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Abstract

In this paper, we propose a novel meta learning ap-

proach for automatic channel pruning of very deep neural

networks. We first train a PruningNet, a kind of meta net-

work, which is able to generate weight parameters for any

pruned structure given the target network. We use a sim-

ple stochastic structure sampling method for training the

PruningNet. Then, we apply an evolutionary procedure to

search for good-performing pruned networks. The search is

highly efficient because the weights are directly generated

by the trained PruningNet and we do not need any fine-

tuning at search time. With a single PruningNet trained

for the target network, we can search for various Pruned

Networks under different constraints with little human par-

ticipation. Compared to the state-of-the-art pruning meth-

ods, we have demonstrated superior performances on Mo-

bileNet V1/V2 and ResNet. Codes are available on https:

//github.com/liuzechun/MetaPruning.

1. Introduction

Channel pruning has been recognized as an effective

neural network compression/acceleration method [32, 22, 2,

3, 21, 52] and is widely used in the industry. A typical prun-

ing approach contains three stages: training a large over-

parameterized network, pruning the less-important weights

or channels, finetuning or re-training the pruned network.

The second stage is the key. It usually performs iterative

layer-wise pruning and fast finetuning or weight reconstruc-

tion to retain the accuracy [17, 1, 33, 41].

Conventional channel pruning methods mainly rely

on data-driven sparsity constraints [28, 35], or human-

designed policies [22, 32, 40, 25, 38, 2]. Recent AutoML-

style works automatically prune channels in an iterative

mode, based on a feedback loop [52] or reinforcement

learning [21]. Compared with the conventional pruning

This work is done when Zechun Liu and Haoyuan Mu are interns at

Megvii Technology.

Figure 1. Our MetaPruning has two steps. 1) training a Prun-

ingNet. At each iteration, a network encoding vector (i.e., the

number of channels in each layer) is randomly generated. The

Pruned Network is constructed accordingly. The PruningNet takes

the network encoding vector as input and generates the weights

for the Pruned Network. 2) searching for the best Pruned Net-

work. We construct many Pruned Networks by varying network

encoding vector and evaluate their goodness on the validation data

with the weights predicted by the PruningNet. No finetuning or

re-training is needed at search time.

methods, the AutoML methods save human efforts and can

optimize the direct metrics like the hardware latency.

Apart from the idea of keeping the important weights in

the pruned network, a recent study [36] finds that the pruned

network can achieve the same accuracy no matter it inher-

its the weights in the original network or not. This finding

suggests that the essence of channel pruning is finding good

pruning structure - layer-wise channel numbers.

However, exhaustively finding the optimal pruning struc-

ture is computationally prohibitive. Considering a network

with 10 layers and each layer contains 32 channels. The

possible combination of layer-wise channel numbers could

be 3210. Inspired by the recent Neural Architecture Search

(NAS), specifically One-Shot model [5], as well as the

weight prediction mechanism in HyperNetwork [15], we
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propose to train a PruningNet that can generate weights for

all candidate pruned networks structures, such that we can

search good-performing structures by just evaluating their

accuracy on the validation data, which is highly efficient.

To train the PruningNet, we use a stochastic structure

sampling. As shown in Figure 1, the PruningNet generates

the weights for pruned networks with corresponding net-

work encoding vectors, which is the number of channels

in each layer. By stochastically feeding in different net-

work encoding vectors, the PruningNet gradually learns to

generate weights for various pruned structures. After the

training, we search for good-performing Pruned Networks

by an evolutionary search method which can flexibly incor-

porate various constraints such as computation FLOPs or

hardware latency. Moreover, by directly searching the best

pruned network via determining the channels for each layer

or each stage, we can prune channels in the shortcut without

extra effort, which is seldom addressed in previous chan-

nel pruning solutions. We name the proposed method as

MetaPruning.

We apply our approach on MobileNets [24, 46] and

ResNet [19]. At the same FLOPs, our accuracy is 2.2%-

6.6% higher than MobileNet V1, 0.7%-3.7% higher than

MobileNet V2, and 0.6%-1.4% higher than ResNet-50.

At the same latency, our accuracy is 2.1%-9.0% higher

than MobileNet V1, and 1.2%-9.9% higher than MobileNet

V2. Compared with state-of-the-art channel pruning meth-

ods [21, 52], our MetaPruning also produces superior re-

sults.

Our contribution lies in four folds:

• We proposed a meta learning approach, MetaPruning, for

channel pruning. The central of this approach is learn-

ing a meta network (named PruningNet) which gener-

ates weights for various pruned structures. With a sin-

gle trained PruningNet, we can search for various pruned

networks under different constraints.

• Compared to conventional pruning methods, MetaPrun-

ing liberates human from cumbersome hyperparameter

tuning and enables the direct optimization with desired

metrics.

• Compared to other AutoML methods, MetaPruning can

easily enforce constraints in the search of desired struc-

tures, without manually tuning the reinforcement learn-

ing hyper-parameters.

• The meta learning is able to effortlessly prune the chan-

nels in the short-cuts for ResNet-like structures, which

is non-trivial because the channels in the short-cut affect

more than one layers.

2. Related Works

There are extensive studies on compressing and accel-

erating neural networks, such as quantization [54, 43, 37,

23, 56, 57], pruning [22, 30, 16] and compact network de-

sign [24, 46, 55, 39, 29]. A comprehensive survey is pro-

vided in [47]. Here, we summarize the approaches that are

most related to our work.

Pruning Network pruning is a prevalent approach for

removing redundancy in DNNs. In weight pruning, people

prune individual weights to compress the model size [30,

18, 16, 14]. However, weight pruning results in unstruc-

tured sparse filters, which can hardly be accelerated by

general-purpose hardware. Recent works [25, 32, 40, 22,

38, 53] focus on channel pruning in the CNNs, which re-

moves entire weight filters instead of individual weights.

Traditional channel pruning methods trim channels based

on the importance of each channel either in an iterative

mode [22, 38] or by adding a data-driven sparsity [28, 35].

In most traditional channel pruning, compression ratio for

each layer need to be manually set based on human ex-

perts or heuristics, which is time consuming and prone to

be trapped in sub-optimal solutions.

AutoML Recently, AutoML methods [21, 52, 8, 12] take

the real-time inference latency on multiple devices into ac-

count to iteratively prune channels in different layers of a

network via reinforcement learning [21] or an automatic

feedback loop [52]. Compared with traditional channel

pruning methods, AutoML methods help to alleviate the

manual efforts for tuning the hyper-parameters in channel

pruning. Our proposed MetaPruning also involves little hu-

man participation. Different from previous AutoML prun-

ing methods, which is carried out in a layer-wise prun-

ing and finetuning loop, our methods is motivated by re-

cent findings [36], which suggests that instead of selecting

“important” weights, the essence of channel pruning some-

times lies in identifying the best pruned network. From

this prospective, we propose MetaPruning for directly find-

ing the optimal pruned network structures. Compared to

previous AutoML pruning methods [21, 52], MetaPruning

method enjoys higher flexibility in precisely meeting the

constraints and possesses the ability of pruning the channel

in the short-cut.

Meta Learning Meta-learning refers to learning from

observing how different machine learning approaches per-

form on various learning tasks. Meta learning can be used

in few/zero-shot learning [44, 13] and transfer learning [48].

A comprehensive overview of meta learning is provided

in [31]. In this work we are inspired by [15] to use meta

learning for weight prediction. Weight predictions refer to

weights of a neural network are predicted by another neural

network rather than directly learned [15]. Recent works also

applies meta learning on various tasks and achieves state-of-

the-art results in detection [51], super-resolution with arbi-

trary magnification [27] and instance segmentation [26].

Neural Architecture Search Studies for neural archi-

tecture search try to find the optimal network structures
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Figure 2. The proposed stochastic training method of PruningNet.

At each iteration, we randomize a network encoding vector. The

PruningNet generates the weight by taking the vector as input. The

Pruned Network is constructed with respect to the vector. We crop

the weights generated by the PruningNet to match the input and

output channels in the Pruned Networks. By change network en-

coding vector in each iteration, the PruningNet can learn to gener-

ate different weights for various Pruned Networks.

and hyper-parameters with reinforcement learning [58, 4],

genetic algorithms [50, 42, 45] or gradient based ap-

proaches [34, 49]. Parameter sharing [7, 5, 49, 34] and

weights prediction [6, 11] methods are also extensively

studied in neural architecture search. One-shot architecture

search [5] uses an over-parameterized network with mul-

tiple operation choices in each layer. By jointly training

multiple choices with drop-path, it can search for the path

with highest accuracy in the trained network, which also in-

spired our two step pruning pipeline. Tuning channel width

are also included in some neural architecture search meth-

ods. ChamNet [9] built an accuracy predictor atop Gaus-

sian Process with Bayesian optimization to predict the net-

work accuracy with various channel widths, expand ratios

and numbers of blocks in each stage. Despite its high ac-

curacy, building such an accuracy predictor requires a sub-

stantial of computational power. FBNet [49] and Proxyless-

Nas [7] include blocks with several different middle channel

choices in the search space. Different from neural archi-

tecture search, in channel pruning task, the channel width

choices in each layer is consecutive, which makes enumer-

ate every channel width choice as an independent opera-

tion infeasible. Proposed MetaPruning targeting at channel

pruning is able to solve this consecutive channel pruning

challenge by training the PruningNet with weight predic-

tion, which will be explained in Sec.3

3. Methodology

In this section, we introduce our meta learning approach

for automatically pruning channels in deep neural networks,

that pruned network could meet various constraints easily.

We formulate the channel pruning problem as

(c1, c2, ...cl)
∗ = argmin

c1,c2,...cl

L(A(c1, c2, ...cl;w))

s.t. C < constraint,
(1)

where A is the network before the pruning. We try to find

out the pruned network channel width (c1, c2, ..., cl) for 1st

layer to lth layer that has the minimum loss after the weights

are trained, with the cost C meets the constraint (i.e. FLOPs

or latency).

To achieve this, we propose to construct a PruningNet,

a kind of meta network, where we can quickly obtain the

goodness of all potential pruned network structures by eval-

uating on the validation data only. Then we can apply any

search method, which is evolution algorithm in this paper,

to search for the best pruned network.

3.1. PruningNet training

Channel pruning is non-trivial because the layer-wise de-

pendence in channels such that pruning one channel may

significantly influence the following layers and, in return,

degrade the overall accuracy. Previous methods try to de-

compose the channel pruning problem into the sub-problem

of pruning the unimportant channels layer-by-layer [22] or

adding the sparsity regularization [28]. AutoML methods

prune channels automatically with a feedback loop [52] or

reinforcement learning [21]. Among those methods, how to

prune channels in the short-cut is seldom addressed. Most

previous methods prune the middle channels in each block

only[52, 21], which limits the overall compression ratio.

Carrying out channel pruning task with consideration of

the overall pruned network structure is beneficial for find-

ing optimal solutions for channel pruning and can solve

the shortcut pruning problem. However, obtaining the best

pruned network is not straightforward, considering a small

network with 10 layers and each layer containing 32 chan-

nels, the combination of possible pruned network structures

is huge.

Inspired by the recent work [36], which suggests the

weights left by pruning is not important compared to the

pruned network structure, we are motivated to directly find

the best pruned network structure. In this sense, we may

directly predict the optimal pruned network without itera-

tively decide the important weight filters. To achieve this

goal, we construct a meta network, PruningNet, for provid-

ing reasonable weights for various pruned network struc-

tures to rank their performance.

The PruningNet is a meta network, which takes a net-

work encoding vector (c1, c2, ...cl) as input and outputs the
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Figure 3. (a) The network structure of PruningNet connected with

Pruned Network. The PruningNet and the Pruned Network are

jointly trained with input of the network encoding vector as well

as a mini-batch of images. (b) The reshape and crop operation on

the weight matrix generated by the PruningNet block.

weights of pruned network:

W = PruningNet(c1, c2, ...cl). (2)

A PruningNet block consists of two fully-connected lay-

ers. In the forward pass, the PruningNet takes the network

encoding vector (i.e., the number of channels in each layer)

as input, and generates the weight matrix. Meanwhile, a

Pruned Network is constructed with output channels width

in each layer equal to the element in the network encoding

vector. The generated weight matrix is cropped to match the

number of input and output channel in the Pruned Network,

as shown in Figure 2. Given a batch of input image, we can

calculate the loss from the Pruned Network with generated

weights.

In the backward pass, instead of updating the weights

in the Pruned Networks, we calculate the gradients w.r.t

the weights in the PruningNet. Since the reshape operation

as well as the convolution operation between the output of

the fully-connect layer in the PruningNet and the output of

the previous convolutional layer in the Pruned Network is

also differentiable, the gradient of the weights in the Prun-

ingNet can be easily calculated by the Chain Rule. The

PruningNet is end-to-end trainable. The detailed structure

of PruningNet connected with Pruned Network is shown in

Figure 3.

To train the PruningNet, we proposed the stochastic

structure sampling. In the training phase, the network en-

coding vector is generated by randomly choosing the num-

ber of channels in each layer at each iteration. With differ-

ent network encodings, different Pruned Networks are con-

structed and the corresponding weights are provided with

the PruningNet. By stochastically training with different

encoding vectors, the PruningNet learns to predict reason-

able weights for various different Pruned Networks.

3.2. PrunedNetwork search

After the PruningNet is trained, we can obtain the ac-

curacy of each potential pruned network by inputting the

network encoding into the PruningNet, generating the cor-

responding weights and doing the evaluation on the valida-

tion data.

Since the number of network encoding vectors is huge,

we are not able to enumerate. To find out the pruned net-

work with high accuracy under the constraint, we use an

evolutionary search, which is able to easily incorporate any

soft or hard constraints.

In the evolutionary algorithm used in MetaPruning, each

pruned network is encoded with a vector of channel num-

bers in each layer, named the genes of pruned networks.

Under the hard constraint, we first randomly select a num-

ber of genes and obtain the accuracy of the corresponding

pruned network by doing the evaluation. Then the top k

genes with highest accuracy are selected for generating the

new genes with mutation and crossover. The mutation is

carried out by changing a proportion of elements in the gene

randomly. The crossover means that we randomly recom-

bine the genes in two parent genes to generate an off-spring.

We can easily enforce the constraint by eliminate the un-

qualified genes. By further repeating the top k selection

process and new genes generation process for several iter-

ations, we can obtain the gene that meets constraints while

achieving the highest accuracy. Detailed algorithm is de-

scribed in Algorithm.1.

4. Experimental Results

In this section, we demonstrate the effectiveness of our

proposed MetaPruning method. We first explain the exper-

iment settings and introduce how to apply the MetaPruning

on MobileNet V1 [24] V2 [46] and ResNet [19], which can

be easily generalized to other network structures. Second,

we compare our results with the uniform pruning baselines

as well as state-of-the-art channel pruning methods. Third,

we visualize the pruned network obtained with MetaPrun-

ing. Last, ablation studies are carried out to elaborate the

effect of weight prediction in our method.
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Algorithm 1 Evolutionary Search Algorithm

Hyper Parameters: Population Size: P , Number of

Mutation: M, Number of Crossover: S , Max Number of

Iterations: N .

Input: PruningNet: PruningNet, Constraints: C .

Output: Most accurate gene: Gtop .

1: G0 = Random(P), s.t. C;

2: GtopK = ∅;

3: for i = 0 : N do

4: {Gi, accuracy} = Inference(PruningNet(Gi));

5: GtopK , accuracytopK = TopK({Gi, accuracy});

6: Gmutation = Mutation(GtopK ,M), s.t. C;

7: Gcrossover = Crossover(GtopK ,S), s.t. C;

8: Gi = Gmutation + Gcrossover;

9: end for

10: Gtop1, accuracytop1= Top1({GN , accuracy});

11: return Gtop1;

4.1. Experiment settings

The proposed MetaPruning is very efficient. Thus it is

feasible to carry out all experiments on the ImageNet 2012

classification dataset [10].

MetaPruning method consists of two stages. In the first

stage, the PruningNet is train from scratch with stochas-

tic structure sampling, which takes 1

4
epochs as training

a network normally. Further prolonging PruningNet train-

ing yields little final accuracy gain in the obtained Pruned

Net. In the second stage, we use an evolutionary search al-

gorithm to find the best pruned network. With the Prun-

ingNet predicting the weights for all the PrunedNets, no

fine-tuning or retraining are needed at search time, which

makes the evolution search highly efficient. Inferring a

PrunedNet only takes seconds on 8 Nvidia 1080Ti GPUs.

The best PrunedNet obtained from search is then trained

from scratch. For the training process in both stages, we

use the standard data augmentation strategies as [19] to pro-

cess the input images. We adopt the same training scheme

as [39] for experiments on MobileNets and the training

scheme in [19] for ResNet. The resolutions of the input

image is set to 224 × 224 for all experiments.

At training time, we split the original training images

into sub-validation dataset, which contains 50000 images

randomly selected from the training images with 50 im-

ages in each 1000-class, and sub-training dataset with the

rest of images. We train the PruningNet on the sub-training

dataset and evaluating the performance of pruned network

on the sub-validation dataset in the searching phase. At

search time, we recalculate the running mean and running

variance in the BatchNorm layer with 20000 sub-training

images for correctly inferring the performance of pruned

Figure 4. Channel Pruning schemes considering the layer-wise

inter-dependency. (a) For the network without shortcut, e.g., Mo-

bileNet V1, we crop the top left of the original weight matrix to

match the input and output channels. For simplification, we omit

the depth-wise convolution here; (b) For the network with short-

cut, e.g., MobileNet V2, ResNet, we prune the middle channels

in the blocks while keep the input and output of the block being

equal.

networks, which takes only a few seconds. After obtaining

the best pruned network, the pruned network is trained from

scratch on the original training dataset and evaluated on the

test dataset.

4.2. MetaPruning on MobileNets and ResNet

To prove the effectiveness of our MetaPruning method,

we apply it on MobileNets [24, 46] and ResNet [19].

4.2.1 MobileNet V1

MobileNet V1 is a network without shortcut. To construct

the corresponding PruningNet, we have the PruningNet

blocks equal to the number of convolution layers in the Mo-

bileNet v1, and each PruningNet block is composed of two

concatenated fully-connected(FC) layers.

The input vector to the PruningNet is the number of

channels in each layer. Then this vector is decoded into the

input and output channel compression ratio of each layer,

i.e., [
Cl−1

po

C
l−1

o

,
Cl

po

Cl
o

]. Here, C denotes the number of channels, l

is layer index of current layer and l−1 denotes the previous

layer, o means output of the original network and po is the

pruned output. This two dimensional vector is then inputted

into each PruningNet block associated with each layer. The

first FC layer in the PruningNet block output a vector with

64 entries and the second FC layer use this 64-entry encod-

ing to output a vector with a length of Cl
o×Cl−1

o ×W l×H l.

Then we reshape it to (Cl
o, C

l−1

o ,W l, H l) as the weight ma-

trix in the convolution layer, as shown in Figure.3.
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In stochastic structure sampling, an encoding vector of

output channel numbers is generated with its each entry Cl
po

independently and randomly selected from [int(0.1× Cl
o),

Cl
o], with the step being int(0.03 × Cl

o). More refined or

coarse step can be chosen according to the fineness of prun-

ing. After decoding and the weight generation process in

the PruningNet, the top left part of generated weight matrix

is cropped to (Cl
po, C

l−1

po ,W l, H l) and is used in training,

and the rest of the weights can be regards as being ‘un-

touched’ in this iteration, as shown in Figure.4 (a). In dif-

ferent iterations, different channel width encoding vectors

are generated.

4.2.2 MobileNet V2

In MobileNet V2, each stage starts with a bottleneck block

matching the dimension between two stages. If a stage con-

sists of more than one block, the following blocks in this

stage will contain a shortcut adding the input feature maps

with the output feature maps, thus input and output chan-

nels in a stage should be identical, as shown in Figure 4 (b).

To prune the structure containing shortcut, we generate two

network encoding vectors, one encodes the overall stage

output channels for matching the channels in the shortcut

and another encodes the middle channels of each blocks. In

PruningNet, we first decode this network encoding vector

to the input, output and middle channel compression ratio

of each block. Then we generate the corresponding weight

matrices in that block, with a vector [
Cb−1

po

C
b−1

p

,
Cb

po

Cb
o

,
Cb

middle po

Cb
middle o

]

inputting to the corresponding PruningNet blocks, where b

denotes the block index. The PruningNet block design is

the same as that in MobileNetV1, and the number of Prun-

ingNet block equals to the number of convolution layers in

the MobileNet v2.

4.2.3 ResNet

As a network with shortcut, ResNet has similar network

structure with MobileNet v2 and only differs at the type of

convolution in the middle layer, the downsampling block

and number of blocks in each stage. Thus, we adopt similar

PruningNet design for ResNet as MobileNet V2.

4.3. Comparisons with stateofthearts

We compare our method with the uniform pruning base-

lines, traditional pruning methods as well as state-of-the-art

channel pruning methods.

4.3.1 Pruning under FLOPs constraint

Table 1 compares our accuracy with the uniform pruning

baselines reported in [24]. With the pruning scheme learned

by MetaPruning, we obtain 6.6% higher accuracy than the

Table 1. This table compares the top-1 accuracy of MetaPruning

method with the uniform baselines on MobileNet V1 [24].

Uniform Baselines MetaPruning

Ratio Top1-Acc FLOPs Top1-Acc FLOPs

1× 70.6% 569M – –

0.75× 68.4% 325M 70.9% 324M

0.5× 63.7% 149M 66.1% 149M

0.25× 50.6% 41M 57.2% 41M

Table 2. This table compares the top-1 accuracy of MetaPrun-

ing method with the uniform baselines on MobileNet V2 [46].

MobileNet V2 only reports the accuracy with 585M and 300M

FLOPs, so we apply the uniform pruning method on MobileNet

V2 to obtain the baseline accuracy for networks with other FLOPs.

Uniform Baselines MetaPruning

Top1-Acc FLOPs Top1-Acc FLOPs

74.7% 585M – –

72.0% 313M 72.7% 291M

67.2% 140M 68.2% 140M

66.5% 127M 67.3% 124M

64.0% 106M 65.0% 105M

62.1% 87M 63.8% 84M

54.6% 43M 58.3% 43M

Table 3. This table compares the Top-1 accuracy of MetaPruning,

uniform baselines and state-of-the-art channel pruning methods,

ThiNet [38], CP [22] and SFP [20] on ResNet-50 [19]

Network FLOPs Top1-Acc

Uniform

Baseline

1.0× ResNet-50 4.1G 76.6%

0.75× ResNet-50 2.3G 74.8%
0.5 × ResNet-50 1.1G 72.0%

Traditional

Pruning

SFP[20] 2.9G 75.1%
ThiNet-70 [38] 2.9G 75.8%
ThiNet-50 [38] 2.1G 74.7%
ThiNet-30 [38] 1.2G 72.1%

CP [22] 2.0G 73.3%
MetaPruning - 0.85×ResNet-50 3.0G 76.2%
MetaPruning - 0.75×ResNet-50 2.0G 75.4%
MetaPruning - 0.5 ×ResNet-50 1.0G 73.4%

Table 4. This table compares the top-1 accuracy of MetaPruning

method with other state-of-the-art AutoML-based methods.

Network FLOPs Top1-Acc

0.75x MobileNet V1 [24] 325M 68.4%

NetAdapt [52] 284M 69.1%

AMC [21] 285M 70.5%

MetaPruning 281M 70.6%

0.75x MobileNet V2 [46] 220M 69.8%

AMC [21] 220M 70.8%

MetaPruning 217M 71.2%

3301



baseline 0.25× MobileNet V1. Further more, as our method

can be generalized to prune the shortcuts in a network, we

also achieves decent improvement on MobileNet V2, shown

in Table.2 Previous pruning methods only prunes the mid-

dle channels of the bottleneck structure [52, 21], which

limits their maximum compress ratio at given input reso-

lution. With MetaPruning, we can obtain 3.7% accuracy

boost when the model size is as small as 43M FLOPs. For

heavy models as ResNet, MetaPruning also outperforms the

uniform baselines and other traditional pruning methods by

a large margin, as is shown in Table.3.

In Table 4, we compare MetaPruning with the state-of-

the-art AutoML pruning methods. MetaPruning achieves

superior results than AMC [21] and NetAdapt [52]. More-

over, MetaPruning gets rid of manually tuning the reinforce-

ment learning hyper-parameters and can obtain the pruned

network precisely meeting the FLOPs constraints. With the

PruningNet trained once using one-fourth epochs as nor-

mally training the target network, we can obtain multiple

pruned network structures to strike different accuracy-speed

trade-off, which is more efficient than the state-of-the-art

AutoML pruning methods [21, 52]. The time cost is re-

ported in Sec.4.1.

4.3.2 Pruning under latency constraint

There is an increasing attention in directly optimizing the

latency on the target devices. Without knowing the imple-

mentation details inside the device, MetaPruning learns to

prune channels according to the latency estimated from the

device.

As the number of potential Pruned Network is numer-

ous, measuring the latency for each network is too time-

consuming. With a reasonable assumption that the execu-

tion time of each layer is independent, we can obtain the

network latency by summing up the run-time of all layers

in the network. Following the practice in [49, 52], we first

construct a look-up table, by estimating the latency of exe-

cuting different convolution layers with different input and

output channel width on the target device, which is Titan Xp

GPU in our experiments. Then we can calculate the latency

of the constructed network from the look-up table.

We carried out experiments on MobileNet V1 and V2.

Table 5 and Table 6 show that the prune networks discov-

ered by MetaPruning achieve significantly higher accuracy

than the uniform baselines with the same latency.

4.4. Pruned result visualization

In channel pruning, people are curious about what is

the best pruning heuristic and lots of human experts are

working on manually designing the pruning policies. With

the same curiosity, we wonder if any reasonable pruning

schemes are learned by our MetaPruning method that con-

Table 5. This table compares the top-1 accuracy of MetaPruning

method with the MobileNet V1 [24], under the latency constraints.

Reported latency is the run-time of the corresponding network on

Titan Xp with a batch-size of 32

Uniform Baselines MetaPruning

Ratio Top1-Acc Latency Top1-Acc Latency

1× 70.6% 0.62ms – –

0.75× 68.4% 0.48ms 71.0% 0.48ms

0.5× 63.7% 0.31ms 67.4% 0.30ms

0.25× 50.6% 0.17ms 59.6% 0.17ms

Table 6. This table compares the top-1 accuracy of MetaPruning

method with the MobileNet V2 [46], under the latency constraints.

We re-implement MobileNet V2 to obtain the results with 0.65 ×

and 0.35 × pruning ratio. This pruning ratio refers to uniformly

prune the input and output channels of all the layers.

Uniform Baselines MetaPruning

Ratio Top1-Acc Latency Top1-Acc Latency

1.4× 74.7% 0.95ms – –

1× 72.0% 0.70ms 73.2% 0.67ms

0.65× 67.2% 0.49ms 71.7% 0.47ms

0.35× 54.6% 0.28ms 64.5% 0.29ms

tributes to its high accuracy. In visualizing the pruned net-

work structures, we find that the MetaPruning did learn

something interesting.

Figure 5 shows the pruned network structure of Mo-

bileNet V1. We observe significant peeks in the pruned

network every time when there is a down sampling opera-

tion. When the down-sampling occurs with a stride 2 depth-

wise convolution, the resolution degradation in the feature

map size need to be compensated by using more channels to

carry the same amount of information. Thus, MetaPruning

automatically learns to keep more channels at the down-

sampling layers. The same phenomenon is also observed

in MobileNet V2, shown in Figure 6. The middle channels

will be pruned less when the corresponding block is in re-

sponsible for shrinking the feature map size.

Moreover, when we automatically prune the shortcut

channels in MobileNet V2 with MetaPruning, we find that,

despite the 145M pruned network contains only half of the

FLOPs in the 300M pruned network, 145M network keeps

similar number of channels in the last stages as the 300M

network, and prunes more channels in the early stages. We

suspect it is because the number of classifiers for the Im-

ageNet dataset contains 1000 output nodes and thus more

channels are needed at later stages to extract sufficient fea-

tures. When the FLOPs being restrict to 45M, the network

almost reaches the maximum pruning ratio and it has no

choice but to prune the channels in the later stage, and the

accuracy degradation from 145M network to 45M networks

is much severer than that from 300M to 145M.
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Figure 5. This figure presents the number of output channels of

each block of the pruned MobileNet v1. Each block contains a 3x3

depth-wise convolution followed by a 1x1 point-wise convolution,

except the first block is composed by a 3x3 convolution only.

Figure 6. A MobileNet V2 block is constructed by concatenating

a 1x1 point-wise convolution, a 3x3 depth-wise convolution and a

1x1 point-wise convolution. This figure illustrates the number of

middle channels of each block.

Figure 7. In MobileNet V2, each stage starts with a bottleneck

block with differed input and output channels and followed by

several repeated bottleneck blocks. Those bottleneck blocks with

the same input and output channels are connected with a short-

cut. MetaPruning prunes the channels in the shortcut jointly with

the middle channels. This figure illustrates the number of shortcut

channel in each stage after being pruned by the MetaPruning.

4.5. Ablation study

In this section, we discuss about the effect of weight pre-

diction in the MetaPruning method.

Figure 8. We compare between the performance of PruningNet

with weight prediction and that without weight prediction by in-

ferring the accuracy of several uniformly pruned network of Mo-

bileNet V1[24]. PruningNet with weight prediction achieves much

higher accuracy than that without weight prediction.

We wondered about the consequence if we do not use

the two fully-connected layers in the PruningNet for weight

prediction but directly apply the proposed stochastic train-

ing and crop the same weight matrix for matching the input

and output channels in the Pruned Network. We compare

the performance between the PruningNet with and without

weight prediction. We select the channel number with uni-

formly pruning each layer at a ratio ranging from [0.25, 1],

and evaluate the accuracy with the weights generated by

these two PruningNets. Figure 8 shows PruningNet without

weight prediction achieves 10% lower accuracy. We fur-

ther use the PruningNet without weight prediction to search

for the Pruned MobileNet V1 with less than 45M FLOPs.

The obtained network achieves only 55.3% top1 accuracy,

1.9% lower than the pruned network obtained with weight

prediction. It is intuitive. For example, the weight matrix

for a input channel width of 64 may not be optimal when

the total input channels are increased to 128 with 64 more

channels added behind. In that case, the weight prediction

mechanism in meta learning is effective in de-correlating

the weights for different pruned structures and thus achieves

much higher accuracy for the PruningNet.

5. Conclusion

In this work, we have presented MetaPruning for chan-

nel pruning with following advantages: 1) it achieves much

higher accuracy than the uniform pruning baselines as well

as other state-of-the-art channel pruning methods, both tra-

ditional and AutoML-based; 2) it can flexibly optimize with

respect to different constraints without introducing extra

hyperparameters; 3) ResNet-like architecture can be effec-

tively handled; 4) the whole pipeline is highly efficient.
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