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Abstract

Recently there has been significant progress in image

captioning with the help of deep learning. However, cap-

tions generated by current state-of-the-art models are still

far from satisfactory, despite high scores in terms of conven-

tional metrics such as BLEU and CIDEr. Human-written

captions are diverse, informative and precise, but machine-

generated captions seem to be simple, vague and dull. In

this paper, aimed at improving diversity and descriptiveness

characteristics of generated image captions, we propose a

model utilizing visual paraphrases (different sentences de-

scribing the same image) in captioning datasets. We ex-

plore different strategies to select useful visual paraphrase

pairs for training by designing a variety of scoring func-

tions. Our model consists of two decoding stages, where a

preliminary caption is generated in the first stage and then

paraphrased into a more diverse and descriptive caption in

the second stage. Extensive experiments are conducted on

the benchmark MS COCO dataset, with automatic evalu-

ation and human evaluation results verifying the effective-

ness of our model.

1. Introduction

Image captioning is a task aiming to describe images

with natural languages. There have been remarkable devel-

opments in rent years with the emergence of deep learning

methods [18, 38, 47]. However, captions generated by cur-

rent methods still require improvement.

Figure 1 shows a case where the imperfection of

machine-generated captions can be easily identified. We in-

sist that a good caption which resembles a human-written

caption should have several properties. (1) Fluency: The

caption should be a fluent sentence. (2) Relevance: The

caption should correctly describe the visual content and be

closely relevant to the image. (3) Diversity: Language is a

rich, colorful and varied system. Good captions contain di-

verse wordings and rich expressions. (4) Descriptiveness:

Machine-generated Caption:
a man standing next to a white car
Human-written Captions:
Caption 1: a white compact car parked on a sandy dirt road 
Caption 2: a car being driven onto two white flat things
Caption 3: a man getting in a sport utility vehicle with surf boards 
on the roof
Caption 4: man standing in open door of car on a desert road
Caption 5: a man gets back into his car in the desert

Figure 1. A machine-generated caption by a state-of-the-art

attention-based image captioning model [34] and five human-

written captions from MS COCO dataset [24].

A good caption describes an image by referring to the im-

portant, specific, and detailed aspects of the image, which

is precise, informative and descriptive [28]. As is shown

in Figure 1, the machine-generated caption is a fluent and

correct description of the image. However, it is very sim-

ple and vague. Computers prefer “safe” output sentences

with very high-frequency expressions [22], and they tend to

describe only the obvious facts, ignoring key details. On

the contrary, humans prefer writing captions with more di-

versity by using more varied wordings (like sandy dirt road

and standing in open door, etc.) and with more descriptive-

ness by describing more important details (like in the desert

and with surfboards, etc.).

Paraphrases are sentences or phrases that convey approx-

imately the same meaning in different expressions [4]. In

the task of image captioning, different people may describe

the same image from different perspectives. Even they fo-

cus on the same scene in an image, their expressions can

4240



hardly be identical. For example, five human-written cap-

tions in Figure 1 differ from each other significantly. Differ-

ent sentences describing the same image can be considered

as a set of paraphrases, which is called visual paraphrases.

In this paper, we would like to generate diverse and

descriptive image captions by taking advantages of visual

paraphrases from captioning datasets. An image is usually

annotated with a set of visual paraphrases consists of d dif-

ferent captions. Typical methods simply ignore the rela-

tionship between these paraphrases and regard them as d

independent samples. We explore the relationship between

them and select several visual paraphrase pairs (Ci, Cj)

with a specific scoring function (see Section 3.1 and 3.3) for

training. Concerning that writing a diverse, descriptive cap-

tion directly is challenging, we propose a captioning model

with two-stage decoding which first generates a preliminary

caption (less diverse and descriptive) given the visual input,

and then paraphrases it into a more diverse and descriptive

caption using these visual paraphrase pairs. Our model not

only learns from visual-semantic information but also uti-

lizes textual relationships from different wordings of visual

paraphrases.

Our major contributions are summarized as follows:

• We explore the role of visual paraphrases for image

caption generation. And we investigate different scor-

ing functions for selecting useful visual paraphrase

pairs from captioning training data.

• We propose a captioning model which fuses visual and

textual information with two-step decoding by firstly

generating a preliminary caption and then paraphras-

ing it into a more diverse and descriptive caption.

• Results in terms of a variety of automatic metrics

and human evaluation demonstrate that our model can

generate more diverse and descriptive captions while

maintaining fluency and relevance.

2. Related Work

Image Captioning Text generation from images [38,

17, 26, 20] is a problem at the intersection of computer vi-

sion and natural language processing. Image captioning,

aimed at generating natural language descriptions for im-

ages, usually consists of a CNN as an image encoder and

an RNN as a decoder to generate sentences [38, 10, 18, 48].

Attention mechanism [47, 27, 30, 2], explicit attributes de-

tection [12, 52, 44, 50], reinforcement learning (RL) meth-

ods [32, 34], and visual relations detection [49] are pro-

posed for improvement.

Diverse and Discriminative Captioning Some work

pays attention to the diversity or distinctness of image cap-

tions, with goals similar to ours. Dai et al. [7] adopt con-

ditional generative adversarial networks (GAN) to produce

diverse and natural captions. Some other work addresses

distinctiveness or discriminability, which is closely related

to the descriptiveness we refer to, by emphasizing the dis-

tinctive aspects of an image that distinguishes it from other

images. Introspective speaker (IS) model [35], as a mod-

ification of beam search, generates discriminative image

captions using a distractor image. Dai et al. [8] adopts a

contrastive loss to push the probabilities of captions to be

higher for matched images and lower for mismatched im-

ages than the reference model. Luo et al. [28] add an extra

discriminability reward to a CIDEr reward for policy gradi-

ent for generating discriminative captions. Some prior work

[7, 9, 39, 42, 37, 40] focus on improving the diversity of

captions. However, when it comes to diversity, they refer to

generating multiple mutually diverse captions for each im-

age with methods like beam search, while we refer to pro-

ducing a single caption with diverse and rich expressions

rather than simple and common wordings. The interpre-

tation of diversity in some other works for text generation

[22, 46, 53] are similar to ours.

Paraphrases Paraphrases are alternative ways of ex-

pressing the same meaning using different wordings [4].

Our work is inspired by some work addressing paraphrases

associated with other modalities and paraphrase generation

task. Chu et al. [6] propose a clustering method to ex-

tract phrasal expressions describing the same visual concept

(called visually grounded paraphrases) from image cap-

tions. Chen et al. [5] build an image captioning dataset

with visually-situated paraphrase pairs by crowd-sourcing

and retrieval-based methods. Lin et al. [25] address the task

called visual paraphrasing as verifying if the two textual de-

scriptions describe the same image by visual imagination.

As for paraphrase generation, the mainstream approach is

attention-based sequence-to-sequence model [3, 31]. Some

improvements such as the use of reinforcement learning

[23] and variational autoencoders [14] are proposed. Cap-

tion pairs in COCO dataset are utilized to constitute a para-

phrase corpora in their experiments. However, they ran-

domly choose caption pairs without addressing different

characteristics of captions and utilizing visual information.

Two-stage Text Generation A problem of the cur-

rent encoder-decoder framework for text generation is when

generating words, only the previously generated words can

be utilized, ignoring future words [45]. So methods with

two-stage decoding are proposed. In deliberation network

[45] for machine translation, two decoders are utilized, with

the first decoder generating a sequence and the second de-

coder for refining. Stack-Cap [13] consists of one coarse de-

coder and a sequence of fine decoders for image captioning.

Their intermediate outputs from the first decoder are ran-

domly sampled but not well-defined during training. With-

out clear targets for training the first RNN decoder, they are

prone to accumulate errors thus very hard to train. On the

contrary, our model uses two different sentences from the
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training set to train the two-step decoders, which is easy

to optimize. Preview network [54] uses a pipeline with

two stages of decoding using two visual encoders and two

language decoders. Sentences in their two-stage decoding

are identical during training, which is different from ours.

Skeleton Key [41] first generates skeleton sentences and at-

tributes, and then rewrites them to full sentences. POS [9]

is a VAE-based network using part-of-speech as a language

prior. These methods define an intermediate sequence for

caption generation. In this paper, sentences generated in

two steps are both complete and correct captions with dif-

ferent properties.

3. Our Method

In this section, we discuss our method in details. Our

model relies on selecting visual paraphrase pairs (Section

3.1) from image captioning datasets using a variety of scor-

ing functions (Section 3.3). Then these visual paraphrase

pairs are utilized to train our captioning model with two

stages of decoding (Section 3.2), as is shown in Figure 2.
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Figure 2. Framework of our model.

3.1. Visual Paraphrase Pairs Selection

An image captioning dataset D is composed of N im-

ages and M captions. Each image I has d annotated cap-

tions C = {C1, ..., Cd}. These d captions constitute a set of

visual paraphrases corresponding to image I . Each pair

of captions is a visual paraphrase pair corresponding to I .

We select a portion of visual paraphrase pairs P:

P = {(Ci, Cj)|S(Ci, Cj) > ǫ,

∀Ci, Cj ∈ C, Ci 6= Cj}
(1)

where S(Ci, Cj) is a scoring function measuring the differ-

ence within visual paraphrase pairs on a specific character-

istic (e.g. diversity), and ǫ is a threshold.

In this way, d captions for an image are reorganized into

a series of selected visual paraphrase pairs (Ci, Cj) ∈ P .

In our experiments, Cj is more “complex” than Ci from the

point of a scoring function, so the number of different se-

lected paraphrase pairs is at most
(

d
2

)

. These selected visual

paraphrase pairs are utilized for training. The scoring func-

tions used for selection are elaborated in Section 3.3.

3.2. Caption Generation

During training, our image captioning model learns to

first produce a “simpler” (less diverse and descriptive) cap-

tion Ci and then rewrites the caption considering the image

content I to get a more “complex” (more diverse and de-

scriptive) caption Cj that may better describe the image.

As is shown in Figure 2, our model adopts a two-stage de-

coding process and it is composed of two parts: a standard

attention-based captioning module for generating a prelim-

inary caption and a visual paraphrase generation module

with multimodal fusion for paraphrasing the preliminary

caption into a final caption.

The image I is first encoded by an image encoder to get

a set of spatial visual features V = {v1,v2, ...,v|V|} where

each feature represents a sub-region of the image. Then we

use a first LSTM decoder LSTM1 to generate the prelim-

inary caption Ci = {x
(i)
t }

|Ci|
t=1 by paying attention to the

visual input. We adopt Att2in [34] model in our experi-

ments. It is an effective modification of the vanilla LSTM

[16] with attention mechanism [3, 47].

ht = LSTM1

(

x
(i)
t ,ht−1, c

(1)
t

)

(2)

c
(1)
t =

|V|
∑

n=1

αn
t vn (3)

αn
t =

exp(a(ht−1,vn))
∑|V|

m=1 exp(a(ht−1,vm))
(4)

a(ht−1,vn) = u⊺

a tanh(Whht−1 +Wvvn) (5)

where c
(1)
t is the context vector of the input of LSTM1

representing the weighted sum of spatial image features

vn ∈ V , with hidden state ht as query. ua, Wh and

Wv are model parameters. For brevity, we use c
(1)
t =

Attn(ht−1,V) to denote the the context vector obtained

from the attention on V using ht−1 as the query via Equa-

tions 3, 4 and 5.

After the preliminary caption Ci has been generated,

the hidden states of LSTM1 and original image features

V are fed to another decoder LSTM2. The hidden states

of LSTM1 H = {h1,h2, ...,h|Ci|} consist of the infor-

mation of the preliminary sentence Ci. We aggregate the

textual information of sentence Ci from these hidden states

and visual information of image regions from Vk for rewrit-

ing to Cj . Different from textual paraphrase generation, vi-

sual paraphrase generation requires information from two

modalities to rephrase the sentence. The textual informa-

tion from the first sentence Ci and the attentive visual infor-

mation are merged when generating each word.

We adopt attention mechanism to get contextual infor-

mation from visual content for the rephrased caption Cj :

c̃t = UvAttn (st−1,V) (6)
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where st is the hidden state of the second decoder LSTM2.

And the contextual information from textual content is

calculated by the attention on H with st as a query:

ĉt = UcAttn (st−1,H) (7)

Note that the two original context vectors Attn (st,V)
and Attn (st,H) obtained from attention mechanisms are

mapped by linear layers Uv and Uc respectively to get the

transformed context vectors c̃t and ĉt in a shared multi-

modal embedding space, because features in H and V repre-

sent different modalities thus are in different feature spaces.

To fuse the information of two modalities, we use a

merging gate gt for the fusion of multimodal features.

gt = σ (Wc̃c̃t +Wĉĉt +Wsst−1) (8)

c
(2)
t = gt ⊙ c̃t + (1− gt)⊙ ĉt (9)

where σ denotes sigmoid function, and ⊙ indicates

element-wise vector multiplication. Wc̃, Wĉ and Ws are

model parameters. When generating the paraphrased sen-

tence Cj = {x
(j)
t }

|Cj |
t=1 , LSTM2 pays attention to differ-

ent sub-regions of images by visual attention and different

words of sentence Ci by textual attention for generating the

next word. The information fusion of two modalities is con-

trolled by the merging state for adaptively determining dif-

ferent weights for the two-sides. The probability distribu-

tion of the next generated word x̂
(j)
t+1 is calculated through

a softmax activation function on the output of LSTM2.

st = LSTM2

(

x
(j)
t , st−1, c

(2)
t

)

(10)

x̂
(j)
t+1 ∼ Softmax (Wost) (11)

3.3. Scoring Functions

We employ a variety of scoring strategies to select a se-

ries of paraphrase pairs in P (Equation 1). Scoring func-

tions define the extent of specific characteristics (e.g. di-

versity) of paraphrase pairs. Sentences in visual paraphrase

pairs differ from each other.

3.3.1 Sentence Length

If a sentence is longer, it is more likely to provide informa-

tive descriptions or use diverse expressions. We define the

scoring function Slen(Ci, Cj) = length(Cj) − length(Ci).
We set ǫ ≥ 0 in Equation 1, so caption Cj is longer than Ci

in the selected visual paraphrase pair.

3.3.2 Syntactic Complexity

If a sentence contains more complex syntactic structure,

it may contain more modifiers to give a detailed descrip-

tion. Diverse and rich wording may also increase the syn-

tactic complexity of sentences. Yngve score [51] which

measures the number of branches in a sentence’s syntac-

tic tree is adopted as the measure of syntactic complexity.

The Yngve scoring function is defined as SYngve(Ci, Cj) =
Yngve(Cj)−Yngve(Ci). We set ǫ ≥ 0 in Equation 1, so Cj

is generally more syntactically complex than Ci.

3.3.3 TF-IDF Diversity

We design to score a sentence C using the sum of TF-IDF

scores of n-grams. TF-IDF reflects the importance of an

n-gram. N-grams with lower frequency in the training cor-

pus have higher IDFs. TF-IDF Diversity (Tdiv) metric and

scoring function are defined as:

Tdiv(C) =

N
∑

n=1

∑

n-gram∈C TF-IDF(n-gram)

Vn

(12)

STdiv(Ci, Cj) = Tdiv(Cj)− Tdiv(Ci) (13)

where Vn = 1
M

∑

C∈D

∑

n-gram∈C TF-IDF(n-gram) is the

normalization term for the n-th gram and M is the number

of captions in D. When calculating the document frequency

of TF-IDF scores, each caption is considered as a document.

We refer equation 12 to Tdiv metric in our experiments. We

choose N = 3 so unigrams, bigrams, and trigrams of cap-

tions are used for calculation. Tdiv metric denotes the ex-

tent of diverse expressions of a sentence. A sentence has

a low Tdiv score when it contains mostly commonly-used

words and phrases, and vice versa. In a visual paraphrase

pair (Ci, Cj) chosen by Tdiv scoring function (ǫ ≥ 0), Cj

generally has richer expressions than Ci.

3.3.4 Image Retrieval Rank

Previous works [8, 28] focus on the distinctness or discrim-

inability aspect of caption by image retrieval, aiming to re-

trieve the original image given its corresponding caption. It

is based on a visual-semantic retrieval system. We adopt a

similar network architecture as Luo et al. [28]. An image I

and its corresponding caption C ∈ C are encoded by a CNN

and an LSTM respectively to get corresponding feature vec-

tors. The feature vectors are mapped into the same embed-

ding space to get the image embedding f(I) and caption

embedding g(C). The similarity of I and C is computed by

the cosine similarity of the embeddings:

sim(I, C) =
f(I)⊺g(C)

‖f(I)‖‖g(C)‖
(14)

A bi-directional ranking loss is defined as follows:

Le=
∑

I

∑

C−

max(0, β − sim(I, C) + sim(I, C−))

+
∑

C

∑

I−

max(0, β − sim(I, C) + sim(I−, C)) (15)

4243



where β ∈ R serves as a margin parameter. Every (I, C)
is a ground truth image-caption pair in training data, C−

denotes an unpaired caption for image I , and vice-versa for

I−. So the retrieval system can retrieve relevant images

given captions as queries, and vice versa.

Given the caption C as the query, we use the pretrained

retrieval system on COCO training set to rank a large num-

ber of images in the training set including the original image

I . Ideally, a correct, detailed caption with high distinctness

can be used to retrieve the corresponding image as the best

matching. So retrieval performances can be used to reflect

how correct and descriptive a caption is. rank(I|C) is the

rank of the corresponding image I using C as query. A

larger value of rank(I|C) denotes that the description is ei-

ther incorrect or not detailed enough so the retrieval system

cannot find the correct image I given the query C. We de-

fine the image retrieval (IR) scoring function as

SIR(Ci, Cj) =
rank(I|Ci)

rank(I|Cj)
(16)

Captions in a caption pair (Ci, Cj) selected by SIR and

Equation 1 (ǫ ≥ 1) are both human-annotated captions so

they are correct captions. But caption Cj may provide more

detailed and informative descriptions of the image than Ci.

The image retrieval ranks reflect relevance and descrip-

tiveness aspects of captions. Human-written captions are

usually relevant and informative. Moreover, the retrieval

system is trained on the same training set, so captions will

have small retrieval ranks. But some human-written cap-

tions which do not describe the highly distinct parts may

also be correct captions for describing another image in the

training set. Therefore, they will have a larger rank com-

pared to other captions when we use the huge numbers of

images in the training set as retrieval candidates.

3.4. Training and Inference

Our model can be trained jointly by minimizing the neg-

ative log-likelihood of generating Ci and Cj :

L =
∑

I∈D

∑

(Ci,Ci)∈P

− log p(Ci|I)− log p(Cj |Ci, I) (17)

As captions for the first and the second decoding stages are

available during training, we use standard teacher forcing

[43] strategy for training RNNs by feeding the words of

ground-truth captions as the inputs.

During testing, we adopt the beam search strategy. When

the candidate captions in the first stage are completely de-

coded by beam search, the candidate caption with the high-

est probability is selected as the preliminary caption. The

hidden states corresponding to it are collected for the tex-

tual attention of the second-stage decoding. Then another

beam search is applied to decode the polished final caption.

4. Experiments

4.1. Dataset

We conduct experiments on the Microsoft COCO dataset

[24]. It has 123,287 images with five different human-

annotated captions per image1. We adopt the standard

“Karpathy split” [18], with 5,000 images for validation,

5,000 images for testing and the rest for training.

4.2. Experimental Details

For our image captioning model, we utilize bottom-up

spatial features [2] extracted by Faster R-CNN [33] in con-

junction with Resnet-101 [15] trained by object and at-

tribute annotations from Visual Genome Dataset [21]. We

set the word embedding size and LSTM hidden size to 512.

The vocabulary size is 9,488. During training, Adam [19]

with a learning rate of 5× 10−4 is utilized for optimization.

The batch size is set to be 16 and the beam size is 3. The

maximum sentence length is 16. Retrieval ranks for Equa-

tion 16 are calculated using 20,000 candidate images in the

COCO training set.

4.3. Evaluation Metrics

We consider a variety of evaluation metrics aiming for

better evaluation of caption quality from different per-

spectives. We employ widely-adopted conventional met-

rics, including BLEU-4 [29], CIDEr [36], and SPICE [1].

These metrics compare generated sentences with refer-

ences so they mainly focus on the relevance aspect of cap-

tions. BLEU and CIDEr are n-gram based metrics while

SPICE measures how effectively captions recover objects,

attributes and the relations between them, which is proved

to have more correlation with human judgments [1].

However, these conventional metrics are not perfect es-

pecially insufficient to evaluate diversity and descriptive-

ness, which are also crucial aspects for high-quality image

descriptions. Particularly, metrics like BLEU and CIDEr

are primary to n-gram overlap so a sentence with very

common n-grams but lacking diversity and descriptiveness,

which is shown to have negative correlation with human

judgments on the detailedness of captions [1].

Therefore, we also report some other statistics and met-

rics reflecting some important aspects of captions. These

metrics are mostly ignored in prior works. In addition to

average length (length), Yngve scores (Yngve) and Tdiv

(Equation 12) defined in Section 3.3, we report Dist-2, Dist-

3, and Dist-S [46] results. They are respectively the number

of distinct bigrams, trigrams, and sentences in the gener-

ated captions. Higher Dist scores indicate more diverse ex-

pressions of captions so Dist metrics are measurements of

sentence diversity. The descriptiveness of captions is vague

1There are very few (327) images with 6 or 7 annotated captions.
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and difficult to evaluate. We follow prior work [28, 8] with

a self-retrieval strategy. We try to retrieve the original im-

age given the generated captions as queries. Retrieval per-

formances are measured by R@K (K=1, 5, 10), i.e., recall

at K 2. To prevent overfitting to the retrieval model dur-

ing training with image retrieval scoring function, we use

pretrained VSE++ [11] for self-retrieval evaluation, which

is a strong visual-semantic retrieval model utilizing dif-

ferent network architectures and image features (finetuned

ResNet-152 [15]). Better self-retrieval performance indi-

cates that the model generates relevant, informative, and de-

scriptive captions.

We also conduct human evaluations on Amazon Me-

chanical Turk with 20 volunteers. We compared methods

on 100 images randomly sampled from test set. Each cap-

tion is rated by 4 different people. Volunteers rate captions

from the 1-5 scale (higher is better) with respect to four

criteria: fluency, relevance, diversity, and descriptiveness.

Definitions are shown in the Supplementary Material.

4.4. Baseline Approaches

We adopt a variety of baseline methods, including:

Attention [34]: Attention based captioning model

(Att2in) using bottom-up image features from Faster R-

CNN (ResNet-101). Our model is based on it.

GAN [7]: Conditional generative adversarial network

for diverse and natural image captioning.

IS [35]: Introspective Speaker method for discriminative

image captioning.

CL [8]: Contrastive learning method focusing on the dis-

tinctness aspect of captions.

We use baseline methods of Attention, GAN and IS with

the same image features and attention-based architecture

as ours for fair comparisons. While CL [8] also utilizes a

strong adaptive attention [27] as base model with a fine-

tuned ResNet-152 [15] encoder.

We also report results using reinforcement learning with

CIDEr as an optimization objective, including:

CIDEr-RL [34]: Self-critical sequence training with

CIDEr rewards.

DiscCap [28]: Self-critical training with a mixed objec-

tive of CIDEr and discriminative objective rewards (model

ATTN+CIDER+DISC-1 in their paper).

Stack-Cap [13]: A coarse-to-fine strategy using two-

step decoders with CIDEr optimization.

4.5. Automatic Evaluation Results

Table 1 shows the automatic evaluation results. To fur-

ther see the properties of human-written captions, we also

report metrics’ scores of captions in MS COCO test set in

the table. BLEU/CIDEr/SPICE scores of human-written

2The fraction of generated captions where the correct image is retrieved

in the closest K points to the query caption in the shared embedding space.

captions are calculated following previous work 3 [7]. Com-

pared to Attention baseline, humans have higher metrics’

scores except for BLEU and CIDEr. It further demonstrates

that humans write more diverse and informative captions

than machines. But there are not many overlapping n-grams

among these human-written visual paraphrases.

We first compare our models with Attention baseline to

evaluate different influences of the choice of scoring func-

tions. Ours (len) notably improves diversity and descrip-

tiveness of captions, with increases in Tdiv, Dist and re-

trieval performances (R@K). But it generates excessively

long sentences which heavily damages overall quality, with

huge drops in BLEU and CIDEr. Ours (Yngve) only

slightly improves diversity and descriptiveness of captions.

Compared to these two models with simple scoring func-

tions, Ours (IR) and Ours (Tdiv) show much better per-

formances. Ours (IR) significantly improves retrieval per-

formances, with slight gains in conventional metrics SPICE,

BLEU, and CIDEr. Ours (Tdiv) shows better results in di-

versity and retrieval performances than other scoring func-

tions. With no surprise, scores of n-gram based metrics like

BLEU and CIDEr drop while diversity increases. Further-

more, we observe an obvious improvement in SPICE met-

ric. Higher SPICE scores demonstrate that Ours (Tdiv)

correctly describes objects, attributes, and their relations.

Comparisons suggest that sentence length and syntactic

complexity (Yngve scores) may not be accurate indicators

of diversity and descriptiveness of captions. We observe

that retrieval performances of Ours (Tdiv) are even better

than that of Ours (IR) which utilizes a retrieval model ex-

plicitly. It may be due to the difference of retrieval models

utilized for training and evaluation 4.

Then we compare Ours (Tdiv) and Ours (IR) with other

MLE baselines which focus on similar goals to ours. GAN

is prominent in generating highly diverse captions, but it has

negative effects on the correctness of captions, with much

lower scores in SPICE, BLEU and CIDEr, and not much

boost in retrieval performances. Human evaluation results

in Section 4.6 further demonstrate that. By comparison,

Ours (Tdiv) achieves comparable results in diversity (Tdiv

and Dist scores) and outperforms GAN in retrieval perfor-

mances and conventional metrics such as SPICE. IS and

CL focus on generating discriminative captions which are

mainly evaluated by retrieval performances. They achieve

high results in R@K, but have lower conventional metrics’

3For each image, one sentence are randomly sampled from the an-

notations as the candidate and the others as the references. We notice

that in this method we only have 4 references, so we further calculate

BLEU/CIDEr/SPICE of models by randomly selecting 4 annotated cap-

tions out of 5 as references. BLEU and CIDEr results show a similar trend.

Some results: Attention 30.7/108.5/21.1; Ours (Tdiv, 0.1) 27.8/104.8/22.2;

Ours (Tdiv, 0.3) 24.1/86.7/22.3; Ours (IR, 2) 30.6/108.7/21.5.
4We find Ours (IR, 2) has higher R@K than Ours (Tdiv, 0.1) and Ours

(Tdiv, 0.3) evaluated with the retrieval model of the same architecture as

that used for training.
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length Yngve Tdiv Dist-2 Dist-3 Dist-S R@1 R@5 R@10 BLEU-4 CIDEr SPICE

Attention (Base) 9.1 12.5 1.78 2511 4972 3228 19.2 47.8 61.5 35.0 109.8 19.9

GAN 10.6 15.1 2.38 4418 9321 4365 21.4 48.8 62.4 23.1 86.0 18.7

IS 9.4 13.4 2.04 4772 9016 4248 24.8 54.9 68.8 31.9 101.8 19.7

CL 9.3 12.7 1.86 3103 6130 3499 24.1 52.5 67.5 33.6 106.5 19.7

CIDEr-RL 9.4 12.8 1.79 1843 3694 2909 19.4 47.0 61.3 36.0 115.5 20.9

DiscCap 9.3 12.3 1.74 1743 3512 3093 21.6 50.3 65.4 36.1 114.2 21.0

Stack-Cap 9.4 12.7 1.74 1930 3999 3268 21.9 49.7 63.7 36.1 120.4 20.9

Ours (len, 0) 15.4 28.7 3.10 3916 8683 4565 26.2 56.5 70.8 24.6 69.7 21.0

Ours (Yngve, 0) 10.6 17.7 2.12 2904 5895 3634 22.6 50.8 65.6 32.3 106.4 20.8

Ours (IR, 2) 9.3 13.0 1.88 3439 6726 3884 25.3 55.5 69.1 35.0 109.8 20.3

Ours (Tdiv, 0.1) 10.8 16.3 2.26 3873 7810 4196 25.0 55.5 69.7 31.5 105.4 21.0

Ours (Tdiv, 0.3) 12.9 21.7 2.78 4790 10053 4576 26.3 57.2 70.8 27.1 86.9 21.1

Human 10.5 15.9 2.90 15381 25309 4992 30.3 59.4 72.4 19.4 85.8 21.3

Table 1. Automatic evaluation results on COCO test set. The words and numbers in parenthesis denote the choices of scoring function and

ǫ, respectively. (e.g. (IR, 2) denotes using image retrieval (IR) scoring function and ǫ=2). R@K, BLEU-4, CIDEr and SPICE values are

reported as the percentage.

scores. Ours (IR, 2) not only outperforms IS and CL in

R@K, but also shows advantages in conventional metrics.

With no surprise, captions generated by reinforcement

learning (RL) based methods (CIDEr-RL, DiscCap and

Stack-Cap) achieve high BLEU and CIDEr scores, as they

directly use CIDEr as an optimization objective. However,

they have even lower Dist scores than Attention baseline,

indicating CIDEr optimization hurts the diversity of cap-

tions. Furthermore, retrieval performances of these methods

only improve a bit, which are still much lower than ours.

The results are consistent with prior work finding n-gram-

based metrics like BLEU and CIDEr correlate negatively

with detailedness [1] and diversity [40] of image captions.

In summary, automatic evaluation results demonstrate

that our models with IR and Tdiv scoring functions effec-

tively generate diverse and descriptive captions. Ours (IR)

has advantages in retrieval performances, and comparable

BLEU and CIDEr scores with MLE baselines. Ours (Tdiv)

is prominent in producing diverse and descriptive captions

according to Tdiv, Dist, and R@K scores, while maintain-

ing correctness reflected by higher SPICE and R@K scores,

despite fewer overlapping n-grams with references.

4.6. Human Evaluation Results

Table 2 shows the results of human evaluation of our

models and several baseline methods. Attention and Stack-

Cap are baseline methods with MLE and RL training re-

spectively. Other baselines focus on similar objectives with

ours in diversity or descriptiveness of captions. Compared

to Attention and Stack-Cap, our three models perform sig-

nificantly better in Diversity and Descriptiveness, while ba-

sically maintaining Fluency. IS and GAN damage Fluency

and Relevance while obtaining gains in Diversity and De-

scriptiveness. CL slightly increases scores of Diversity and

Relevance Fluency Diversity Descriptiveness

Attention 3.48 3.88 2.90 2.88

Stack-Cap 3.47 3.97 2.91 2.89

IS 3.41 3.65 3.16* 3.11*

GAN 3.32 3.58 3.51* 3.19*

CL 3.43 3.92 3.06* 2.98

DiscCap 3.67* 3.95 2.87 2.97

Ours (IR, 2) 3.64* 3.93 3.15* 3.14*

Ours (Tdiv, 0.1) 3.79* 3.87 3.54* 3.44**

Ours (Tdiv, 0.3) 3.69* 3.81 4.06** 3.94**

Table 2. Human evaluation results. * and ** indicate that a model

has a statistically significantly higher score than Attention baseline

and all baselines, respectively (t-test with p ≤ 0.05).

Tdiv Dist-3 R@1 BLEU CIDEr SPICE

w/o first 2.15 6957 24.1 31.0 102.6 20.0

pretrain w/o first 2.17 6985 23.6 30.9 102.9 20.3

Ours (Tdiv, 0.1) 2.26 7810 25.0 31.5 105.4 21.0

Table 3. Results validating the effectiveness of the two-step pro-

cess.

Descriptiveness. DiscCap improves the Relevance score

which is comparable to ours, but only has little gain in

Descriptiveness. Compared to these related baselines, our

models achieve satisfactory performances in all four met-

rics. In particular, Ours (Tdiv) achieves better results than

all baselines in Relevance, Diversity and Descriptiveness.

The results are also in consistency with their higher scores

in automatic metrics like SPICE, Tdiv, Dist, and R@K. Flu-

ency scores are slightly lower as sentences are longer and

much more diverse.
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Tdiv Dist-3 R@1 BLEU CIDEr SPICE

Attention 1.78 4972 19.2 35.0 109.8 19.9

First Decoding 1.72 4468 19.6 35.4 110.7 19.9

Second Decoding 2.26 7810 25.0 31.5 105.4 21.0

Table 4. Comparison of first-step output (First Decoding) and final

output (Second Decoding (Tdiv, ǫ = 0.1).

4.7. Model Analysis

Effects of parameter ǫ: Hyperparameter ǫ controls how

much difference Ci and Cj in a selected paraphrase pair

(Ci, Cj) have in terms of the scoring function. It also in-

fluences the number of paraphrase pairs in P . Automatic

results in Table 1 show that increasing ǫ with Tdiv scoring

function will lead to higher diversity and descriptiveness but

lower BLEU and CIDEr scores, as the gap between Ci and

Cj in diversity is increasing. There is a trade-off between

diversity and n-gram accuracy. Changing hyper-parameter

ǫ is a way to controls the trade-off. Higher ǫ encourages

diversity (with higher Dist/R@K), resulting in less n-gram

overlaps (lower BLEU/CIDEr). Apart from high scores in

R@K and Dist, Ours(Tdiv) is consistent in SPICE with

the change of ǫ. Table 2 indicates that Ours (Tdiv, 0.3)

achieves much higher scores than Ours (Tdiv, 0.1) in Di-

versity and Descriptiveness, with a bit lower scores in Rel-

evance and Fluency.

Effectiveness of Two-Step Decoding Process: Con-

cerning that directly generating a more diverse and descrip-

tive caption while maintaining the correctness is difficult,

our model adopts a two-step decoding strategy. We eval-

uate the effectiveness of the two-step process by experi-

ments shown in Table 3. We take Ours (Tdiv, 0.1) as

an example and compare it to two baselines which only

utilize one-step decoding. The baseline (w/o first) only

uses the selected second-stage caption Cj in selected pair

(Ci, Cj) with higher Tdiv scores for training, so it utilizes

the same data distribution as the training of LSTM2 in our

model. Another baseline (pretrain, w/o first) first pretrains

the attention-based captioning models on the full training

set and then only uses the second-stage captions with higher

Tdiv scores for fine-tuning. Experimental results in Table

3 show that baseline models generate less diverse and de-

scriptive sentences with lower Tdiv, Dist-3 and R@1 scores

than our model. Furthermore, without the two-step process,

the correctness of captions is also affected, resulting in all

lower scores in conventional metrics and R@1.

Comparison of Outputs of Two Decoding Steps: Ta-

ble 4 compares the results of the first-step output (First De-

coding) and the final output (Second Decoding) from our

two-stage decoding model (Tdiv, ǫ = 0.1). Preliminary

captions generated by the first stage is “simpler” than the

outputs of attention baseline and final outputs, with lower

Tdiv and Dist-3 scores. But BLEU and CIDEr scores of

the first output are higher. Meanwhile, our final output sen-

tences are much more diversified and achieve a much higher

SPICE score.

Attention: a person riding a motorcycle on
a road
Ours (IR): a person on a motorcycle in a 
race
Ours (Tdiv): a man riding a motorcycle 
down a road next to a pile of hay
Human: a person on a motorcycle riding 
beside hay bales

Attention: a black and white photo of
an airplane
Ours (IR): an airplane sitting on a 
runway with people on the ground
Ours (Tdiv): a black and white photo of
an airplane parked at an airport with 
people standing around
Human: an airplane with people under 
the wings at a field

Figure 3. Examples of captions generated by different models and

a human-written caption from COCO test set.

4.8. Examples

Figure 3 shows example images with captions generated

by Attention baseline model, Ours (IR, 2) and Ours (Tdiv,

0.3). Caption elements in different colors indicate differ-

ent detailed descriptions of images. Our model describes

images with more diverse expressions using phrases like

parked at an airport and more detailed descriptions refer-

ring to important parts like a pile of hay. Captions gener-

ated by attention baseline are correct but lacking diversity

and descriptiveness. More examples can be found in the

supplementary material.

5. Conclusions

In this study, we focus on improving the diversity and

descriptiveness of image captions by proposing a caption-

ing model exploring the role of visual paraphrases, together

with a variety of scoring functions for selecting useful para-

phrase pairs. Our model firstly generates a preliminary

caption and then paraphrases it into a polished caption.

Our model can generate better captions with diversity and

descriptiveness compared to some state-of-the-art models

while maintaining correctness. We will explore better scor-

ing functions and network architectures in the future.
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