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Abstract

Point cloud based place recognition is still an open is-

sue due to the difficulty in extracting local features from the

raw 3D point cloud and generating the global descriptor,

and it’s even harder in the large-scale dynamic environ-

ments. In this paper, we develop a novel deep neural net-

work, named LPD-Net (Large-scale Place Description Net-

work), which can extract discriminative and generalizable

global descriptors from the raw 3D point cloud. Two mod-

ules, the adaptive local feature extraction module and the

graph-based neighborhood aggregation module, are pro-

posed, which contribute to extract the local structures and

reveal the spatial distribution of local features in the large-

scale point cloud, with an end-to-end manner. We imple-

ment the proposed global descriptor in solving point cloud

based retrieval tasks to achieve the large-scale place recog-

nition. Comparison results show that our LPD-Net is much

better than PointNetVLAD and reaches the state-of-the-art.

We also compare our LPD-Net with the vision-based solu-

tions to show the robustness of our approach to different

weather and light conditions.

1. Introduction

Large-scale place recognition is of great importance

in robotic applications, such as helping self-driving ve-

hicles to obtain loop-closure candidates, achieve accurate

localization and build drift-free globally consistent map-

s. Vision-based place recognition has been investigated for

a long time and lots of successful solutions were present-

ed. Thanks to the feasibility of extracting visual feature

descriptors from a query image of a local scene, vision-

based approaches have achieved good retrieval performance

for place recognitions with respect to the reference map
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Figure 1. Place recognition in large-scale environments. We use

global feature descriptors generated from the raw 3D point cloud

data to accomplish place recognition tasks. The lower side shows

two examples with different weather and light conditions.

[19, 9]. However, vision-based solutions are not robust to

season, illumination and viewpoint variations, and also suf-

fer from performance degradations in the place recognition

task with bad weather conditions. Taking into account the

above limitations of the vision-based approach, 3D point

cloud-based approach provides an alternative option, which

is much more robust to season and illumination variations

[22]. By directly using the 3D positions of each point as the

network input, PointNet [11] provides a simple and efficient

point cloud feature learning framework, but fails to capture

fine-grained patterns of the point cloud due to the ignored

point local structure information. Inspired by PointNet, d-

ifferent networks have been proposed [13, 23, 17, 5] and
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achieved advanced point cloud classification and segmen-

tation results with the consideration of well-learned local

features. However, it is hard to directly implement these

networks to extract discriminative and generalizable glob-

al descriptors of the point cloud in large scenes. On the

other hand, PointNetVLAD [22] is presented to solve the

point cloud description problem in large-scale scenes, but

it ignores the spatial distribution of similar local features,

which is of great importance in extracting the static struc-

ture information in large-scale dynamic environments.

Attempting to address the above issues, we present LPD-

Net to extracting discriminative and generalizable global

features from large-scale point clouds. As depicted in Fig.

1, based on the generated global descriptor, we solve the

point cloud retrieval task for large-scale place recognitions.

Our contributions include: 1) We introduce local features

in an adaptive manner as the network input instead of on-

ly considering the position of each isolated point, which

helps to adequately learn the local structures of the input

point cloud. 2) We propose a graph-based aggregation mod-

ule in both Feature space and Cartesian space to further re-

veal the spatial distribution of local features and inductive-

ly learn the structure information of the whole point cloud.

This contributes to learn a discriminative and generalizable

global descriptors for large-scale environments. 3) We u-

tilize the global descriptor for point cloud-based retrieval

tasks to achieve large-scale place recognitions. Our LPD-

Net outperforms PointNetVLAD in the point cloud based

retrieval task and reaches the state-of-the-art. What’s more,

compared with vision-based solutions, our LPD-Net shows

comparable performance and is more robust to differen-

t weather and light conditions.

2. Related Work

Handcrafted local features, such as the histogram feature

[14], the inner-distance-based descriptor [8] and the heat k-

ernel signatures [21], are widely used for point cloud-based

recognition tasks, but they are usually designed for specific

applications and have a poor generalization ability. In order

to solve these problems, deep learning based methods was

presented for point cloud feature descriptions. Convolution

neural network (CNN) has achieved amazing feature learn-

ing results for regular 2D image data. However, it is hard to

extend the current CNN-based method to 3D point cloud-

s due to their orderless. Some researches attempt to solve

this problem by describing the raw point cloud by a regular

3D volume representation, such as the 3D ShapeNets [26],

VoxNet [10], volumetric CNNs [12], VoxelNet [28] and 3D-

GAN [25]. Some other methods, such as the DeepPano [18]

and Multiview CNNs [20], project 3D point clouds into 2D

images and use the 2D CNN to learn features. Howev-

er, these approaches usually introduce quantization errors

and high computational cost, hence hard to capture high-

resolution features with high update rate.

PointNet [11] achieves the feature learning directly from

the raw 3D point cloud data for the first time. As an en-

hanced version, PointNet++ [13] introduces the hierarchi-

cal feature learning to learn local features with increasing

scales, but it still only operates each point independently

during the learning process. Ignoring the relationship be-

tween local points leads to the limitation ability of reveal-

ing local structures of the input point cloud. To solve this,

DG-CNN [23] and KC-Net [17] mine the neighborhood re-

lations through the dynamic graph network and the kernel

correlation respectively. Moreover, [5] captures local fea-

tures by performing the kNN algorithm in the feature s-

pace and the k-means algorithm in the initial word space

simultaneously. However, they obtain fine-grained features

at the expense of ignoring the feature distribution informa-

tion. What’s more, the performance of these approaches in

large-scale place recognition tasks have not been validated.

Traditional point cloud-based large-scale place recogni-

tion algorithms [6] usually rely on a global, off-line, and

high-resolution map, and can achieve centimeter-level lo-

calization, but at the cost of time-consuming off-line map

registration and data storage requirements. SegMatch [4]

presents a place matching method based on local segment

descriptions, but they need to build a dense local map by

accumulating a stream of original point clouds to solve the

local sparsity problem. PointNetVLAD [22] achieves the

state-of-the-art place recognition results. However, as men-

tioned before, it does not consider the local structure infor-

mation and ignores the spatial distribution of local features.

These factors, however, is proved in our ablation studies that

will greatly improve the place recognition results.

3. Network Design

The objective of our LPD-Net is to extract discriminative

and generalizable global descriptors from the raw 3D point

cloud directly, and based on which, to solve the point cloud

retrieval problems. Using the extracted global descriptor,

the computational and storage complexity will be greatly

reduced, thus enabling the real-time place recognition tasks.

We believe that the obtained place recognition results will

greatly facilitate the loop closure detection, localization and

mapping tasks in robotics and self-driving applications.

3.1. The Network Architecture

As we mentioned above, most of the existing work is

done on the small-scale object point cloud data (e.g. Mod-

elNet [26] and ShapeNet [27]), but this is not the case for

large-scale environments, since such point clouds are main-

ly composed of different objects in the scene and with un-

known relationships between the objects. In contrast, we

have customized for large-scale environments and proposed

a network with three main modules, 1) Feature Network
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Figure 2. LPD-Net Architecture. The network takes the raw point cloud data as input, applies Adaptive Local Feature Extraction to

obtain the point cloud distribution and the enhanced local features, which are aggregated both in the Feature Space and the Cartesian Space

through the graph neural network. The resulted feature vectors are then utilized by NetVLAD [1] to generate a global descriptor.

(FN), 2) Graph-based Neighborhood Aggregation, and 3)
NetVLAD [1]. The complete network architecture of LPD-

Net is shown in Fig. 2. The NetVLAD is designed to

aggregate local feature descriptors and generate the glob-

al descriptor vector for the input data. Similar to [22], the

loss function of the network uses lazy quadruplet loss based

on metric learning, so that the positive sample distance is

reduced during the training process and the negative sam-

ple distance is enlarged to obtain a unique scene description

vector. In addition, it has been proven to be permutation

invariant, thus suitable for 3D point cloud.

3.2. Feature Network

Existing networks [11, 13, 22] only use the point position

as the network input, local structures and point distributions

have not been considered. This limits the feature learning

ability [7]. Local features usually represent the generalized

information in the local neighborhood of each point, and

it has been successfully applied to different scene interpre-

tation applications [24, 4]. Inspired by this, our FN intro-

duces local features to capture the local structure around

each point.

3.2.1 Feature Network Structure

The raw point cloud data is simultaneously input to the In-

put Transformation Net [11] and the Adaptive Local Fea-

ture Extractor (as will be introduced in Section 3.2.2), the

former aims to ensure the rotational translation invariance

[11] of the input point coordinates, and the latter aims to

fully consider the statistical local distribution characteris-

tics. It should be noted that, the point cloud acquired in

large-scale scenes often has uneven local point distribution-

s, which may affect the network accuracy. To handle this,

the adaptive neighborhood structure is considered to selec-

t the appropriate neighborhood size according to differen-

t situations to fuse the neighborhood information of each

point. We then map the above two kinds of features (with

the concatenation operation) to the high-dimensional space,

and finally make the output of FN invariant to the spatial

transformation through the Feature Transformation Net.

3.2.2 Adaptive Local Feature Extraction

We introduce local distribution features by considering the

local 3D structure around each point i. k nearest neigh-

boring points are counted and the respective local 3D po-

sition covariance matrix is considered as the local struc-

ture tensor. Without loss of generality, we assume that

λi
1

≥ λi
2

≥ λi
3

≥ 0 represent the eigenvalues of the

symmetric positive-define covariance matrix. According to

[24], the following measurement can be used to describe the

unpredictability of the local structure from the aspect of the

Shannon information entropy theory,

Ei = −Li lnLi − Pi lnPi − Si lnSi, (1)

where Li =
λi
1
−λi

2

λi
1

, Pi =
λi
2
−λi

3

λi
1

and Si =
λi
3

λi
1

represen-

t the linearity, planarity and scattering features of the local

neighborhood of each point respectively. These features de-

scribe the 1D, 2D and 3D local structures around each point

[24]. Since the point distribution in a point cloud is typical-

ly uniform, we adaptively choose the neighborhood of each

point i by minimizing Ei across different k values and the

optimal neighbor size is determined as

kiopt = argmin
k

Ei(k). (2)

Local features suitable for describing large-scale scenes

can be classified into four classes: eigenvalue-based 3D fea-

tures (F3D), features arising from the projection of the 3D

point onto the horizontal plane (F2D), normal vector-based

features (FV ), and features based on Z-axis statistics (FZ).

Existing researches have validated that F3D, FV and FZ are

effective in solving the large-scale 3D scene analysis prob-

lem [24], and F2D and FZ are effective in solving the large-

scale localization problem in self-driving tasks[3, 4]. Con-

sidering the feature redundancy and discriminability, we s-

elect the following ten local features to describe the local

distribution and structure information around each point i:

• F3D features: Change of curvature Ci =
λi
3

∑

3

j=1
λi
j

,

Omni-variance Oi =
3

√

∏

3

j=1
λi
j

∑

3

j=1
λi
j

, Linearity Li =
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(a) FN-Original structure (O) (b) FN-Series structure (S) (c) FN-Parallel structure (P)

Figure 3. Different network structures for feature transformation and relation extraction.

λi
1
−λi

2

λi
1

, Eigenvalue-entropy Ai = −
∑

3

j=1
(λi

j lnλ
i
j),

and Local point density Di =
ki
opt

4

3

∏

3

j=1
λi
j

.

• F2D features: 2D scattering Si,2D = λi
2D,1 + λi

2D,2

and 2D linearity Li,2D =
λi
2D,2

λi
2D,1

, where λi
2D,1 and

λi
2D,2 represent the eigenvalues of the corresponding

2D covariance matrix.

• FV feature: Vertical component of normal vector Vi.

• FZ features: Maximum height difference ∆Zi,max and

Height variance σZi,var.

3.2.3 Feature Transformation and Relation Extraction

In the output of the Adaptive Local Feature Extraction mod-

ule, each data can be regarded as the feature description

of the surrounding neighborhood since we have merged the

neighborhood structure into the feature vector of the neigh-

borhood center point. Three structures are then designed in

the Feature Transform module shown in Fig. 2 to further

reveal the relations between the local features:

• FN-Original structure (Fig. 3(a)): The two outputs are

the feature vector fF and the neighborhood relation

vector fR by performing kNN operations on fF .

• FN-Series structure (Fig. 3(b)): The two outputs are

the feature vector fFT which has been transformed by

the Transform Net [11], and the neighborhood relation

vector fRT by performing kNN operations on fFT .

• FN-Parallel structure (Fig. 3(c)): The two outputs are

the feature vector fF and the neighborhood relation

vector fRT , where fRT is the same with that in FN-

Series structure.

The ablation study in Section 4.2 reveals that the FN-

Parallel structure is the best one in our case.

Figure 4. Graph formulation. Note that the receptive field of each

point corresponds to a local neighborhood in the original point

cloud, since the FN has introduced the local structure into the fea-

ture of each point. Then we utilize GNN for feature aggregations.

Figure 5. Feature space graph-based neighborhood aggregation.

3.3. Graphbased Neighborhood Aggregation

Different with the object point clouds, the point cloud-

s of large-scale environments mostly contain several local

3D structures (such as planes, corners, shapes, etc.) of sur-

rounding objects. Similar local 3D structures which locate

in different parts of the point cloud usually have similar lo-

cal features. Their spatial distribution relationships are al-

so of great importance in place description and recognition

tasks. We introduce the relational representation from the

Graph Neural Network (GNN) [2] into our LPD-Net, which

uses a structured representation to get the compositions and

their relationship. Specifically, we represent the composi-

tions of the scene as the nodes in the graph model (Fig.

4), and represent their intrinsic relationships and generate

unique scene descriptors through GNN.
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(a) Prarllel-Concatenation structure (PC) (b) Parallel-Maxpooling structure (PM) (c) Series-FC structure (SF)

Figure 6. Different network structures for feature aggregation.

3.3.1 Graph Neural Network Structure

The outputs of the Feature Network (the feature vector and

the neighborhood relation vector) are used as the input of

the graph network, and feature aggregation is performed in

both the feature space and the Cartesian space. As shown

in Fig. 5, in the feature space, we build a dynamic graph

Gi,d for each point i through the multiple kNN iterations.

More specifically, in each iteration, the output feature vec-

tor of the previous iteration is used as the network input and

a kNN aggregation is conducted on each point by finding

k neighbors with the nearest feature space distances. This

is similar to CNN to achieve the multi-scale feature learn-

ing. Each point feature pi is treated as a node in the graph.

Each edge ǫmij represents the feature space relation between

pi and its k nearest neighbors pmj in the feature space, and

ǫmij is defined as ǫmij = pi − pmj ,m = 1, 2, ..., k. The mlp

network is used to update neighbor relations and the max

pooling operation is used to aggregate k edge information

into a feature vector to update the point feature pi. Note that

the features of two points with a large Cartesian space dis-

tance can also be aggregated for capturing similar semantic

information, due to the graph-based feature learning in the

feature space. In addition, the neighborhood information in

the Cartesian space should also be concerned. The kNN-

graph network is also implemented in the Cartesian space.

The node and edge are defined as the same in the feature

space and the only difference is that we consider the Eu-

clidean distance to build the kNN relations.

3.3.2 Feature Aggregation Structure

In LPD-Net, GNN modules in the feature space and the

Cartesian space aggregate neighborhood features and spa-

tial distribution information separately. We designed three

different structures to further aggregate these two modules:

• Prarllel-Concatenation structure (PC, Fig. 6(a)): Cas-

cade the output feature vectors of the two modules and

merge the dual-dimensional information through MLP

to aggregate the features.

• Parallel-Maxpooling structure (PM, Fig. 6(b)): Direct-

ly integrate the output feature vectors of the two mod-

els through the max pooling layer, taking the maxi-

mum values to generate the unified feature vector.

• Series-FC structure (SF, Fig. 6(c)): The output feature

vector of one module is utilized as the input feature of

the other module.

The experimental result in Section 4.1 reveals that the SF

structure with the order shown in Fig. 6(c) is the best one in

our case.

3.4. Discussion

Based on the proposed LPD-Net, we can analyze the en-

vironment by studying the statistical characteristics of all

the global descriptors, such as calculating the similarity of

two places by the L2 distance between the two correspond-

ing global descriptors, or evaluating the uniqueness of each

place by calculating its distance to all the other places. More

details can be found in our supplementary materials.

4. Experiments

The configuration of LPD-Net is shown in Tab. 1. In

NetVLAD [1, 22], the lazy quadruplet loss paremeters are

set as α = 0.5, β = 0.2, Ppos = 2, Pneg = 18. We train

and evaluate the network on the modified Oxford Robotcar

dataset presented by [22], which includes 44 data sets from

the original Robotcar dataset, with 21,711 training submaps

and 3030 testing submaps. We also directly transplant the

trained model to the In-house Dataset [22] for evaluation

and verify its generalization ability. Please not that in all

datasets, the point data has been randomly down-sampled

to 4096 points and normalized to [-1,1]. More details of the

datasets can be found in [22]. All experiments are conduct-

ed with a 1080Ti GPU on TensorFlow.

4.1. Place Recognition Results

The selected Robotcar dataset contains the point clouds

collected in various season and weather conditions and dif-

ferent times. We query the same scene in these different sets
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Table 1. LDP-Net configuration.
NN-VLAD FN-VLAD FN-NG-VLAD FN-DG-VLAD FN-PM-VLAD FN-PC-VLAD FN-SF-VLAD

point-3 mlp-10 point-3 ALF-10 point-3 ALF-10 point-3 ALF-10 point-3 ALF-10 point-3 ALF-10 point-3 ALF-10

T-Net-3 T-Net-3 T-Net-3 T-Net-3 T-Net-3 T-Net-3 T-Net-3

concat-13 concat-13 concat-13 concat-13 concat-13 concat-13 concat-13

mlp-64 mlp-64 mlp-64 mlp-64 mlp-64 mlp-64 mlp-64

mlp-64 mlp-64 mlp-64 mlp-64 mlp-64 mlp-64 mlp-64

Feature transform-64 and relation extraction-feature space KNN (Kf) & Cartesian space KNN (Kc)

KNN-Kc*64 KNN-Kf*64 KNN-Kf*64 KNN-Kc*64 KNN-Kf*64 KNN-Kc*64 KNN-Kf*64

mlp-64 EF-k*128 EF-k*128 mlp-64 EF-k*128 mlp-64 EF-k*128

mlp-64 mlp-64 mlp-64 mlp-64 mlp-64 mlp-64 mlp-64

mlp-64 mlp-64 mlp-64 mlp-64

maxpooling-64 maxpooling-64 maxpooling-64 concat-64 maxpooling-64

KNN-Kc*64

mlp-64

mlp-64

maxpooling-64

FC-64

FC-128

FC-1024

L2-normalization

NetVLAD-D

L2-normalization

Lazy Quadruplet Loss

ALF: Adaptive local feature.

Figure 7. Average recall under different networks.

Table 2. Comparison results of the average recall (%) at top 1%

(@1%) and at top 1 (@1) under different networks.

Ave recall @1% Ave recall @1

PN STD 46.52 31.87

PN MAX 73.87 54.16

PN-VLAD baseline∗ 81.01 62.76

PN-VLAD refine∗ 80.71 63.33

NN-VLAD (our) 79.21 61.96

FN-VLAD (our) 89.77 75.79

FN-NG-VLAD (our) 90.38 77.74

FN-DG-VLAD (our) 91.44 80.14

FN-PM-VLAD (our) 91.20 78.77

FN-PC-VLAD (our) 92.27 81.41

FN-SF-VLAD (our) 94.92 86.28

∗This result is obtained by using their open-source programs.

Table 3. Comparison results of the memory and computation re-

quired under different networks.

Parameters FLOPs Runtime per frame

PN-VLAD baseline 1.978M 411M 13.09ms

FN-PM-VLAD (our) 1.981M 749M 29.23ms

FN-PC-VLAD (our) 1.981M 753M 27.03ms

FN-SF-VLAD (our) 1.981M 749M 23.58ms

FLOPs: required floting-point operations.

for place recognition tasks. Specifically, we use the LPD-

Net to generate the global descriptors and query the scene

with the closest L2 distance (in the descriptor space) to the

test scene to determine whether it is the same place. Similar

to [22], the Recall indices, including the Average Recall@N

and Average Recall@1%, are utilized to evaluate the place

recognition accuracy. We compare our LPD-Net with the

original PointNet architecture with the maxpool layer (PN

MAX) and the PointNet trained for object classification in

ModelNet (PN STD) to see whether the model trained on

small-scale object datesets can be scaled to large-scale cas-

es. We also compare our LPD-Net with the state-of-the-art

PN-VLAD baseline and PN-VLAD refine [22]. We eval-

uate the PN STD, PN MAX, PN-VLAD baseline and PN-

VLAD refine on the Oxford training dataset. The network

configurations of PN STD, PN MAX, PN-VLAD baseline

and refine are set to be the same as [11, 22].

Comparison results are shown in Fig. 7 and Tab. 2,

where FN-PM-VLAD, FN-PC-VLAD, and FN-SF-VLAD

represent our network with the three different feature aggre-

gation structures PM, PC, and SF. FN-VLAD is our network

without the graph-based neighborhood aggregation module.

DG and NG represent the Dynamic Graph and Neighbor

Graph in the proposed graph-based neighborhood aggrega-

tion module. Additionally, we also design the NeuralNeigh-

borVLAD network (NN-VLAD), which uses kNN cluster-

ing (k=20) and mlp module to replace the adaptive local

feature extraction module presented in Section 3.2.2. The

output of the network is also a 10 dimensional neighbor-

hood feature, and the features are obtained through network

learning. Thanks to the adaptive local feature extraction

and graph neural network modules, our LPD-Net has su-

perior advantages for place recognition in large-scale envi-

ronments. What’s more, among the three aggregation struc-

tures, FN-SF-VLAD is the best one, far exceeding Point-

NetVLAD from 81.01% to 94.92% at top 1% (unless oth-

erwise stated, the LPD-Net represents the FN-SF-VLAD

in this paper). In SF, the graph neural network learns the

neighborhood structure features of the same semantic in-

formation in the feature space, and then further aggregates

them in the Cartesian space. So we believe that SF can
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learn the spatial distribution characteristics of neighborhood

features, which is of great importance for large-scale place

recognitions. In addition, PC is better than PM since it re-

serves more information. The computation and memory

required for our networks and the PN-VLAD baseline are

shown in Tab. 3. For our best results (FN-SF-VLAD), We

have a 13.81% increase in retrieval results (at top 1%) at the

cost of an average of 10.49ms added to per frame.

Table 4. Indoor datasets evaluation results (Ave recall @ 1%).

U.S. R.A. B.D.

PN-VLAD baseline 72.63 60.27 65.30

PN-VLAD refine 90.10 93.07 86.49

FN-SF-VLAD (our) 96.00 90.46 89.14

Similar to [22], we also test our network in the In-

door Dataset [22], as shown in Tab.4. Please note that

we only train our netowrk on the Oxford Robotcar dataset

and directly test it on the three indoor datasets, however,

PointNetVLAD-refine results are obtained by training the

network both on the Oxford dataset and the indoor datasets.

4.2. Ablation Studies

Different Local Features: We test our LPD-Net with dif-

ferent local features, where xyz− represent the coordinates

of each point, F2D and F3D are defined in Section 3.2.2,

FN represents the feature network with the proposed ten

local features. In full, we add four F3D features (Planari-

ty, Scattering, Anisotropy and Sum of eigenvalues [24]) in

addition to the proposed ten local features, namely, a total

of 14 local features are considered. Tab. 5 shows that F2D

features have larger contributions than F3D features, and

additional features do not contribute to improve the network

accuracy since some of the features are linearly related.

Table 5. Ablation studies of different local features.

Ave recall @1% Ave recall @1

xyz-SF-VLAD 84.74 69.75

FN(non-F2D)-SF-VLAD 90.76 76.94

FN(non-F3D)-SF-VLAD 91.23 79.11

FN-SF-VLAD 94.92 86.28

FN(full)-SF-VLAD 92.03 81.45

Table 6. Ablation studies of different feature neighbor relations.

Ave recall @1% Ave recall @1

xyz-Series-VLAD 83.22 66.01

xyz-Parallel-VLAD 84.74 69.75

FN-Original-VLAD (O) 91.53 80.29

FN-Series-VLAD (S) 92.60 81.09

FN-Parallel-VLAD (P) 94.92 86.28

Different Feature Neighbor Relations: We test our LPD-

Net with different feature neighbor relations shown in Fig.

3. Tab. 6 shows that P is better than O and S, which implies

Figure 8. Ablation studies of different neighbor size k in the local

feature extraction.

Table 7. Ablation studies of different feature dimension D and the

number of visual words K in NetVLAD.

Ave recall @1% Ave recall @1

D256K32 93.91 85.02

D256K64 94.92 86.28

D256K128 92.47 82.08

D512K32 92.92 83.01

D512K64 94.66 85.80

D512K128 93.58 84.25

Figure 9. The number of place recognition mistakes in the robust-

ness test.

that only utilizing the feature relations in the transformed

feature space and remaining the original feature vectors can

achieve the best result. Please note that in PointNet and

PointNetVLAD, they use the S relation.

Different Neighbor Size k in the Local Feature Extrac-

tion: Fig. 8 shows that, in the case of constant k, the accu-

racy decreases with the size of k. With refinements (retrain

the network with the fixed k), the accuracy is still lower than

that of the proposed adaptive approach (kiopt).

Different K and D in NetVLAD: NetVLAD has two u-

nique hyper-parameters: the feature dimension D and the

number of visual words K [1, 22]. Tab. 7 shows that the

values of K and D should be matched in order to achieve a

good accuracy. We use K = 64 and D = 256 in this paper.

All the above ablation studies are conducted on the

robotcar dataset. The detailed results are shown in Fig. 10.

Robustness Test: We rotate the input point cloud and add

10% random white noise to validate the robustness of our

LPD-Net. The results are shown in Fig. 9, more details can

be found in our supplementary materials.
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(a) (b) (c) (d)

Figure 10. Ablation study results: (a).Different local features. (b).Different feature neighbor relations. (c).Different neighbor size k in the

local feature extraction.(d).Different feature dimension D and the number of visual words K in NetVLAD.

Table 8. Comparisons with vision-based methods (Ave recall @1 with different GPS location bounds: 3m/5m/10m/15m).
dawn dusk overcast summer overcast winter night-rain sun night

Our LPD-Net 65.1/79.7/86.5/88.4 64.7/79.9/87.3/89.8 63.5/79.7/85.3/86.8 45.6/73.8/79.2/81.0 20.1/32.8/40.6/44.6 74.1/82.3/87.8/89.4 63.2/77.3/83.1/84.5

HF-Net [15] 45.3/71.2/81.0/84.7 54.1/85.8/92.6/93.9 55.5/78.8/83.2/84.7 31.3/75.4/86.9/89.5 2.7/6.6/10.5/11.4 54.6/68.3/75.7/81.7 2.1/3.9/7.1/7.3

NV [1] 50.9/80.1/85.5/88.4 54.1/88.6/96.2/97.7 68.9/92.2/95.2/96.8 29.7/81.0/94.9/96.7 5.7/14.3/19.5/22.3 70.0/82.4/87.6/89.3 9.4/17.1/23.7/26.9

NV+SP [15] 43.7/67.7/82.2/88.6 45.0/63.4/86.5/92.6 48.8/68.7/84.9/92.7 27.2/60.0/86.7/93.8 9.3/18.6/25.0/28.4 48.0/64.3/84.8/92.4 11.2/19.2/29.0/33.6

4.3. Comparison with imagebased methods

To further investigate the advantages of our LPD-Net,

the preliminary comparison results with the state-of-the-art

image-based solutions are shown in Tab. 8, where NV is a

pure NetVLAD method, HF-Net and NV+SP are proposed

in [15]. This comparison is conducted on the Robotcar

Seasons dataset [16], and we generate the corresponding

point clouds by using the original data from the Robotcar

dataset. We can observe that, in the most of the cases, our

point cloud-based method shows strong performance on par

or even better than image-based methods. A special case

lies in the night-rain scene, since the point cloud data used

here is reconstructed using a single-line LiDAR and visu-

al odometry (VO), the inaccuracy of VO causes the point

cloud to be distorted, hence resulting in a reduced result.

However, we can still observe that our method significant-

ly outperforms other approachs in the night-rain case. Fig.

11 shows three examples in different cases. In these exam-

ples, the image-based solution obtains the unsuccessfully

retrieved images, due to the bad weather and light condi-

tions. However, our LPD-Net obtains the correct results.

Please noted that the presented work at this stage only

focuses on the point cloud-based place recognition, how-

ever, the above image-based solutions are proposed for the

pose estimation task, so the above comparisons are not rig-

orous. In the future, we will improve our LPD-Net in order

to solve the pose estimation problem.

5. Conclusion

In this paper, we present the LPD-Net that solves the

large-scale point cloud-based retrieval problem so that the

reliable place recognition can be successfully performed.

Figure 11. Examples of the retrieval results of our LPD-Net and

the image-based solution NV+SP [15]. The middle column shows

the query images and point clouds, the left column shows the re-

trieved point clouds by LPD-Net and their corresponding images,

the right column shows the retrieved images by NV+SP and their

corresponding point clouds.

Experimental results on benchmark datasets validate that

our LPD-Net is much better than PointNetVLAD and reach-

es the state-of-the-art. What’s more, comparison results

with image-based solutions validate the robustness of our

LPD-Net under different weather and light conditions.
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