodong He,
Margaret Mitchell, John C. Platt, C. Lawrence Zitnick, and
Geoffrey Zweig. From captions to visual concepts and back.
In IEEE Conference on Computer Vision and Pattern Recog-
nition, 2015. 2

Jiuxiang Gu, Jianfei Cai, Gang Wang, and Tsuhan Chen.
Stack-captioning: Coarse-to-fine learning for image caption-
ing. In Thirty-Second AAAI Conference on Artificial Intelli-
gence, 2018. 2,6

(14]

(15]

(16]

(17]

(18]

[19]

(20]

(21]

[22]

(23]

(24]

(25]

[26]

[27]

4248

Ankush Gupta, Arvind Agarwal, Prawaan Singh, and Piyush
Rai. A deep generative framework for paraphrase generation.
In Thirty-Second AAAI Conference on Artificial Intelligence,
2018. 2

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In /IEEE Inter-
national Conference on Computer Vision, 2016. 5, 6

Sepp Hochreiter and Jiirgen Schmidhuber. Long short-term
memory. Neural computation, 9(8), 1997. 3

Ting-Hao Kenneth Huang, Francis Ferraro, Nasrin
Mostafazadeh, Ishan Misra, Aishwarya Agrawal, Jacob
Devlin, Ross Girshick, Xiaodong He, Pushmeet Kohli,
Dhruv Batra, et al. Visual storytelling. In Proceedings
of the 2016 Conference of the North American Chapter
of the Association for Computational Linguistics: Human
Language Technologies, pages 1233-1239, 2016. 2

Andrej Karpathy and Li Fei-Fei. Deep Visual-Semantic
Alignments for Generating Image Descriptions. In IEEE In-
ternational Conference on Computer Vision, 2015. 1,2, 5
Diederik P Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. International Conference on Learn-
ing Representations, 2015. 5

Jonathan Krause, Justin Johnson, Ranjay Krishna, and Li
Fei-Fei. A hierarchical approach for generating descriptive
image paragraphs. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages 317—
325,2017. 2

Ranjay Krishna, Yuke Zhu, Oliver Groth, Justin Johnson,
Kenji Hata, Joshua Kravitz, Stephanie Chen, Yannis Kalan-
tidis, Li-Jia Li, David A Shamma, et al. Visual genome:
Connecting language and vision using crowdsourced dense
image annotations. International Journal of Computer Vi-
sion, 123(1):32-73,2017. 5

Jiwei Li, Michel Galley, Chris Brockett, Jianfeng Gao,
and Bill Dolan. A diversity-promoting objective func-
tion for neural conversation models. arXiv preprint
arXiv:1510.03055, 2015. 1,2

Zichao Li, Xin Jiang, Lifeng Shang, and Hang Li. Paraphrase
generation with deep reinforcement learning. arXiv preprint
arXiv:1711.00279,2017. 2

Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays,
Pietro Perona, Deva Ramanan, Piotr Dollar, and C Lawrence
Zitnick. Microsoft COCO: Common objects in context. In
European Conference on Computer Vision. Springer, 2014.
L,5

Xiao Lin and Devi Parikh. Don’t just listen, use your imag-
ination: Leveraging visual common sense for non-visual
tasks. In IEEE Conference on Computer Vision and Pattern
Recognition, 2015. 2

Lixin Liu, Xiaojun Wan, and Zongming Guo. Images2poem:
Generating chinese poetry from image streams. In 2018
ACM Multimedia Conference, pages 1967-1975. ACM,
2018. 2

Jiasen Lu, Caiming Xiong, Devi Parikh, and Richard Socher.
Knowing when to look: Adaptive attention via a visual sen-
tinel for image captioning. In I[EEE Conference on Computer
Vision and Pattern Recognition, 2017. 2, 6



(28]

(29]

(30]

(31]

(32]

(33]

[34]

(35]

(36]

[37]

(38]

(39]

[40]

[41]

Ruotian Luo, Brian Price, Scott Cohen, and Gregory
Shakhnarovich. Discriminability objective for training de-
scriptive captions. In IEEE Conference on Computer Vision
and Pattern Recognition, 2018. 1,2,4,6

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing
Zhu. BLEU: a method for automatic evaluation of machine
translation. In Proceedings of the 40th Annual Meeting on
Association for Computational Linguistics, pages 311-318.
Association for Computational Linguistics, 2002. 5

Marco Pedersoli, Thomas Lucas, Cordelia Schmid, and
Jakob Verbeek. Areas of attention for image captioning. In
IEEE International Conference on Computer Vision, 2017. 2
Aaditya Prakash, Sadid A Hasan, Kathy Lee, Vivek Datla,
Ashequl Qadir, Joey Liu, and Oladimeji Farri. Neural para-
phrase generation with stacked residual LSTM networks.
arXiv preprint arXiv:1610.03098, 2016. 2

Marc’ Aurelio Ranzato, Sumit Chopra, Michael Auli, and
Wojciech Zaremba. Sequence level training with recurrent
neural networks. In International Conference on Learning
Representations, 2016. 2

Shaoging Ren, Kaiming He, Ross Girshick, and Jian Sun.
Faster R-CNN: Towards real-time object detection with re-
gion proposal networks. In Advances in Neural Information
Processing Systems, pages 91-99, 2015. 5

Steven J Rennie, Etienne Marcheret, Youssef Mroueh, Jarret
Ross, and Vaibhava Goel. Self-critical sequence training for
image captioning. In IEEE Conference on Computer Vision
and Pattern Recognition, 2017. 1,2,3,6

Ramakrishna Vedantam, Samy Bengio, Kevin Murphy, Devi
Parikh, and Gal Chechik. Context-aware captions from
context-agnostic supervision. In IEEE Conference on Com-
puter Vision and Pattern Recognition, 2017. 2, 6
Ramakrishna Vedantam, C Lawrence Zitnick, and Devi
Parikh. CIDEr: Consensus-based image description evalu-
ation. In IEEE Conference on Computer Vision and Pattern
Recognition, 2015. 5

Ashwin K Vijayakumar, Michael Cogswell, Ramprasath R
Selvaraju, Qing Sun, Stefan Lee, David Crandall, and Dhruv
Batra. Diverse beam search: Decoding diverse solutions
from neural sequence models. The Thirty-Second AAAI Con-
ference on Artificial Intelligence, 2018. 2

Oriol Vinyals, Alexander Toshev, Samy Bengio, and Du-
mitru Erhan. Show and tell: A neural image caption gen-
erator. In /EEE Conference on Computer Vision and Pattern
Recognition, 2015. 1, 2

Liwei Wang, Alexander Schwing, and Svetlana Lazebnik.
Diverse and accurate image description using a variational
auto-encoder with an additive gaussian encoding space. In
Advances in Neural Information Processing Systems, pages
5756-5766, 2017. 2

Qingzhong Wang and Antoni B Chan. Describing like hu-
mans: on diversity in image captioning. In IEEE Conference
on Computer Vision and Pattern Recognition, 2019. 2,7
Yufei Wang, Zhe Lin, Xiaohui Shen, Scott Cohen, and Garri-
son W Cottrell. Skeleton key: Image captioning by skeleton-
attribute decomposition. IEEE International Conference on
Computer Vision, 2017. 3

(42]

(43]

[44]

[45]

[40]

[47]

(48]

(49]

(50]

(51]

(52]

(53]

[54]

4249

Zhuhao Wang, Fei Wu, Weiming Lu, Jun Xiao, Xi Li, Zitong
Zhang, and Yueting Zhuang. Diverse image captioning via
grouptalk. In International Joint Conferences on Artificial
Intelligence, 2016. 2

Ronald J. Williams and David Zipser. A learning algorithm
for continually running fully recurrent neural networks. Neu-
ral Computation, 1(2):270-280, June 1989. 5

Qi Wu, Chunhua Shen, Anton van den Hengel, Peng Wang,
and Anthony Dick. Image captioning and visual question
answering based on attributes and external knowledge. /EEE
Transactions on Pattern Analysis and Machine Intelligence,
40(6):1367-1381, 2018. 2

Yingce Xia, Fei Tian, Lijun Wu, Jianxin Lin, Tao Qin,
Nenghai Yu, and Tie-Yan Liu. Deliberation networks: Se-
quence generation beyond one-pass decoding. In Advances
in Neural Information Processing Systems, pages 1784—
1794, 2017. 2

Jingjing Xu, Xuancheng Ren, Junyang Lin, and Xu Sun.
Diversity-promoting GAN: A cross-entropy based genera-
tive adversarial network for diversified text generation. In
Proceedings of the 2018 Conference on Empirical Methods
in Natural Language Processing, pages 3940-3949, 2018. 2,
5

Kelvin Xu, Aaron Courville, Richard S Zemel, and Yoshua
Bengio. Show, attend and tell : Neural image caption gen-
eration with visual attention. In International Conference on
Machine Learning, 2015. 1,2, 3

Zhilin Yang, Ye Yuan, Yuexin Wu, William W Cohen, and
Ruslan R Salakhutdinov. Review networks for caption gen-
eration. In Advances in Neural Information Processing Sys-
tems, pages 2361-2369, 2016. 2

Ting Yao, Yingwei Pan, Yehao Li, and Tao Mei. Explor-
ing visual relationship for image captioning. In Proceedings
of the European Conference on Computer Vision (ECCV),
pages 684-699, 2018. 2

Ting Yao, Yingwei Pan, Yehao Li, Zhaofan Qiu, and Tao
Mei. Boosting image captioning with attributes. In /IEEE
International Conference on Computer Vision, 2017. 2
Victor H Yngve. A model and an hypothesis for language
structure. Proceedings of the American Philosophical Soci-
ety, 104(5):444-466, 1960. 4

Quanzeng You, Hailin Jin, Zhaowen Wang, Chen Fang, and
Jiebo Luo. Image captioning with semantic attention. In
IEEE Conference on Computer Vision and Pattern Recogni-
tion, 2016. 2

Yizhe Zhang, Michel Galley, Jianfeng Gao, Zhe Gan, Xiujun
Li, Chris Brockett, and Bill Dolan. Generating informative
and diverse conversational responses via adversarial infor-
mation maximization. In Advances in Neural Information
Processing Systems, pages 1810-1820, 2018. 2

Zhihao Zhu, Zhan Xue, and Zejian Yuan. Think and tell:
Preview network for image captioning. In British Machine
Vision Conference, 2018. 3



