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Abstract

We tackle the human motion imitation, appearance

transfer, and novel view synthesis within a unified frame-

work, which means that the model once being trained

can be used to handle all these tasks. The existing task-

specific methods mainly use 2D keypoints (pose) to esti-

mate the human body structure. However, they only ex-

presses the position information with no abilities to charac-

terize the personalized shape of the individual person and

model the limbs rotations. In this paper, we propose to

use a 3D body mesh recovery module to disentangle the

pose and shape, which can not only model the joint lo-

cation and rotation but also characterize the personalized

body shape. To preserve the source information, such as

texture, style, color, and face identity, we propose a Liq-

uid Warping GAN with Liquid Warping Block (LWB) that

propagates the source information in both image and fea-

ture spaces, and synthesizes an image with respect to the

reference. Specifically, the source features are extracted

by a denoising convolutional auto-encoder for character-

izing the source identity well. Furthermore, our proposed

method is able to support a more flexible warping from

multiple sources. In addition, we build a new dataset,

namely Impersonator (iPER) dataset, for the evaluation of

human motion imitation, appearance transfer, and novel

view synthesis. Extensive experiments demonstrate the ef-

fectiveness of our method in several aspects, such as robust-

ness in occlusion case and preserving face identity, shape

consistency and clothes details. All codes and datasets

are available on https://svip-lab.github.io/

project/impersonator.html.

1. Introduction

Human image synthesis, including human motion imi-

tation [1, 19, 31], appearance transfer [26, 37] and novel

∗Contributed equally and work done while Wen Liu was a Research

Intern with Tencent AI Lab.
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Figure 1. Illustration of human motion imitation, appearance trans-

fer and novel view synthesis. The first column is the source image

and the second column is reference condition, such as image or

novel view of camera. The third column is the synthesized results.

view synthesis [40, 42], has huge potential applications in

re-enactment, character animation, virtual clothes try-on,

movie or game making and so on. The definition is that

given a source human image and a reference human image,

i) the goal of motion imitation is to generate an image with

texture from source human and pose from reference human,

as depicted in the top of Fig. 1; ii) human novel view synthe-

sis aims to synthesize new images of the human body, cap-

tured from different viewpoints, as illustrated in the middle

of Fig. 1; iii) the goal of appearance transfer is to generate a

human image preserving reference identity with clothes, as

shown in the bottom of Fig. 1 where different parts might

come from different people.

In the realm of human image synthesis, previous works

separately handle these tasks [19, 26, 42] with task-specific
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pipeline, which seems to be difficult to extend to other

tasks. Recently, generative adversarial network (GAN) [6]

achieves great successes on these tasks. Taking human

motion imitation as an example, we summarize recent ap-

proaches in Fig. 2. In an early work [19], as shown in

Fig. 2 (a), source image (with its pose condition) and tar-

get pose condition are concatenated which thereafter is fed

into a network with adversarial training to generate an im-

age with desired pose. However, direct concatenation does

not take the spatial layout into consideration, and it is am-

biguous for the generator to place the pixel from source im-

age into a right position. Thus, it always results in a blurred

image and loses the source identity. Later, inspired by the

spatial transformer networks (STN) [10], a texture warping

method [1], as shown in Fig. 2 (b), is proposed. It firstly

fits a rough affine transformation matrix from source and

reference poses, uses an STN to warp the source image into

reference pose and generates the final result based on the

warped image. Texture warping, however, could not pre-

serve the source information as well, in terms of the color,

style or face identity, because the generator might drop out

source information after several down-sampling operations,

such as stride convolution and pooling. Meanwhile, con-

temporary works [4, 31] propose to warp the deep features

of the source images into target pose rather than that in im-

age space, as shown in Fig 2 (c), named as feature warp-

ing. However, features extracted by an encoder in fea-

ture warping cannot guarantee to accurately characterize the

source identity and thus consequently produce a blur or low-

fidelity image in an inevitable way.

The aforementioned existing methods encounter with

challenges in generating unrealistic-looking images, due to

three reasons: 1) diverse clothes in terms of texture, style,

color, and high-structure face identity are difficult to be cap-

tured and preserved in their network architecture; 2) articu-

lated and deformable human bodies result in a large spatial

layout and geometric changes for arbitrary pose manipula-

tions; 3) all these methods cannot handle multiple source

inputs, such as in appearance transfer, different parts might

come from different source people.

In this paper, to preserve the source information, includ-

ing details of clothes and face identity, we propose a Liq-

uid Warping Block (LWB) to address the loss of source in-

formation from three aspects: 1) a denoising convolutional

auto-encoder is used to extract useful features that preserve

source information, including texture, color, style and face

identity; 2) source features of each local part are blended

into a global feature stream by our proposed LWB to further

preserve the source details; 3) it supports multiple-source

warping, such as in appearance transfer, warping the fea-

tures of head from one source and those of body from an-

other, and aggregating into a global feature stream. This

will further enhance the local identity of each source part.

(b) texture warp (c) feature warp

(a) concatenation𝑃𝑃𝑥𝑥
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Figure 2. Three existing approaches of propagating source infor-

mation into target condition. (a) is early concatenation, and it con-

catenates the source image and source condition, as well as target

condition, into the color channel. (b) and (c) are texture and fea-

ture warping, respectively, and the source image or its features are

propagated into target condition under a fitted transformation flow.

In addition, existing approaches mainly rely on 2D

pose [1, 19, 31], dense pose [22] and body parsing [4].

These methods only take care of the layout locations and

ignore the personalized shape and limbs (joints) rotations,

which are even more essential than layout location in hu-

man image synthesis. For example, in an extreme case, a

tall man imitates the actions of a short person and using the

2D skeleton, dense pose and body parsing condition will

unavoidably change the height and size of the tall one, as

shown in the bottom of Fig. 6. To overcome their short-

comings, we use a parametric statistical human body model,

SMPL [2, 18, 12] which disentangles human body into pose

(joint rotations) and shape. It outputs 3D mesh (without

clothes) rather than the layouts of joints and parts. Further,

transformation flows can be easily calculated by matching

the correspondences between two 3D triangulated meshes,

which is more accurate and results in fewer misalignments

than previous fitted affine matrix from keypoints [1, 31].

Based on SMPL model and Liquid Warping Block

(LWB), our method can be further extended into other tasks,

including human appearance transfer and novel view syn-

thesis for free and one model can handle these three tasks.

We summarize our contributions as follows: 1) we propose

a LWB to propagate and address the loss of the source in-

formation, such as texture, style, color, and face identity, in

both image and feature space; 2) by taking advantages of

both LWB and the 3D parametric model, our method is a

unified framework for human motion imitation, appearance

transfer, and novel view synthesis; 3) we build a dataset for

these tasks, especially for human motion imitation in video,

and all codes and datasets are released for further research

convenience in the community.

2. Related Work

Human Motion Imitation. Recently, most meth-

ods are based on conditioned generative adversarial net-

works (CGAN) [1, 3, 19, 20, 22, 30] or Variational Auto-

Encoder [5]. Their key technical idea is to combine target
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Figure 3. The training pipeline of our method. We randomly sample a pair of images from a video, denoting one of them as source image,

named Is and the other as reference image named Ir . (a) A body mesh recovery module will estimate the 3D mesh of each image, and

render their correspondence map, Cs and Ct; (b) The flow composition module will first calculate the transformation flow T based on two

correspondence maps and their projected vertices in image space. Then it will separate source image Is into foreground image Ift and

masked background Ibg . Finally it warps the source image based on transformation flow T , and produces a warped image Isyn; (c) In the

last GAN module, the generator consists of three streams, which separately generates the background image Îbg by GBG, reconstructs the

source image Îs by GSID and synthesizes the target image Ît under reference condition by GTSF . To preserve the details of source image,

we propose a novel Liquid Warping Block (LWB, shown in Fig. 4) which propagates the source features of GSID into GTSF at several

layers and preserve the source information, in terms of texture, style and color.

image along with source pose (2D key-points) as inputs and

generate realistic images by GANs using source pose. The

difference of those approaches are merely in network archi-

tectures and adversarial losses. In [19], a U-Net generator is

designed and a coarse-to-fine strategy is utilized to generate

256 × 256 images. Si et al. [1, 30] propose a multistage

adversarial loss and separately generate the foreground (or

different body parts) and background. Neverova et al. [22]

replace the sparse 2D key-points with the dense correspon-

dences between image and surface of the human body by

DensePose [27]. Chan et al. [3] use pix2pixHD [35] frame-

work together with a specialized Face GAN to learn a map-

ping from 2D skeleton to image and generate a more real-

istic target image. Furthermore, Wang et al. [34] extend it

to video generation and Liu et al. [16] propose a neural ren-

derer of human actor video. However, their works just train

a mapping from 2D pose (or parts) to image of each person

— in other words, every body need to train their own model.

This shortcoming might limit its wide application.

Human Appearance Transfer. Human appearance

modeling or transfer is a vast topic, especially in the

field of virtual try-on applications, from computer graphics

pipelines [24] to learning based pipelines [26, 37]. Graphics

based methods first estimate the detailed 3D human mesh

with clothes via garments and 3d scanners [38] or multi-

ple camera arrays [15] and then human appearance with

clothes is capable to be conducted from one person to an-

other based on the detailed 3D mesh. Although these meth-

ods can produce high-fidelity result, their cost, size and con-

trolled environment are unfriendly and inconvenient to cus-

tomers. Recently, in the light of deep generative models,

SwapNet [26] firstly learns a pose-guided clothing segmen-

tation synthetic network, and then the clothing parsing re-

sults with texture features from source image feed into an

encoder-decoder network to generate the image with de-

sired garment. In [37], the authors leverage a geometric

3D shape model combined with learning methods, swap the

color of visible vertices of the triangulated mesh and train a

model to infer that of invisible vertices.

Human Novel View Synthesis. Novel view synthesis

aims to synthesize new images of the same object, as well

as the human body, from arbitrary viewpoints. The core

step of existing methods is to fit a correspondence map from

the observable views to novel views by convolutional neural

networks. In [41], the authors use CNNs to predict appear-

ance flow and synthesize new images of the same object by

copying the pixel from source image based on the appear-

ance flow, and they have achieved decent results of rigid

objects like vehicles. Following work [23] proposes to infer

the invisible textures based on appearance flow and adver-

sarial generative network (GAN) [6], while Zhu et al. [42]

argue that appearance flow based method performs poorly

on articulated and deformable objects, such as human bod-

ies. They propose an appearance-shape-flow strategy for

synthesizing novel views of human bodies. Besides, Zhao et

al. [40] design a GAN based method to synthesize high-

resolution views in a coarse-to-fine way.

3. Method

Our Liquid Warping GAN contains three stages, body

mesh recovery, flow composition and a GAN module with
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Liquid Warping Block (LWB). The training pipeline is the

same for different tasks. Once the model has been trained

on one task, it can deal with other tasks as well. Here, we

use motion imitation as an example, as shown in Fig. 3. De-

noting the source image as Is and the reference image Ir.

The first body mesh recovery module will estimate the 3D

mesh of Is and Ir, and render their correspondence maps,

Cs and Ct. Next, the flow composition module will first

calculate the transformation flow T based on two correspon-

dence maps and their projected mesh in image space. The

source image Is is thereby decomposed as front image Ift
and masked background Ibg , and warped to Isyn based on

transformation flow T . The last GAN module has a gener-

ator with three streams. It separately generates background

image by GBG, reconstructs the source image Îs by GSID

and synthesizes the image Ît under reference condition by

GTSF . To preserve the details of source image, we propose

a novel Liquid Warping Block (LWB) and it propagates the

source features of GSID into GTSF at several layers.

3.1. Body Mesh Recovery Module

As shown in Fig. 3 (a), given source image Is and ref-

erence image Ir, the role of this stage is to predict the

kinematic pose (rotation of limbs) and shape parameters,

as well as 3D mesh of each image. In this paper, we use

the HMR [12] as 3D pose and shape estimator due to its

good trade-off between accuracy and efficiency. In HMR,

an image is firstly encoded into a feature with R
2048 by

a ResNet-50 [8] and then followed by an iterative 3D re-

gression network that predicts the pose θ ∈ R
72 and shape

β ∈ R
10 of SMPL [18], as well as the weak-perspective

camera K ∈ R
3. SMPL is a 3D body model that can be de-

fined as a differentiable function M(θ, β) ∈ R
Nv×3, and it

parameterizes a triangulated mesh by Nv = 6, 890 vertices

and Nf = 13, 776 faces with pose parameters θ ∈ R
72

and β ∈ R
10. Here, shape parameters β are coefficients

of a low-dimensional shape space learned from thousands

of registered scans and the pose parameters θ are the joint

rotations that articulate the bones via forward kinematics.

With such process, we will obtain the body reconstruction

parameters of source image, {Ks, θs, βs,Ms} and those of

reference image, {Kr, θr, βr,Mr}, respectively.

3.2. Flow Composition Module

Based on the previous estimations, we first render a cor-

respondence map of source mesh Ms and that of reference

mesh Mr under the camera view of Ks. Here, we denote

the source and reference correspondence maps as Cs and

Ct, respectively. In this paper, we use a fully differentiable

renderer, Neural Mesh Renderer (NMR) [13]. We thereby

project vertices of source Vs into 2D image space by weak-

perspective camera, vs = Proj(Vs,Ks). Then, we cal-

culate the barycentric coordinates of each mesh face, and

𝐵𝐵𝑆𝑆(𝑋𝑋𝑠𝑠1𝑙𝑙 ,𝑇𝑇1)𝑇𝑇1
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𝑋𝑋𝑠𝑠1𝑙𝑙

�𝑋𝑋 𝑡𝑡𝑙𝑙
𝑋𝑋𝑠𝑠2𝑙𝑙 𝐵𝐵𝑆𝑆(𝑋𝑋𝑠𝑠2𝑙𝑙 ,𝑇𝑇2)𝑇𝑇2

+

(a) Liquid Warping Block (LWB) (b) Liquid Warping GAN

LWB

…

…

…

LWB LWB

Figure 4. Illustration of Liquid Warping Block. (a) is the structure

of LWB. Xl
s1

and Xl
s2

are the feature maps extracted by GSID of

different sources in lth layers. Xl
t is the feature map of GTSF at

the lth layer. Final output features X̂l
t aggregate the feature from

GTSF and warped source features by bilinear sampler (BS) with

respect to the flow T1 and T2. (b) is the architecture of LWB.

obtain fs ∈ R
Nf×2. Next, we calculate the transformation

flow T ∈ R
H×W×2 by matching the correspondences be-

tween source correspondence map with its mesh face coor-

dinates fs and reference correspondence map. Here H×W

is the size of image. Consequently, a front image Ift and a

masked background image Ibg are derived from masking

the source image Is based on Cs. Finally, we warp the

source image Is by the transformation flow T , and obtain

the warped image Isyn, as depicted in Fig. 3.

3.3. Liquid Warping GAN

This stage synthesizes high-fidelity human image un-

der the desired condition. More specifically, it 1) synthe-

sizes the background image; 2) predicts the color of invis-

ible parts based on the visible parts; 3) generates pixels of

clothes, hairs and others out of the reconstruction of SMPL.

Generator. Our generator works in a three-stream man-

ner. One stream, named GBG, works on the concatena-

tion of the masked background image Ibg and the mask ob-

tained by the binarization of Cs in color channel (4 chan-

nels in total) to generate the realistic background image

Îbg , as shown in the top stream of Fig. 3 (c). The other

two streams are source identity stream, namely GSID and

transfer stream, namely GTSF . GSID is a denoising con-

volutional auto-encoder which aims to guide the encoder to

extract the features that are capable to preserve the source

information. Together with the Îbg , it takes the masked

source foreground Ift and the correspondence map Cs (6

channels in total) as inputs, and reconstructs source front

image Îs. GTSF stream synthesizes the final result , which

receives the warped foreground by bilinear sampler and the

correspondence map Ct (6 channels in total) as inputs. To

preserve the source information, such as texture, style and

color, we propose a novel Liquid Warping Block (LWB)

that links the source with target streams. It blends the source

features from GSID and fuses them into transfer stream

GTSF , as shown in the bottom of Fig. 3 (c).

One advantage of our proposed Liquid Warping Block
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(LWB) is that it addresses multiple sources, such as in hu-

man appearance transfer, preserving the head of source one,

and wearing the upper outer garment from the source two,

while wearing the lower outer garment from the source

three. The different parts of features are aggregated into

GTSF by their own transformation flow, independently.

Here, we take two sources as an example, as shown in

Fig. 4. Denoting X l
s1

and X l
s2

as the feature maps extracted

by GSID of different sources in the lth layer. X l
t is the

feature map of GTSF at the lth layer. Each part of source

feature is warped by their own transformation flow, and ag-

gregated into the features of GTSF . We use bilinear sampler

(BS) to warp the source features X l
s1

and X l
s2

, with respect

to the transformation flows, T1 and T2, respectively. The

final output feature is obtained as follows:

X̂ l
t = BS(X l

s1
, T1) +BS(X l

s2
, T2) +X l

t .

Please note that we only take two sources an example,

which can be easily extended to multiple sources.

GBG, GSID and GTSF have the similar architecture,

named ResUnet, a combination of ResNet [7] and U-

Net [28] without sharing parameters. For GBG, we directly

regress the final background image, while for GSID and

GTSF , we concretely generate an attention map A and a

color map P , as illustrated in Fig. 3 (c). The final image

can be obtained as follows:

Îs = Ps ∗As + Îbg ∗ (1−As)

Ît = Pt ∗At + Îbg ∗ (1−At).

Discriminator. For discriminator, we follow the architec-

ture of Pix2Pix [9]. More details about our network archi-

tectures are provided in supplementary materials.

3.4. Training Details and Loss Functions

In this part, we will introduce the loss functions, and

how to train the whole system. For body recovery mod-

ule, we follow the network architecture and loss functions

of HMR [12]. Here, we use a pre-trained model of HMR.

For the Liquid Warping GAN, in the training phase, we

randomly sample a pair of images from each video and set

one of them as source Is, and another as reference Ir. Note

that our proposed method is a unified framework for mo-

tion imitation, appearance transfer and novel view synthe-

sis. Therefore once the model has been trained, it is capable

to be applied to other tasks and does not need to train from

scratch. In our experiments, we train a model for motion

imitation and then apply it to other tasks, including appear-

ance transfer and novel view synthesis.

The whole loss function contains four terms and they are

perceptual loss [11], face identity loss, attention regulariza-

tion loss and adversarial loss.

Perceptual Loss. It regularizes the reconstructed source

image Îs and generated target image Ît to be closer to the

ground truth Is and Ir in VGG [32] subspace. Its formula-

tion is given as follows:

Lp = ‖f(Îs)− f(Is)‖1 + ‖f(Ît)− f(Ir)‖1.

Here, f is a pre-trained VGG-19 [32].

Face Identity Loss. It regularizes the cropped face from

the synthesized target image Ît to be similar to that from

the image of ground truth Ir, which pushes the generator to

preserve the face identity. It is shown as follows:

Lf = ‖g(Ît)− g(Ir)‖1.

Here, g is a pre-trained SphereFaceNet [17].

Adversarial Loss. It pushes the distribution of synthe-

sized images to the distribution of real images. As shown

in following, we use LSGAN−110 [21] loss in a way like

PatchGAN for the generated target image Ît. The discrim-

inator D regularizes Ît to be more realistic-looking. We

use conditioned discriminator, and it takes generated im-

ages and the correspondence map Ct (6 channels) as inputs.

LG
adv =

∑
D(Ît, Ct)

2.

Attention Regularization Loss. It regularizes the atten-

tion map A to be smooth and to prevent them from saturat-

ing. Considering that there is no ground truth of attention

map A, as well as color map P , they are learned from the

resulting gradients of above losses. However, the attention

masks can easily saturate to 1 which prevents the genera-

tor from working. To alleviate this situation, we regularize

the mask to be closer to silhouettes S rendered by 3D body

mesh. Since the silhouettes is a rough map and it contains

the body mask without clothes and hair, we also perform

a Total Variation Regularization over A like [25], to com-

pensate the shortcomings of silhouettes, and further to en-

force smooth spatial color when combining the pixel from

the predicted background Îbg and the color map P . It is

shown as follows:
La = ‖As − Ss‖

2

2 + ‖At − St‖
2

2 + TV (As) + TV (At)

TV (A) =
∑

i,j

[A(i, j)−A(i− 1, j)]2 + [A(i, j)−A(i, j − 1)]2.

For generator, the full objective function is shown in the

following, and λp, λf and λa are the weights of perceptual,

face identity and attention losses.

LG = λpLp + λfLf + λaLa + LG
adv.

For discriminator, the full objective function is

LD =
∑

[D(Ît, Ct) + 1]2 +
∑

[D(Ir, Ct)− 1]2.

3.5. Inference

Once trained model on the task of motion imitation, it

can be applied to other tasks in inference. The difference

lies in the transformation flow computation, due to the dif-

ferent conditions of various tasks. The remaining modules,

Body Mesh Recovery and Liquid Warping GAN modules

are all the same. Followings are the details of each task of

Flow Composition module in testing phase.
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parameters by Body Recovery module of both source and reference images. The right is the different implementations to calculate the

transformation flow in different tasks.

source reference SHUP OUR
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Preserve shape 

and cloth details

Figure 6. Comparison of our method with others of motion imitation on the iPER dataset (zoom-in for the best of view). 2D pose-guided

methods pG2 [19], DSC [31] and SHUP [1] cannot preserve the clothes details, face identity and shape consistency of source images. We

highlight the details by red and blue rectangles.

Motion Imitation. We firstly copy the value of pose

parameters of reference θr into that of source, and get

synthetic parameters of SMPL, as well as the 3D mesh,

Mt = M(θr, βs). Next, we render a correspondence map

of source mesh Ms and that of synthetic mesh Mt under

the camera view of Ks. Here, we denote the source and

synthetic correspondence map as Cs and Ct, respectively.

Then, we project vertices of source into 2D image space

by weak-perspective camera, vs = Proj(Vs,Ks). Next,

we calculate the barycentric coordinates of each mesh face,

and have fs ∈ R
Nf×2. Finally, we calculate the transforma-

tion flow T ∈ R
H×W×2 by matching the correspondences

between source correspondence map with its mesh face co-

ordinates fs and synthetic correspondence map. This pro-

cedure is shown in Fig. 5 (a).

Novel View Synthesis. Given a new camera view, in

terms of rotation R and translation t. We firstly calculate

the 3D mesh under the novel view, Mt = MsR + t. The

flowing operations are similar to motion imitation. We ren-

der a correspondence map of source mesh Ms and that of

novel mesh Mt under the weak-perspective camera Ks and

calculate the transformation flow T ∈ R
H×W×2 in the end.

This is illustrated in Fig. 5 (b).

Appearance Transfer. It needs to “copy” the clothes of

torso or body from the reference image while keeping the

head (face, eye, hair and so on) identity of source. We split

the transformation flow T into two sub-transformation flow,

source flow T1 and referent flow T2. Denoting head mesh as

Mh = (V h, Fh) and body mesh as M b = (V b, F b). Here,

M = Mh ∪M b. For T1, We firstly project the head mesh

Mh
s of source into image space, and thereby obtain the sil-

houettes, Sh
s . Then, we create a mesh grid, G ∈ R

H×W×2.

Then, we mask G by Sh, and derive T1 = G ∗ Sh. Here, ∗
represents element-wise multiplication. For T2, it is similar

to motion imitation. We render the correspondence map of

source body M b
s and that of reference M b

t , denoting as Cb
s

and Cb
t , respectively. Finally, we calculate the transforma-

tion flow T2 based on the correspondences between Cb
s and

Cb
t . We illustrate it in Fig. 5 (c).
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Figure 7. Examples of motion imitation from our proposed methods on the iPER dataset (zoom-in for the best of view). Our method could

produce high-fidelity images that preserve the face identity, shape consistency and clothes details of source, even there are occlusions in

source images such as the middle and bottom rows. We recommend accessing the supplementary material for more results in videos.
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Figure 8. Examples of our method of human appearance transfer in the testing set of iPER (zoom-in for the best of view). Our method

could produce high-fidelity and decent images that preserve the face identity and shape consistency of the source image, and keep the

clothes details of reference image. We recommend accessing the supplementary material for more results.

4. Experiments

Dataset. To evaluate the performances of our proposed

method of motion imitation, appearance transfer and novel

view synthesis, we build a new dataset with diverse styles of

clothes, named as Impersonator (iPER) dataset. There are

30 subjects of different conditions of shape, height and gen-

der. Each subject wears different clothes and performs an

A-pose video and a video with random actions. Some sub-

jects might wear multiple clothes, and there are 103 clothes

in total. The whole dataset contains 206 video sequences

with 241,564 frames. We split it into training/testing set at

the ratio of 8:2 according to the different clothes.

Implementation Details. To train the network, all im-

ages are normalized to [-1, 1] and resized to 256× 256. We

randomly sample a pair of images from each video. The

mini-batch size is 4 in our experiments. λp, λf and λa are

set to 10.0, 5.0 and 1.0, respectively. Adam [14] is used for

parameter optimization of both generator and discriminator.

4.1. Evaluation of Human Motion Imitation.

Evaluation Metrics. We propose an evaluation proto-

col of testing set of iPER dataset and it is able to indicate

the performance of different methods in terms of different

aspects. The details are listed in followings: 1) In each

video, we select three images as source images (frontal,

sideway and occlusive) with different degrees of occlusion.

The frontal image contains the most information, while the

sideway will drop out some information, and occlusive im-

age will introduce ambiguity. 2) For each source image,

we perform self-imitation that actors imitate actions from

themselves. SSIM [36] and Learned Perceptual Similarity

(LPIPS) [39] are the evaluation metrics in self-imitation set-

ting. 3) Besides, we also conduct cross-imitation that ac-

tors imitate actions from others. We use Inception Score

(IS) [29] and Fréchet Distance on a pre-trained person-reid

model [33], named as FReID, to evaluate the quality of gen-

erated images.

5910



source 30
°

60
°

90
°

120
°

150
° 210

°
180

° 240
° 270

°
300

° 330
°

Figure 9. Examples of novel view synthesis from our method on the iPER dataset (zoom-in for the best of view). Our method could generate

realistic-looking results under different camera views, and it is capable to preserve the source information, even in the self-occlusion case,

such as the middle and bottom rows.

Table 1. Results of motion imitation by different methods on iPER

dataset. ↑ means the larger is better, and ↓ represents the smaller is

better. A higher SSIM may not mean a better quality of image [39].

Self-Imitation Cross-Imitation

SSIM↑ LPIPS↑ IS↑ FReID↓

PG2 [19] 0.854 0.865 3.242 0.353

SHUP [1] 0.832 0.901 3.371 0.324

DSC [31] 0.829 0.871 3.321 0.342

WC 0.821 0.872 3.213 0.341

WT 0.822 0.887 3.353 0.347

WF 0.830 0.897 3.358 0.325

Ours-WLWB 0.840 0.913 3.419 0.317

Comparison with Other Methods. We compare the

performance of our method with that of existing methods,

including PG2 [19], SHUP [1] and DSC [31]. We train all

these methods on iPER dataset, and the evaluation protocol

mentioned above is applied to these methods. The results

are reported in Table 1. It can be seen that our method

outperforms other methods. In addition, we also analyze

the generated images and make comparisons between ours

and above methods. From Fig. 6, we find that 1) the 2D

pose-guided methods, including PG2 [19], SHUP [1] and

DSC [31], change the body shape of source. For exam-

ple, in the 3rd row of Fig. 6, a tall person imitates motion

from a short person and these methods change the height

of source body. However, our method is capable to keep the

body shape unchanged. 2) When source image exhibits self-

occlusion, such as invisible face in the 1st row of Fig. 6, our

method could generate more realistic-looking content of the

ambiguous and invisible parts. 3) Our method is more pow-

erful in terms of preserving source identity, such as the face

identity and cloth details of source than other methods, as

shown in the 2nd and 3rd row of Fig. 6. 4) Our method also

produces high-fidelity images in the cross-imitation setting

(imitating actions from others) and we illustrate it in Fig. 7.

Ablation Study. To verify the impact of our proposed

Liquid Warping Block (LWB), we design three baselines

with aforementioned ways to propagate the source infor-

mation, including early concatenation, texture warping and

feature warping. All modules and loss functions are the

same except the propagating strategies among our method

and other baselines. Here, we denote early concatenation,

texture warping, feature warping, and our proposed LWB

as WC , WT , WF and WLWB . We train all these under the

same setting on the iPER dataset, then evaluate their per-

formances on motion imitation. From Table 1, we can see

that our proposed LWB is better than other baselines. More

details are provided in supplementary materials.

4.2. Results of Human Appearance Transfer.

It is worth emphasizing that once model has been trained,

it is able to directly to be applied in three tasks, includ-

ing motion imitation, appearance transfer and novel view

synthesis. We randomly pick some examples displayed in

Fig. 8. The face identity and clothes details, in terms of tex-

ture, color and style, are preserved well by our method. It

demonstrates that our method can achieve decent results in

appearance transfer, even when the reference image comes

from Internet and is out of the domain of iPER dataset, such

as the last five columns in Fig. 8.

4.3. Results of Human Novel View Synthesis.

We randomly sample source images from the testing set

of iPER, and change the views from 30◦ to 330◦. The re-

sults are illustrated in Fig. 9. Our method is capable to pre-

dict reasonable content of invisible parts when switching to

other views and keep the source information, in terms of

face identity and clothes details, even in the self-occlusion

case, such as the middle and bottom rows in Fig. 9.

5. Conclusion

We propose a unified framework to handle human mo-

tion imitation, appearance transfer, and novel view synthe-

sis. It employs a body recovery module to estimate the 3D

body mesh which is more powerful than 2D Pose. Further-

more, in order to preserve the source information, we design

a novel warping strategy, Liquid Warping Block (LWB),

which propagates the source information in both image

and feature spaces, and supports a more flexible warping

from multiple sources. Extensive experiments show that our

framework outperforms others and produce decent results.
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