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Abstract

Visual grounding, a task to ground (i.e., localize) natu-

ral language in images, essentially requires composite vi-

sual reasoning. However, existing methods over-simplify

the composite nature of language into a monolithic sentence

embedding or a coarse composition of subject-predicate-

object triplet. In this paper, we propose to ground natural

language in an intuitive, explainable, and composite fash-

ion as it should be. In particular, we develop a novel modu-

lar network called Neural Module Tree network (NMTREE)

that regularizes the visual grounding along the dependency

parsing tree of the sentence, where each node is a neural

module that calculates visual attention according to its lin-

guistic feature, and the grounding score is accumulated in

a bottom-up direction where as needed. NMTREE disen-

tangles the visual grounding from the composite reason-

ing, allowing the former to only focus on primitive and

easy-to-generalize patterns. To reduce the impact of pars-

ing errors, we train the modules and their assembly end-

to-end by using the Gumbel-Softmax approximation and its

straight-through gradient estimator, accounting for the dis-

crete nature of module assembly. Overall, the proposed

NMTREE consistently outperforms the state-of-the-arts on

several benchmarks. Qualitative results show explainable

grounding score calculation in great detail.

1. Introduction

Visual grounding (a.k.a., referring expression compre-

hension) aims to localize a natural language description in

an image. It is one of the core AI tasks for testing the

machine comprehension of visual scene and language [18].

Perhaps the most fundamental and related grounding sys-

tem for words is object detection [32] (or segmentation [8]):

the image regions (or pixels) are classified to the corre-

sponding word of the object class. Despite their diverse

model architectures [22], their sole objective is to calculate

a grounding score for a visual region and a word, measur-

ing the semantic association between the two modalities.
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Figure 1. Existing grounding models are generally (a) holistic or

(b) coarsely composite. Words in gradient colors indicate word-

level attentions. (c) The proposed NMTREE is based on depen-

dency parsing tree and offers explainable grounding in great detail.

Word color corresponds to image regions.

Thanks to the development of deep visual features [9] and

language models [27], we can extend the grounding systems

from fixed-size inventory of words to open-vocabulary [12]

or even descriptive and relational phrases [41, 31].

However, grounding complex language sentences, e.g.,

“a pink umbrella carried by a girl in pink boots”, is far dif-

ferent from the above word or phrase cases. For example,

given the image in Figure 1, for us humans, how to local-

ize the “umbrella”? One may have the following reasoning

process: 1) Identify the referent “umbrella”, but there are

two of them. 2) Use the contextual evidence “carried by a

girl”, but there are two girls. 3) By using more specific ev-

idence “in pink boots”, localize the “girl” in the last step.

4) Finally, by accumulating the above evidences, localize

the target “umbrella”.
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Unfortunately, existing visual grounding methods gen-

erally rely on 1) a single monolithic score for the whole

sentence [26, 38, 24, 39] (Figure 1(a)), or 2) a compos-

ite score for subject, predicate, and object phrases [13, 37]

(Figure 1(b)). Though some of them adopt the word-level

attention mechanism [25] to focus on the informative lan-

guage parts, their reasoning is still coarse compared to the

above human-level reasoning. More seriously, such coarse

grounding scores are easily biased to learn certain vision-

language patterns but not visual reasoning, e.g., if most of

the “umbrellas” are “carried by people” in the dataset, the

score may not be responsive to other ones such as “peo-

ple under umbrella stall”. Not surprisingly, this problem

has been repeatedly discovered in many end-to-end vision-

language embedding frameworks used in other tasks such

as VQA [15] and image captioning [23].

In this paper, we propose to exploit the Dependency

Parsing Trees (DPTs) [3] that have already offered an off-

the-shelf schema for the composite reasoning in visual

grounding. Specifically, to empower the visual grounding

ability by DPT, we propose a novel neural module net-

work: Neural Module Tree (NMTREE) that provides ex-

plainable grounding scores in great detail. As illustrated in

Figure 1(c), we transform a DPT into NMTREE by assem-

bling three primitive module networks: Single for leaves

and root, Sum and Comp for internal nodes (detailed in Sec-

tion 3.3). Each module calculates a grounding score, which

is accumulated in a bottom-up fashion, simulating the vi-

sual evidence gained so far. For example in Figure 1(c),

Comp[carried] receives the scores gained by Sum[by] and

then calculates a new score for the region composition,

meaning “something is carried by the thing that is already

grounded by the ‘by’ node”. Thanks to the fixed reasoning

schema, NMTREE disentangles the visual perception from

the composite reasoning to alleviate the unnecessary vision-

language bias [36], as the primitive modules receive consis-

tent training signals with relatively simpler visual patterns

and shorter language constitutions.

One maybe concerned by the potential brittleness caused

by DPT parsing errors that impact the robustness of the

module assembly, as discovered in most neural module net-

works applied in practice [11, 2]. We address this issue in

three folds: 1) the assembly is simple. Except for Single

that is fixed for leaves and root, only Sum and Comp are to

be determined at run-time; 2) Sum is merely an Add oper-

ation that requires no visual grounding; 3) we adopt the re-

cently proposed Gumbel-Softmax (GS) approximation [14]

for the discrete assembly approximation. During training,

the forward pass selects the two modules by GS sampler

in a “hard” discrete fashion; the backward pass will update

all possible decisions by using the straight-through gradient

estimator in a “soft” robust way. By using the GS strategy,

the entire NMTREE can be trained end-to-end without any

additional module layout annotations.

We validate the effectiveness of NMTREE on three chal-

lenging visual grounding benchmarks: RefCOCO [38], Re-

fCOCO+ [38], and RefCOCOg [26]. NMTREE achieves

new state-of-the-art performances on most of test splits and

grounding tasks. Qualitative results and human evaluation

indicate that NMTREE is transparent and explainable.

2. Related Work

Visual grounding is a task that requires a system to lo-

calize a region in an image while given a natural language

expression. Different from object detection [32], the key

for visual grounding is to utilize the linguistic information

to distinguish the target from other objects, especially the

objects of the same category.

To solve this problem, pioneering methods [26, 38, 24,

39] use the CNN-LSTM structure to localize the region that

can generate the expression with maximum posteriori prob-

ability. Recently, joint embedding models [13, 37, 40] are

widely used, they model the conditional probability and

then localize the region with maximum probability condi-

tioned on the expression. Our model belongs to the sec-

ond category. However, compared with the previous works

which neglect the rich linguistic structure, we step for-

ward by taking structure information into account. Com-

pared to [5] which relies on constituency parsing tree, our

model applied dependency parsing tree with great parsing

detail and the module assembly is learned end-to-end from

scratch, while theirs is hand-crafted.

There are some works [13, 37] on using module net-

works in visual grounding task. However, they over-

simplify the language structure and their modules are too

coarse compared to ours. Fine-grained module networks

are widely used in VQA [1, 2, 11]. However, they rely

on additional annotations to learn a sentence-to-module lay-

out parser, which is not available in general domains. Our

module layout is trained from scratch by using the Gumbel-

Softmax training strategy [14], which has shown empiri-

cally effective in recent works [4, 35, 29].

3. NMTREE Model

In this section, we first formulate the problem of visual

grounding in Section 3.1. Then, by using the walk-through

example illustrated in Figure 2, we introduce how to build

NMTREE in Section 3.2 and how to calculate the grounding

score using NMTREE in Section 3.3. Finally, we detail the

Gumbel-Softmax training strategy in Section 3.4.

3.1. Problem Formulation

The visual grounding task can be reduced into a re-

trieval problem. Formally, given an image I, we repre-

sent it by a set of Region of Interest (RoI) features I =
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Figure 2. The overview of NMTREE for visual grounding. Given a natural language expression as input, we first transform it into NMTREE

by Dependency Parsing Tree, Bidirectional Tree LSTM, and Module Assembler (Section 3.2). Then we ground along the tree in a bottom-

up fashion (Section 3.3). The final result grounding score is the output score of the root node. We apply Gumbel-Softmax strategy to train

our model (Section 3.4).

{x1,x2, · · · ,xK}, where xi ∈ R
dx and K is the number

of regions. For a natural language phrase L, we represent

it by a word sequence L = {w1, w2, · · · , wT }, where T is

the length of sentence. Then, the task is to retrieve the tar-

get region x∗ by maximizing the grounding score S(xi,L)
between any region and the language:

x∗ = arg maxxi∈I S(xi,L). (1)

Therefore, the key is to define a proper S(·) that distin-

guishes the target region from others by comprehending the

language composition.

The pioneering grounding models [26, 38] are generally

based on the holistic sentence-level language representa-

tion (Figure 1(a)): S(xi,L) := Sh(xi,yh), where yh is

a feature representation for the whole language expression

and Sh(·) can be any similarity function between two vec-

tors. More recently, a coarse composition [13] was pro-

posed to represent the sentence as a (subject, relationship,

object) triplet (Figure 1(b)). Thus, the score can be de-

composed into a finer-grained composition: S(xi,L) :=
Ss(xi,ys) + Sr([xi,xo],yr) + So(xo,yo) where the sub-

scripts s, r, and o indicate the three linguistic roles: subject,

relationship, and object, respectively; xo is an estimated ob-

ject region feature. However, these grounding scores over-

simplify the composition of the language. For example, as

shown in Figure 1(b), it is meaningful to decompose short

sentences such as “umbrella carried by girl” into triplets,

as it has a clear vision-language association for individual

“girl”, “umbrella”, and their relationship; but it is problem-

atic for longer sentences that are more general with clauses,

e.g., even if the “girl in pink boots” is identified as the ob-

ject, it is still coarse and difficult for grounding.

To this end, we propose to use the Dependency Pars-

ing Tree (DPT) as a fine-grained language decomposition,

which empowers the grounding model to perform visual

reasoning in great detail (Figure 1(c)):

S(xi,L) :=
∑

t
St(xi,Lt), (2)

where t is a node in the tree, St(·) is a node-specific score

function that calculates the similarity between a region and

a node-specific language part Lt. Intuitively, Eq. (2) is

more human-like: accumulating the evidence (e.g., ground-

ing score) while comprehending the language. Next, we

will introduce how to implement Eq. (2).

3.2. Sentence to NMTREE

There are three steps to transform a sentence into the pro-

posed NMTREE, as shown in the bottom three blocks of

Figure 2. First, we parse the sentence into a DPT, where

each word is a tree node. Then, we encode each word and

its linguistic information into a hidden vector by a Bidirec-

tional Tree LSTM. Finally, we assemble the neural modules

to the tree according to node hidden vectors.

Dependency Parsing Tree. We adopt a dependency parser

from Spacy toolbox1. As shown in Figure 2, it structures the

language into a tree, where each node is a word with its part-

of-speech (POS) tag and dependency relation label of the

directed edge from it to another, e.g., “riding” is VB (verb)

and its nsubj (nominal subject) is “man” as NN (noun). DPT

offers an in-depth comprehension of a sentence and its tree

structure offers a reasoning path for visual grounding. Note

that there are always unnecessary syntax elements parsed

from a free-form sentence such as determiners, symbols,

and punctuation. We remove these nodes and edges to re-

duce the computational overhead without hurting the per-

formance.

1Spacy2: https://spacy.io/
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Bidirectional Tree LSTM. Once the DPT is obtained,

we encode each node into a hidden vector by a bidirec-

tional tree-structured LSTM [34]. This bidirectional (i.e.,

bottom-up and top-down) propagation makes each node be-

ing aware of the information both from its children and par-

ent. This is particularly crucial for capturing the context in

a sentence. For each node t, we embed the word wt, POS

tag pt, and dependency relation label dt into a concatenated

embedding vector as:

et = [EwΠwt
,EpΠpt

,EdΠdt
], (3)

where Ew, Ep, and Ed are trainable embedding matrices,

Πwt
, Πpt

, and Πdt
are one-hot encodings, for word, POS

tag, and dependency relation label, respectively.

Our tree LSTM implementation 2 is based on the Child-

Sum Tree LSTM [34]. Taking the bottom-up direction for

example, a node t receives the LSTM states from its chil-

dren node set Ct and its embedding vector et as input to

update the state:

c
↑
t ,h

↑
t = TreeLSTM(et, {c

↑
tj}, {h

↑
tj}), j ∈ Ct, (4)

where c
↑
tj , h

↑
tj denote the cell and hidden vectors of the j-th

child of node t. By applying the TreeLSTM in two direc-

tions, we can obtain the final node hidden vector ht as:

ht = [h↑
t ; h

↓
t ], (5)

where h
↑
t , h

↓
t ∈ R

dh denote the hidden vectors encoded

in the bottom-up and top-down directions, respectively. We

initialize all leaf nodes with zero hidden and cell states. The

bottom-up and top-down Tree LSTMs have their indepen-

dent trainable parameters.

Module Assembler. Given the node representation et and

the above obtained node hidden vector ht, we can feed them

into a module assembler to determine which module should

be assembled to node t. As we will detail in Section 3.3, we

have three modules, i.e., Single, Sum, and Comp. Since

the Single is always assembled on leaves and the root, the

assembler only need to choose between Sum and Comp as:

Sum or Comp← arg max softmax (fc([et,ht])) , (6)

where fc is a fully connected layer that maps the input

features into a 2-d values, indicating the relative scores

for Sum and Comp, respectively. Due to the discrete and

non-differentiable nature of arg max, we use the Gumbel-

Softmax [14] strategy for training (Section 3.4).

It is worth noting that the assembler is not purely lin-

guistic even though Eq. (6) is based on DPT node features.

In fact, thanks to the back-propagation training algorithm,

visual cues will be eventually incorporated into the param-

eters of Eq. (6). Figure 3 illustrates which type of words is

2For space reasons, we leave the details in supplementary material.
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Figure 3. Word cloud visualizations of what nodes are likely to be

assembled as Sum or Comp. We can find that the Sum module

nodes are likely to be visible concepts while the Comp module

nodes are likely to be relationship concepts.

likely to be assembled by each module. We can find that the

Sum module has more visible words (e.g., adjectives and

nouns), and the Comp module has more words describing

relations (e.g., verbs and prepositions). This reveals the ex-

plainable potential of NMTREE. Finally, by the above three

steps, we get the NMTREE that each node assembled. Next,

we will elaborate the three types of modules.

3.3. NMTREE Modules

Given the above assembled NMTREE, we can imple-

ment the tree grounding score proposed in Eq. (2) by accu-

mulating the scores in a bottom-up fashion. There are three

types of modules used in NMTREE, i.e., Single, Sum and

Comp. Each module at node t updates the grounding score

st = [s1t , · · · , s
K
t ] for all the K regions in the image I and

outputs to its parent. In the following, we will first intro-

duce language representation and common functions used

in the modules, and then detail each module.

Language Representation. For node t, we have two lan-

guage representations: ys
t is used to associate with a single

visual feature and y
p
t is used to associate with a pairwise vi-

sual feature. We denote the node set of node t asNt, which

contains itself and all nodes rooted from t. Therefore, the

language representation can be calculated by the weighted

sum of node embedding vectors from Nt:

ys
t =

∑
i∈Nt

αs
iei, y

p
t =

∑
i∈Nt

αp
i ei, (7)

where α are the node-level attention weights that cal-

culated from the corresponding node hidden vectors:

αi = softmax(fc(hi)). Note that αs
i and αp

i have indepen-

dent fc parameters. It is worth noting that these weighted

average word embeddings of the node set reduce the nega-

tive impact caused by DPT parsing errors [13].

Score Functions. There are two types of score functions

used in our modules, denoted by the single score function

Ss and pairwise score function Sp, where Ss measures the

similarity between a single region x and a language repre-

sentation y, and Sp indicates how likely pair-wise regions
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match with relationships. Formally we define them as:

Ss(x,y) = fc(L2norm(fc(x)⊙ y)), (8)

Sp(x1,x2,y) = fc(L2norm(fc([x1;x2])⊙ y)), (9)

where [; ] is a concatenation operation, ⊙ is element-wise

multiplication, and L2norm is used to normalize vectors.

Single Module. It is assembled at leaves and the root. Its

job is to 1) calculate a single score for each region and the

current language feature by Eq. (8), 2) add this new score to

the scores collected from children, and then 3) pass the sum

to its parent:

Input: {stj}, j ∈ Ct

Output: sit ← Ss(xi,y
s
t ) +

∑
j
sitj , i ∈ [1,K]

(10)

Note that for leaves, Ct = φ as they have no children. As

illustrated in Figure 2, its design motivation is to initiate

the bottom-up grounding process by the most elementary

words and finalize the grounding by passing the accumu-

lated scores to ROOT.

Sum Module. It plays a transitional role during the reason-

ing process. It simply sums up the scores passed from its

children and then passes the sum to its parent:

Input: {stj}, j ∈ Ct

Output: st ←
∑

j
stj

(11)

Note that this module has no parameters hence it signifi-

cantly reduces the complexity of our model. As illustrated

in Figure 2, intuitively, it transits the easy-to-localize words

(cf. Figure 3(a)) such as “horse” and “man” to help the sub-

sequent composite grounding.

Comp Module. This is the core module for composite vi-

sual reasoning. As shown in Figure 3(b), it is likely to be

the relationship that connects two language constitutions.

It first computes an “average region” visual feature that is

grounded by the single scores:

βi = softmax
(
Ss(xi,y

s
t )+

∑
j
sitj

)
, x̄=

∑
i
βixi. (12)

In particular, x̄ can be considered as the contextual re-

gion [42] that supports the target region score, e.g., “what

is riding the horse” in Figure 2. Therefore, this module out-

puts the target region score to its parent:

Input: {stj}, j ∈ Ct

Output: sit ← Sp(xi, x̄,y
p
t ).

(13)

Recall that y
p
t is pairwise language feature that represents

the relationship words.

By reasoning along the assembled NMTREE in bottom

up fashion, we can obtain the overall accumulated ground-

ing score in Eq. (2) at tree root. Moreover, thanks to the

wearingpink
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closest

that

purple is

yellow

to

bikini

camera

green she

riding

ROOT

bandeau

is

The woman riding the horse

that is closest to the camera, she

is wearing a pink, purple, green,

and yellow bandeau bikini.

Figure 4. A very long sentence example that illustrates the explain-

ability of the neural modules in NMTREE. Black words:Single,

blue words: Sum, red words: Comp.

score output at each node, NMTREE is transparent as the

scores can be visualized as attention maps to investigate the

grounding process. Figure 4 illustrates an extreme example

with a very long expression with 22 tokens. However, by

using the neural modules in NMTREE , it still works well

and reasons with explainable intermediate process. Next,

we will discuss how to train NMTREE.

3.4. NMTREE Training

In contrast to previous neural module networks [1, 11],

NMTREE does not require any additional annotations and

is end-to-end trainable. Suppose xgt is the ground-truth re-

gion, the objective is to minimize the cross-entropy loss:

L(Θ;xgt,L) = − log softmax(S(xgt,L; Θ)), (14)

where Θ is the trainable parameter set and softmax is across

all K regions in an image.

Recall that the assembling process in Eq. (6) is discrete

and blocks the end-to-end training. Therefore, we utilize

the Gumbel-Softmax strategy [7] that is shown effective in

recent works [4, 35] on architecture search. For more de-

tails, please refer to their papers. Here, we only introduce

how to apply the Gumbel-Softmax for NMTREE training.

Forward. We add Gumbel distribution as a noise into the

relative scores (i.e. fc([et,ht])) of each module. It intro-

duces stochasticity for the module assembling exploration.

Specifically, we parameterize the assembler decision as a

2-d one-hot vector z, where the index of non-zero entry in-

dicates the decision:

z = one hot(arg max(log(fc([et,ht])) +G)), (15)

where G is the noise drawn from i.i.d. Gumbel(0, 1)3. Note

that, in inference phrase, the G will be discarded.

Backward. We take a continuous approximation that re-

laxes z to z̃ by replacing argmax with softmax, formally:

z̃ = softmax((log(fc([et,ht])) +G)/τ), (16)

3The Gumbel (0, 1) distribution is sampled by G = − log(− log(U))
where U ∼ Uniform(0, 1).
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where G is the same sample drawn in the forward pass (i.e.,

we reuse the noise samples). τ is a temperature parameter

that the softmax function approaches to argmax while τ →
0 and approaches to uniform while τ →∞. Although there

are discrepancies between the forward and backward pass,

we empirically observe that the Gumbel-Softmax strategy

performs well in our experiments.

4. Experiments

4.1. Datasets

We conducted our experiments on three datasets that are

collected from MS-COCO [20] images. RefCOCO [38]

contains 142,210 referring expressions for 19,994 images.

An interactive game [16] is used during the expression col-

lection. All expression-referent pairs are split into train, val-

idation, testA, and testB. TestA contains the images with

multiple people and testB contains the images with multi-

ple objects. RefCOCO+ [38] contains 141,564 referring

expressions for 49,856 objects in 19,992 images. It is col-

lected with the same interactive game as RefCOCO and is

split into train, validation, testA, and testB, respectively.

The difference from RefCOCO is that RefCOCO+ only al-

lows expression described by appearance but no locations.

RefCOCOg [26] contains 95,010 referring expressions for

49,822 objects in 25,799 images. It is collected in a non-

interactive way and contains longer expressions described

by both appearance and locations. It has two types of data

partitions. The first partition [26] divides dataset into train

and validation (val∗) sets. The second partition [28] divides

images into train, validation (val) and test sets.

4.2. Implementation Details and Metrics

Language Settings. We built specific vocabularies for the

three datasets with words, POS tags, and dependency labels

appeared more than once in datasets. Note that to obtain ac-

curate parsing results, we did not trim the length of expres-

sions. We used pre-trained GloVe [30] to initialize word

vectors. For dependency label vectors and POS tag vec-

tors, we trained them from scratch with random initializa-

tion. We set the embedding sizes to 300, 50, 50 for words,

POS tags, and dependency labels, respectively.

Visual Representations. To represent RoI features of an

image, we concatenated object features and location fea-

tures extracted from MAttNet [37], which is based on

Faster RCNN [32] with ResNet-101 [9] as the backbone and

trained with attribute heads. We employed Mask RCNN [8]

for object segmentation. The visual feature dimension dx
was set to 3,072. For fair comparison, we also used VGG-

16 [33] as the backbone and dx was set to 5,120.

Parameter Settings. We optimized our model with Adam

optimizer [17] up to 40 epochs. The learning rate was ini-

tialized to 1e-3 and shrunk by 0.9 every 10 epochs. We set

128 images to the mini-batch size. The LSTM hidden size

dh was set to 1,024, the hidden size of the attention in lan-

guage representation was set to 1,024. The temperature τ
of Gumbel-Softmax [14] was set to 1.0.

Evaluation Metrics. For detection task, we calculated the

Intersection-over-Union (IoU) between the detected bound-

ing box and the ground-truth one, and treated the one with

IoU at least 0.5 as correct. We used the Top-1 accuracy as

the metric, which is the fraction of the correctly grounded

test expressions. For segmentation task, we used Pr@0.5

(the percentage of expressions where IoU at least 0.5) and

overall IoU as metrics.

4.3. Ablation Studies

Settings. We conducted extensive ablation studies to reveal

the internal mechanism of NMTREE. The ablations and

their motivations are detailed as follows. Chain: it ignores

the structure information of the language. Specifically, we

represent a natural language expression as the weighted av-

erage of each word embedding, where the weights are cal-

culated by soft attention on bi-LSTM hidden vectors of each

word. The final grounding score is calculated by single

score function between each region and the language rep-

resentation. NMTREE w/o Comp: it is the NMTREE with-

out the Comp module, forcing all internal nodes as Sum

module. NMTREE w/o Sum: it is the NMTREE without

the Sum module, forcing all internal nodes as Comp mod-

ule. NMTREE w/ Rule: it assembles modules by a hand-

crafted rule. Instead of deciding which module should be

assembled to each node by computing the relative score, we

designed a fixed linguistic rule to make a discrete and non-

trainable decisions. The rule is: set the internal nodes whose

dependency relation label is ‘acl’ (i.e., adjectival clause) or

‘prep’ (i.e., prepositional modifier) as Comp module, and

the others as Sum module.

Results. Table 1 shows the grounding accuracies of the ab-

lation methods on the three benchmarks. We can have the

following observations: 1) On all datasets, NMTREE out-

performs Chain even if we removed one module or used

the hand-crafted rule. This is because the tree structure

contains more linguistic information and more suitable for

reasoning. Meanwhile, it also demonstrates that our pro-

posed fine-grained composition is better than the holistic

Chain. 2) When we removed one module, i.e., NMTREE

w/o Comp and NMTREE w/o Sum, they are worse than the

full NMTREE. It demonstrates the necessity of the Sum

and Comp. Note that removing any modules will also hurt

the explainability of models. 3) NMTREE w/o Comp and

NMTREE w/o Sum are comparable but NMTREE w/o Sum

is slightly better. This is because the Comp module is more

complex and thus resulting in overfitting. 4) NMTREE out-

performs NMTREE w/ Rule. It demonstrates that NMTREE

can automatically find which nodes need composite reason-
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RefCOCO RefCOCO+ RefCOCOg RefCOCO(det) RefCOCO+(det) RefCOCOg(det)

val testA testB val testA testB val test val testA testB val testA testB val test

Chain 82.43 82.21 82.16 68.27 70.83 62.41 73.84 74.15 74.81 79.19 68.34 63.08 68.84 53.53 61.72 61.95

NMTREE w/o Comp 83.65 83.59 83.04 70.76 73.07 65.19 75.98 76.20 75.10 79.38 68.60 64.85 70.43 55.00 63.07 63.40

NMTREE w/o Sum 83.79 83.81 83.67 70.83 73.72 65.83 76.11 76.09 75.49 79.84 69.11 65.29 70.85 55.99 63.60 64.06

NMTREE w/ Rule 84.46 84.59 84.26 71.48 74.76 66.95 77.82 77.70 75.51 80.61 69.23 65.23 70.94 56.96 64.69 65.53

NMTREE 85.65 85.63 85.08 72.84 75.74 67.62 78.57 78.21 76.41 81.21 70.09 66.46 72.02 57.52 65.87 66.44

Table 1. Top-1 Accuracy% of ablation models on the three datasets.

RefCOCO RefCOCO+ RefCOCOg RefCOCO (det) RefCOCO+ (det) RefCOCOg (det)

val testA testB val testA testB val* val test val testA testB val testA testB val* val test

MMI [26] - 63.15 64.21 - 48.73 42.13 62.14 - - - 64.90 54.51 - 54.03 42.81 45.85 - -

Attribute [21] - 78.85 78.07 - 61.47 57.22 69.83 - - - 72.08 57.29 - 57.97 46.20 52.35 - -

Listener† [39] 78.36 77.97 79.86 61.33 63.10 58.19 72.02 71.32 71.72 68.95 72.95 62.98 54.89 59.61 48.44 58.32 59.33 59.21

NegBag [28] 76.90 75.60 78.80 - - - - - 68.40 57.30 58.60 56.40 - - - 39.50 - 49.50

CMN [13] - 75.94 79.57 - 59.29 59.34 69.30 - - - 71.03 65.77 - 54.32 47.76 57.47 - -

VC [42] - 78.98 82.39 - 62.56 62.90 73.98 - - - 73.33 67.44 - 58.40 53.18 62.30 - -

AccumAttn [6] 81.27 81.17 80.01 65.56 68.76 60.63 73.18 - - - - - - - - - - -

MAttN‡ [37] 85.65 85.26 84.57 71.01 75.13 66.17 - 78.10 78.12 76.40 80.43 69.28 64.93 70.26 56.00 - 66.67 67.01

GroundNet [5] - - - - - - 68.90 - - - - - - - - - - -

parser+CMN [13] - - - - - - 53.50 - - - - - - - - - - -

parser+MAttN‡ [37] 80.20 79.10 81.22 66.08 68.30 62.94 - 73.82 73.72 - - - - - - - - -

NMTREE 80.39 78.86 81.90 63.31 63.59 63.04 73.71 73.39 72.29 71.65 74.81 67.34 58.00 61.09 53.45 61.20 61.01 61.46

NMTREE
‡ 85.65 85.63 85.08 72.84 75.74 67.62 78.03 78.57 78.21 76.41 81.21 70.09 66.46 72.02 57.52 64.62 65.87 66.44

Table 2. Top-1 Accuracy% of various grounding models on the three datasets. For fair comparison, we use † to indicate that this model uses

res101 features for detected experiments. ‡ indicates that this model uses res101 features for both ground-truth and detected experiments.

None-superscript indicates that this model uses vgg16 features. Parser+ indicates that the model used an external parser.

RefCOCO RefCOCO+ RefCOCOg

val testA testB val testA testB val test

P
r@

0
.5 MAttNet [37] 75.16 79.55 68.87 64.11 70.12 54.82 64.48 65.60

Chain 73.36 77.55 67.30 61.60 67.15 52.24 59.64 60.29

NMTREE 74.71 79.71 68.93 65.06 70.24 56.15 63.77 64.63

Io
U

MAttNet [37] 56.51 62.37 51.70 46.67 52.39 40.08 47.64 48.61

Chain 55.29 60.99 51.36 44.74 49.83 38.50 42.55 43.99

NMTREE 56.59 63.02 52.06 47.40 53.01 41.56 46.59 47.88

Table 3. Segmentation performance(%) on the three datasets com-

paring with state-of-the-arts.

ing (as Comp) or not (as Sum). Further, it also implies that

our NMTREE is more suitable for visual grounding task

as our assembler is aware of visual cues by the Gumbel-

Softmax training strategy.

4.4. Comparison with StateoftheArts

Settings. We compared NMTREE with other state-of-

the-art visual grounding models published in recent years.

According to whether the model requires language com-

position, we group those methods into: 1) Generation

based methods which select the region with the maxi-

mum generation probability: MMI [26], Attribute [21],

and Listener [39]. 2) Holistic language based methods:

NegBag [28]. 3) Language composition based methods:

CMN [13], VC [42], AccumAttn [6], and MAttN [37].

4) Composition methods with external parser: Ground-

Net [5], parser+CMN, and parser+MAttN. NMTREE be-

longs to the fourth category, but its language composition

is more fine-grained than others. We compared with them

on three different settings: ground-truth regions, detected

regions, and segmentation masks.

Results. From Table 2 and Table 3, we can find that: 1) the

triplet composition models mostly outperform holistic mod-

els. This is because taking the advantage of linguistics in-

formation by decomposing sentences, even coarse-grained,

is helpful in visual grounding. 2) Our model outperforms

most triplet models with the help of fine-grained composite

reasoning. 3) The parser-based methods are fragile to parser

errors, leading to performance decline. However, our model

is more robust because of the dynamic assembly and end-to-

end train strategy. Although some of the performance gains

are marginal, one should notice that it seems NMTREE bal-

ances the well-known trade-off between performance and

explainability [10]. As we will discuss in the following, we

achieve the explainability without hurting the accuracy.

4.5. Qualitative Analysis

In this section, we would like to investigate the internal

reasoning steps of our model by qualitative results4. In Fig-

ure 5, we visualize the tree structures, the module assembly,

the attention map at each intermediate step, and the final re-

sults. In Figure 6, we visualize the reasoning process inside

Comp modules. With these qualitative visualizations, we

can have the following observations: 1) The visual concept

words usually are assembled by Sum module while the re-

lationship concept words are usually assembled by Comp

module. 2) The attention maps of non-visual leaf nodes,

e.g., ‘directly’ in 5(d), are usually scattered, while visual

ones, e.g., ‘girl’ in 5(d), are usually concentrated. 3) Comp

modules are aware of relationships, i.e., it can move the at-

4Since our work focuses on complex language cases, we mainly con-

ducted qualitative experiments on RefCOCOg. More qualitative results are

given in supplementary material.
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(d) the green bench directly behind the girl

ROOTbehind

green

girl

directly

bench

on ROOT

black

parked

side

suv

(b) black suv parked on side

ROOT

man

inshirtblackbananas

holding behind

man

(c) a man in a black shirt behind the man holding bananas

ROOT

table

next dog

to

(a) the dog next to the table

oneoutoffour giraffes

facingawayfromcamera

andbehindtree ROOT

ROOTramwithheadhis

front in

down

(f) the ram in front with his head down(e) one out of four giraffes, facing away from the camera and behind a tree

Figure 5. Qualitative results on RefCOCOg. Words in different colors indicate corresponding modules: black for Single, red for Comp,

and blue for Sum. The bottom right corner is the original image with a green bounding box as ground-truth and a red bounding box as our

result. We further give two failure examples (e) and (f) for comparison, and our model consistently provides explainable reasoning process.

zebra that is to left of rightmost zebrablue bus behind police man

man in colored Beanie riding green bikeman holding blue surfboard

Figure 6. The compositional reasoning inside Comp. Each exam-

ple contains the original image (left), the contextual attention map

of x̄ in Eq. (12) (middle) and the output attention map (right). We

represent partial tree structure by colors: red for the current node,

blue for children and green for parent.
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unclear (1) slightly clear (2) mostly clear (3) clear (4)

AccumAttn

NMTree

Figure 7. The percentage of each choice. The average scores of

NMTREE and AccumAttn [6] are 2.96 and 2.28. The results indi-

cate that our model is more explainable to humans.

tention from the supporting objects to the target objects, as

shown in Figure 6. 4) Along the tree, attention maps be-

come more sharp, indicating the confidence of our model

become stronger.

All the above observations suggest that our NMTREE

can reason along the tree and provide rich cues to support

the final results. These reasoning patterns and supporting

cues imply that our model is explainable. Therefore, to

further investigate the explainability of our model, we con-

ducted a human evaluation to measure whether the inter-

nal reasoning process is reasonable. Since the state-of-the-

art model MAttNet [37] does not contain internal reasoning

process but only sums up three pre-defined module scores

which directly point to the desired object, we compared

with AccumAttn [6] for it performs multi-step sequential

reasoning and has image/textual attention at each time step.

We first presented 60 examples with internal steps of each

model to 6 human evaluators, and asked them to judge how

clear that the model was doing at each step. Then each

evaluator rated each example on 4-point Likert scale [19]

(unclear, slightly clear, mostly clear, clear) corresponding

to scores of 1, 2, 3, and 4. The percentage of each choice

and average scores are shown in Figure 7. We can find that

our model outperforms AccumAttn [6] and is often rated as

“clear”. It indicates that the internal reasoning process of

our model can be more clearly understood by humans.

5. Conclusion

In this paper, we proposed Neural Module Tree Net-

works (NMTREE), a novel end-to-end model that localizes

the target region by accumulating the grounding confidence

score along the dependency parsing tree of a natural lan-

guage sentence. NMTREE consists of three simple neural

modules, whose assembly is trained without additional an-

notations. Compared with previous visual grounding meth-

ods, our model performs a more fine-grained and explain-

able language composite reasoning with superior perfor-

mance, demonstrated by extensive experiments on three

benchmarks.
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